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Abstract. So far multi-antenna techniques have been used 
in Synthetic Aperture Radar (SAR) to track moving targets. 
These techniques carry out the tracking of moving targets 
in an imaging area, using a combination of the data re-
ceived by two or several antennas. The aim of this paper is 
single-target tracking in SAR Spotlight imaging mode 
based on the promoted PHD filter. In most applications, 
target tracking in densely cluttered environment using 
radar system demands robust filtering so as to increase the 
tracking efficiency. Therefore, tracking of moving targets 
in the presence of high density clutters in environment, as 
the particular capability of the PHD filter, has turned it 
into a robust approach in SAR to track moving targets. 
Also as the simulation results show, using Range Cell 
Migration Compensation (RCMC) on SAR raw data before 
tracking, makes it possible to track a moving target with 
high quality. 
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1. Introduction 
Among different target tracking methods, the con-

centration of this paper is on Probability Hypothesis 
Density (PHD) filter which spreads the first order moment 
of targets state Random Finite Set (RFS) or the intensity of 
targets state RFS in time. The RFS method considers 
targets as a set-valued state and also observation values as 
a set-valued observation; so by the viewpoint of RFS, the 
problem is related to the framework of Bayesian filtering. 
This efficient method for multi-target tracking is in fact 
a delicate generalization of single-target Bayesian filtering. 
As a matter of fact, the multi-target Bayes filter, PHD filter 

and also different implementation methods of it are 
desirable versions of filters based on RFS method [1]. 

In order to explain the PHD, the target state and the 
sensor observation models are assumed as known. In these 
models, γk is the generation rate of the RFS Γk 

at instance k 
and Γk represents RFS of spontaneous birth at time k;  
βk│k – 1 is the proliferation rate (ramification rate) of the set 
βk│k – 1(ζ) at instance k for a target with a previous state of 
ζ; ps,k(ζ) is the probability that a target with a previous state 
of ζ, i.e. at instance k – 1, also exists at instance k (target 
survival probability); pD,k(x) is the probability that a target 
with state x at instance k is detected by the sensor at the 
same instance, and kk(·) denotes the clutter severity of the 
set kk at instance k.  

Using the following recurrence time equations, the 
PHD function is diffusible [2]: 
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where fk│k – 1 is the state transition probability density 
function and 
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Observations vector defined as random finite set is 
Zk = {zk,1,…, zk,Mk

}, where Mk denotes the measurement 
number at time k. vk│k – 1(x) and vk (x) are predicted and 
updated (modified) values of the PHD function respec-
tively. 

The Sequential Monte Carlo (SMC) [3], [4] and the 
Gaussian Mixture (GM) [5] are the two main approaches in 
implementing the PHD recursion. As a large number of 
particles is used to approximate the multi-dimensional 
integrals in the SMC-PHD filter, the main drawback is its 
high computational burden. Moreover, to extract the target 
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state estimates some clustering techniques are required, 
which might be often unreliable. To overcome these disad-
vantages, the GM-PHD filter was developed for linear 
Gaussian target dynamics and Gaussian birth model, in 
which the weights, means and covariance matrices are 
propagated analytically by the Kalman Filter (KF). To deal 
with nonlinear target dynamics and measurement models, 
the nonlinear Kalman filter counterparts can be directly 
employed. The convergence properties of two implemen-
tations were analyzed in [4], [6]. As shown in [6], the true 
PHD filter to any desired degree of accuracy can be ap-
proximated by the GM-PHD filter under the linear Gauss-
ian assumption of the dynamic model. For tracking multi-
ple maneuvering targets, similar results have been extended 
to handle jump Markov models [7–10]. To derive PHD 
smoothers, the particle and Gaussian mixture techniques 
have also been used [11–18]. In [19], the GM-PHD filter is 
extended to multi-sensor tracking system and the target 
state estimates are obtained sequentially at each sensor. 
However, the sensor registration errors are neglected. 

Multi-antenna methods (hardware methods) are re-
ferred to as Interferometric Synthetic Aperture Radar 
(IFSAR). In these methods two or more images (complex 
matrix of SAR) are used to extract more information re-
garding target region [20], [21]. It can be noted that IFSAR 
system is actually an applied generalization and a different 
implementation of SAR systems in which independent 
images of a particular region are extracted using two or 
more imaging SAR radars. In this study, single-target 
tracking implementation in the received raw data by SAR 
is fulfilled using PHD filtering in software mode (in the 
MATLAB software). 

2. The Proposed Algorithm  
SAR uses an actual small scale antenna to propagate 

waves along the trajectory of the platform and receive the 
echoes of the area surface. Having received the returned 
echoes from the ground, a special processing begins aiming 
at image acquisitions from the area. The main characteristic 
of the hardware performance of SAR is therefore to move 
on the area surface, radiating and receiving waves. Having 
received a sufficient number of echoes, they undergo signal 
processing; thereby the small radar antenna behaves as 
a large antenna [22–26]. 

