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Abstract. Template attacks and machine learning are two
powerful methods in the field of side channel attacks. In
this paper, we aimed to contribute to the novel application of
support vector machine (SVM) algorithm in power analysis
attacks. Especially, wavelet SVM can approximate arbitrary
nonlinear functions due to the multidimensional analysis of
wavelet functions and the generalization of SVM. Three inde-
pendent datasets were selected to compare the performance
of template attacks and SVM based on various kernels. The
results indicated that wavelet SVM successfully recovered
the offset value of the masked AES implementation for each
trace, which was obviously 5 to 8 percentage points higher
than SVM-RBF. And also, the time required was almost re-
duced by 40% when using the optimal parameters of wavelet
SVM. Moreover, wavelet SVM only required an average of
5.4 traces to break the secret key for the unmasked AES
implementation and less than 7 traces for the masked AES
implementation.
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1. Introduction

Modern cryptographic devices generally implement the
cryptographic algorithm and store the corresponding secret
key. The cryptographic device must remain the secret key
regardless of whether the algorithm itself is public or not.
Therefore, it’s important that the cryptographic algorithm
does not reveal key-related information in the process of exe-
cution. Unfortunately, none of the cryptographic devices can
eliminate the relevant information about the secret key from
various side channels. An attacker may invade the entire
security system and break the key through side channel infor-
mation, which is called side channel attacks (SCAs). Typical
SCAs contain power analysis attacks [1], timing attacks [2],
acoustic cryptanalysis key extraction attacks [3], electromag-
netic attacks [4], and their combinations [5]. In these attacks,
power analysis attacks have attracted the attention of industry
and academia.
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Power analysis attacks were first proposed by Kocher
et al. [1], which exposed the fact that the instantaneous
power consumption of a cryptographic device depends on
the data being processed and operations being performed.
Many power analysis attacks methods have sprung up since
then, such as Differential Power Analysis (DPA) [1], Tem-
plate Attacks (TA) [6], [7], Correlation Power Analysis (CPA)
[8], Mutual Information Analysis (MIA) [9], and Stochas-
tic Model based Power Analysis (SMPA) [10]. From the
viewpoint of engineering, power analysis attacks include two
types, namely profiling and non-profiling attacks. For profil-
ing attacks, a basic assumption is that the adversary is free to
access target devices and profiling devices. Profiling attacks
consist of two phases, called profiling and attacking. During
the profiling phase, the adversary analyzes the profiling de-
vice by multiple power traces so that the key of the target de-
vice can be recovered when the attacking phase is performed.
However, non-profiling attacks are single-step attacks that are
performed directly on the target device. Over the past decade,
various countermeasures against power analysis attacks have
been proposed in hardware or software implementations. In
general, almost all strategies are divided into two categories,
hiding and masking. The masking scheme is very popular
due to low cost and high performance. A comprehensive
summary of power analysis attacks and countermeasures can
refer to the book [11].

Rivest [12] first studied the intersection of machine
learning and cryptography. Machine learning is a disci-
pline whose purpose is to build a probability model based
on the given data to predict the final result, which includes
unsupervised learning, supervised learning and reinforce-
ment learning. Roughly, the purpose of supervised learning
is to learn a general function that maps the input space to the
desired output space. The application of machine learning
algorithms in power analysis attacks has just begun in recent
years. Heyszlet et al. [13] used the k-means algorithm to
attack the public key cryptosystem. Martinasek, Z. et al. [14]
presented power analysis attacks based on multi-layer per-
ceptron (MLP), and the authors [15] improved the MLP ap-
proach. The unsupervised clustering algorithm was proposed
by Whitnall et al. [16], which was used to build the power
consumption leakage model. Zhang et al. [17] researched
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DPA attack based on genetic algorithm (GA). In work [18],
the generalized CPA based on the k-Nearest Neighbors (k-
NN) algorithm was briefly mentioned. Later, Martinasek, Z.
et al. [19] improved power analysis attacks based on k-NN.

Hospodar et al. [20], [21] first applied Least Squares
SVM (LS-SVM) in power analysis attacks. Although no real
attack is performed, it provides a novel perspective on how
LS-SVM is used for power analysis attacks. He etal. [22] pre-
sented that SVM-based attack recovered the entire secret key
of DES performed on an 8-bit Atmel smartcard in a Stanford
course project. Profiling attacks based on machine learning
algorithms were introduced by Lerman et al. [23], [24]. They
first compared TA and learning algorithms, namely Random
Forest (RF), SVM, and Self-Organizing Maps (SOM), and
then proposed an enhanced brute force algorithm to break
the key. Heuser et al. [25] analyzed multiple bits of the key
based on the Hamming weight model by using multi-class
SVM. The authors divided the intermediate power consump-
tion into several classes and then calculated the probability of
belonging to each class. Finally, they adopted the maximum
likelihood method to get the correct key. Their results have
demonstrated that the performance of SVM is more stable
than TA. This probabilistic multi-class SVM approach was
later improved by Bartkewitz et al. [26]. More precisely,
the authors assumed that the side channel leakage informa-
tion could split interesting points into a strict order. Lerman
et al. [27] presented the attack based on machine learning
algorithm against the masked AES implementation. The re-
sults declared that SVM required 26 power traces to recover
the key and had smaller computational complexity than TA.
Hence, it was assumed that sample points of traces may not
follow multivariate Gaussian distribution [28].