The impulse response of SAR, i.e., the echoes 
received from a spot target [27], are as follows: 
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(3) 

η is the azimuth time, A is the amplitude fluctuation,  
wr(τ – 2R(η)/c), is a range window centered on a delay of 

2R(η)/c, wa(η – ηc) is an azimuth window centered on the 
Doppler centroid time. R(η), Kr 

and c are ranges corre-
sponding to the azimuth time η, Chirp rate of the signal 
transmitted by the radar and light velocity, respectively. 
The principle of superposition, which is the convolution of 
the reflection function of the area with the SAR impulse 
response, can be used for the calculation of the signal re-
ceived from an extensive area by SAR because of the line-
arity of the SAR system. After the receiver oscillator and 
after being transferred to base band, the signal received by 
SAR from an area with the reflection function g(τ,η) is as 
follows [27]: 
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n(τ,η) and  represent the additive noise in the receiver 
and convolution operator, respectively. 

On the range-Doppler domain, applying Fourier 
transform on the signal received by the SAR receiver along 
the azimuth, it will be as follows: 
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wr(τ – 2Rrd(fη)/c) is a range window centered on a delay of 
2Rrd(fη)/c). rd, Rrd, fη  and fηc denote azimuth phase in the 
range Doppler domain, Range Cell Migration (RCM), 
azimuth frequency, and the Doppler centroid frequency, 
respectively. Moreover, wa(fη – fηc) stands for azimuth win-
dow centered on the Doppler centroid frequency. 

The RCM which is present in the data received by 
SAR for the azimuth frequency of fη is as follows [27]: 
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R0 and Vr 
show the range of closest approach and the 

radar velocity, respectively. Combining (5) and (6), on the 
range Doppler domain, the signal received by the SAR 
receiver is approximately as follows: 
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The mentioned observation array, after sampling, is 
delivered to the SAR processor as an input signal, and as it 
can be seen in Fig. 1, it is processed to form radar output 
image on one hand and as the input to the target tracking 
processor, on the other hand (the proposed plan). 

Now, in the tracking section of the proposed receiver, 
the Range Cell Migration Compensation (RCMC) process 
is applied to the received observation array and then the 
output is given to the GM-PHD algorithm to track moving 
targets in the area surface. Therefore it is only needed  
to add the RCMC  approach to the PHD  filtering equations 
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Fig. 1.  The complete block diagram of the SAR processor 

containing the block proposed to track moving targets 
as well as the image formation algorithm of Range-
Doppler Algorithm (RDA). 

and using an additional processing of RCMC to update the 
sensor observation array. To this end, the R(·)

 
operator is 

used with the following function to illustrate the RCMC 
operation on the observation vector received by the SAR 
sensor: 
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The RCM value available in the received observation 
vector, which is approximately as follows, should be 
modified from (6) as 
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ΔR indicates the proportion of RCM which needs to cor-
rected and it is a function of the azimuth frequency fη, 
range R0, radar wavelength λ, and the radar platform ve-
locity Vr. After implementing the RCMC interpolation, the 
signal received by SAR will be as follows: 
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Sampling SRCMC(τ, fη) on the time-range domain, the 
received observation vector of SAR after RCMC is ob-

tained and denoted by zRCMC. Given the observation vector 
zRCMC, beginning the iteration process of the Bayesian 
filtering with an initial density function such as ρ0(·), the 
posterior density function at the moment k is tracked by the 
two following equations: 

RCMC RCMC
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Knowing the state xk at time k, probability density of 
receiving observation zk  Z

 
is gk (zk│xk) and, knowing all 

the observations z1:k = (z1, …, zk) up to time k, the probabil-
ity density of state xk at time k is given by pk (xk│z1:k). 

The above filtering can be implemented approxi-
mately with an acceptable accuracy utilizing GM-PHD 
filter equations. It is therefore enough to update the  
GM-PHD equations obtained in [5] with ZRCMC instead of 
Z.  

After RCMC approach on received observation by 
receiver sensor SAR, filter prediction and update relations 
of GM-PHD in tracking process of SAR is followed as 
below: 

Assume posterior intensity function at instant k – 1 is 
in the form of Gaussian mixture as: 
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where N(.;m,P) and ω denote a Gaussian density (with 
mean m and covariance P) and weight coefficients, respec-
tively. Jk – 1 is the number of Gaussian components.  

Thus, predicted intensity function at instant k is in the 
form of Gaussian mixture as:  
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where γk(x) is also represented by (15): 
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in which Fk – 1 and Qk – 1 are the state transition matrix and 
the process noise covariance, respectively. 
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Assume that the predicted intensity is a Gaussian 
mixture of the following form at time k given time k – 1: 
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Then, the posterior intensity is also a Gaussian 
mixture at time k, and is given by: 
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in which Hk and Rk are the observation matrix and the 
observation noise covariance, respectively. 

In the next section, simulation results of the afore-
mentioned cases will be presented. 

3. Simulation of the Single-Target 
Tracking 
Owing to the SAR platform movements, the velocity 

data of moving targets across the region are changed and 
transformed in the received observation array. As a result, 
it should be modified and the SAR movement effect should 
be compensated before the implementation of the tracking 
process by the PHD filter. This compensation process of 
the received observation array (algorithm input) which is 
added to the PHD filtering algorithm is the same as the 
RCMC approach in all the SAR image formation algo-
rithms except that it is applied to different data. 

The outcome of the convolution of the signal sent by 
the radar and the impulse response of the SAR is equiva-
lent to the echo received by the SAR receiver (without the 
noise and clutter though). Clutter which has always a Pois-

son distribution in the time domain and a uniform distribu-
tion in the spatial domain [28], [29] (at any point in time) is 
generated accordingly and added to the echo received by 
the radar (the convolution of the chirp signal sent and the 
impulse response). After that, the observation array re-
ceived by the sensor (the tracking algorithm input) is 
formed.  

Care must be taken that fixed targets play the role of 
clutters and therefore considered undesirable targets. Fur-
thermore, the main feature of Kalman and PHD filters is 
their ability to eliminate clutters, which was the impetus for 
applying the PHD filter in this paper to track moving tar-
gets in the SAR data. It should be noted that given the idea 
of moving targets detection and tracking, the SAR data are 
considered a type of radar data with high levels of clutters. 
The use of these filters is therefore regarded as a desirable 
approach for the detection and tracking of moving targets. 
It should however be noted that in the presence of multiple 
targets, the use of the Kalman filter necessitates applying 
techniques dedicated to data association of various targets 
and applying each set of data on a separate filter. The PHD 
filter does not face this restriction, but its only problem is 
the processing of actual high volume SAR data, which 
needs very powerful processors. The main problem in 
multi-target tracking is the association of data to targets, 
that means which observation is related to which target and 
this will lead to an increase in calculation load and the 
processing of tracking process. PHD filter operates on 
a single-target space and it has not the data association 
complexities. In fact, PHD filter transforms multi-target 
tracking into a single-target space and implements tracking 
process. Data association algorithms are often divided into 
Bayesian and non-Bayesian approaches. Non-Bayesian 
approaches utilize an optimization algorithm to find a so-
lution for data association. On the other hand, Bayesian 
algorithms employ statistical theory for data association 
and conclude techniques such as Maximum A Posteriori 
(MAP).  

In these simulations, the space borne Synthetic 
Aperture Radar (SAR) is in the spotlight imaging mode. 
The values of the radar's main parameters are presented in 
Tab. 1. 
 

Parameter Description Value 
R0 radar near range (km) 825 

Vr 
velocity of platform 

(m/s) 
7619 

ρr  
radar range resolution 

(m) 
0.6 

Vt 
velocity of targets 

(m/s) 
20-60 

PRF 
pulse repetition 
frequency (kHz) 

3 

fS sampling rate (MHz) 187.5 

fc  
radar center frequency 

(GHz) 
9.6 

Chirp_BW 
transmitted chirp 
bandwidth (Hz) 

2.5415e+08 

Tr pulse width (sec) 8.0000e-05 

Tab. 1.  Simulation parameters.  
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A moving target with the trajectory shown in Fig. 2 is 
considered as an example.  

For better illustration of the tracking performance 
over time, the target movement and also the sensor ob-
servations are shown along the perpendicular axes X and Y 
separately over time. Figure 3 shows the observation 
values of the targets and clutters along the perpendicular 
axes separately over time. The parameter N_Clutter 
represents the mean number of the Poisson process of 
generating clutter at every instance of time, which is equal 
to 20 in Fig. 3. 

 
Fig. 2.  A sample trajectory of a moving target in the single 

target scenario. 

 
Fig. 3.  Observation values of the target and clutter by the 

sensor along the perpendicular axes X and Y 
separately over time for the single target shown in 
Fig. 2, N_Clutter = 20 and after RCMC. 

 
Fig. 4.  State estimation of the target using the promoted GM-

PHD algorithm along the perpendicular axes X and Y 
separately over time for the single target shown in 
Fig. 2 and N_Clutter = 20. 

 
Fig. 5.  The 2D target trajectory and the output of the tracking 

approach by the use of the promoted GM-PHD 
algorithm for the single target shown in Fig. 2 and 
N_Clutter = 20. 

An important parameter for the quality assessment of 
the tracking process suggested is N_Clutter. It means that it 
is expected that the tracking approach performs well for 
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different and particularly high values of the parameter. The 
output of the proposed approach (the target state at every 
moment) for the same target shown in Fig. 2 is exhibited in 
Fig. 4. The continuous curve in Fig. 4 represents the true 
state (position) of the target, while circles denote the target 
state at any instance extracted by the promoted GM-PHD 
algorithm. 

The 2D target trajectory as well as the tracking result 
obtained by the promoted GM-PHD algorithm is shown in 
Fig. 5. 

Moreover, in order to ensure that the proposed 
tracking plan is robust in the presence of highly dense 
clutter, the recent simulations have been repeated for      
N_Clutter = 200, which are all shown in Figs. 6–8. 

The 2D target trajectory as well as the tracking result 
obtained by the promoted GM-PHD algorithm is shown in 
Fig. 8 (N_Clutter = 200). 

 
Fig. 6.  Observation values of the target and clutter by the 

sensor along the perpendicular axes X and Y 
separately over time for the single target shown in 
Fig. 2, N_Clutter = 200 and after RCMC. 

 

 
Fig. 7.  State estimation of the target using the promoted  

GM-PHD algorithm along the perpendicular axes X 
and Y separately over time for the single target shown 
in Fig. 2 and N_Clutter = 200. 

 
Fig. 8.  The 2D target trajectory and the output of the tracking 

approach by the use of the promoted GM-PHD 
algorithm for the single target shown in Fig. 2 and 
N_Clutter = 200. 

In order to compare the performance of the promoted 
GM-PHD algorithm with ordinary GM-PHD algorithm for 
tracking of a single moving target in the received raw data 
by SAR, the tracking results of GM-PHD algorithm are 
also considered without implementing RCMC. In this case, 
the observations obtained from sensors (of the target and 
clutter) are shown in Fig. 9. 

The sensor observations of the target with greater 
density than the clutters with shift-invariance along X axis 
(due to radar squint angle) and a curve deviation along Y 
axis (due to RCM caused by SAR imaging geometry and 
motion) are shown in Fig. 9. Due to the faulty observations 
of sensors regarding the true value in both X and Y axis, it 
is necessary to implement the RCMC process in sensor ob-
servations (a radar receiver), before PHD filtering tracking 
process (or Kalman for single target only) initiates, so as to 
obtain a true tracking of the moving target in the received 
raw data by SAR. In fact, Figure 3 is the result of imple-
mentation of RCMC process on the observations shown in 
Fig. 9. Moreover, the estimation results of the state of the 
moving target shown in previous figures can be obtained 
and evaluated based on the observations shown in Fig. 9. 
These results are illustrated in Fig. 10. 
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Fig. 9.  Observation values of the target and clutter by the 

sensor along the perpendicular axes X and Y 
separately over time for the single target shown in 
Fig. 2, N_Clutter = 10 and without RCMC. 

 
Fig. 10.  State estimation of the target using the ordinary  

GM-PHD algorithm along the perpendicular axes X 
and Y separately over time for the single target shown 
in Fig. 2 and N_Clutter = 10 (without RCMC). 

According to Fig. 10, if RCMC compensation process 
is not implemented in the sensor observations, the estima-
tion of the state of target will be erroneous and the moving 
target tracking process in the received raw data by SAR 
material virtually fails. 2-dimensional target trajectory and 
the result of tracking by ordinary GM-PHD algorithm for 
this case (if N_Clutter = 10) is shown in Fig. 11. 

As shown in Fig. 12, the increase in surface density of 
the clutters (10 times in this sample) results in an increase 
in the erroneous estimations which shows that the errone-
ous estimations are caused by clutters not the target(s). 

 
Fig. 11.  The 2D target trajectory and the output of the tracking 

approach by the use of the ordinary GM-PHD 
algorithm for the single target shown in Fig. 2 and 
N_Clutter = 10 (without RCMC). 

 
Fig. 12.  State estimation of the target using the ordinary  

GM-PHD algorithm along the perpendicular axes X 
and Y separately over time for the single target shown 
in Fig. 2 and N_Clutter = 100 (without RCMC). 
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4. Conclusion 
This paper proposed a novel technique based on the 

GM-PHD filtering for the simultaneous tracking of single 
moving target in the data received by the SAR in the Spot-
light imaging mode. Moreover, the prediction and update 
equations of the PHD function are in the single-target state 
space. The implementation of the PHD filter has therefore 
less computational load than the ideal prediction and up-
date equation in the Bayesian filter. Applying range cell 
migration compensation on the raw data received by SAR 
before tracking, made it possible to track single moving 
target with a good quality. 
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