SVM is the most popular machine learning algorithm
in power analysis attacks, while other algorithms have been
proved to be feasible [14—19]. The previous work [23-27]
focused more on how SVM translates a problem of breaking
the key into the classification of machine learning. There is
no systematic literature to study the elements that influence
the performance of SVM in power analysis attacks. The ker-
nel function (kernel method, kernel trick), hyperparameters
(penalty factor, gamma of RBF kernel), feature selection,
and other elements have significant effects on the perfor-
mance of SVM. Wavelet analysis is a powerful tool for signal
processing, which is often used to approximate the target
function [29]. Although wavelet analysis has been used to
process noisy power traces [30-32], the combined effects of
wavelet analysis and power analysis attacks through kernel
functions have been not yet explored. In order to enhance the
sparsity of wavelet approximation and the generalization of
SVM, Zhang et al. [33] first proposed a variant SVM algo-
rithm based on wavelet kernel, known as wavelet SVM. It has
been widely applied in financial, medical, industrial control,
computer vision and other fields.

This paper aims to explore the application of wavelet
SVM in power analysis attacks. Our attacks were imple-

mented on three public datasets, including the offset recovery
phase and the key recovery phase. We selected the success
rate as ameasure of the offset recovery phase and the guessing
entropy as a metric of recovering the secret key. Furthermore,
the results indicate that wavelet SVM is one of the most effec-
tive and efficient algorithms in power analysis attacks. This
paper attempts to answer the following questions:

¢ Is wavelet SVM more suitable for power analysis attacks
than TA and SVM based on other kernels?

¢ What is the impact of the optimal parameters of SVM
on the classification results?

* What are the effects of the number of power traces (or
the number of interesting points) on the performance of
SVM based on various kernels?

2. Background

This section provides all the necessary knowledge about
the principle and fast implementation of SVM, followed by
the brief introduction to TA.

2.1 Binary-Class SVM

Cortes and Vapnik [34] proposed SVM in 1995 to ad-
dress the binary classification with high generalization. The
most basic model of SVM is a linear binary classifier, which
aims to determine the separating hyperplane between two
classes. Let

Dy = {(Xi.y0) [Xi € RN,y e (-1 +1}i= 1.2, M} (1)

represent a training set, where X; is a training vector in the
feature space, and y; is the class label of X;. The separating

hyperplane is:
fX) =o' ¢(X)+b )

where w € RN, b € R. By the nonlinear mapping func-
tion ¢(-), X is mapped into a feature space. There are many
possible hyperplanes for an SVM classifier. A reasonable
choice for the optimal hyperplane is to find the maximum
separation (margin) between two classes. Accordingly, the
maximum margin classifier can be rewritten as a constrained
optimization problem:

min l||w||2+cnz4&,
wb,é \2 2

i=1

b, (3)
sty Wl X)) +b)>1-6,6>0,i=1,23,...M

where &; is the training error for vector X;, and C>0 is the
regularization parameter which determines a trade-off be-
tween training error and margin size, also known as penalty
factor.

By introducing the Lagrange multiplier, the optimiza-
tion problem with constraints in (3) is simplified a dual prob-
lem:
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where the kernel function is K(X;, X;) = ¢(X,~)T¢(Xj), and
a; are Lagrange multipliers. The optimal solution to this
problem is a* = (a’l‘, a/;, oz*M)T. The w* is given as fol-
lows: o
W' =) atyig(X)) ®)
i=1
and then a Lagrange multiplier 0/; that satisfies 0 < a';f <C
is chosen to calculate: . '

M
b =yi = > o yiK(X; X)) ©)

i=1

where K (X, X) is the kernel function. Finally, the decision
function of hyperplane is [35]:

M
f(X) = sign (Z @ yi KX, X) + b*) : @)
i=1

2.2 Multi-Class SVM

By adding several extensions, the binary-class SVM
can be used to construct multi-class SVM. The mainstream
strategies include one-against-one [36], one-against-all [37],
directed acyclic graphs (DAG) [38], and error correction out-
put coding [38]. For the sake of training time and accuracy,
the machine learning community adopts the one-against-one
strategy [39] to train a binary-class SVM classifier for each
pair of possible classes. That is, for L classes, (L — 1)L/2
binary-class SVM classifiers are required to be trained. The
prediction results of all binary-class SVM classifiers are com-
bined into the multi-class SVM classifier output, and then the
class with the most votes is chosen. For more details, please
refer to [36], [39].

2.3 Probabilistic SVM

In order to obtain the maximum likelihood estimate in
the key recovery phase, the probability output of the class
label ¢ is necessary. Considering the sparsity of SVM, the
logistic sigmoid function is usually used to approximate the
outputs y(X;) of all binary-class SVM classifiers [40]. The
posterior conditional probability is given as follows:

1

ple=1X) = I Ay X) + B) ®)

where vector X; belongs to the class ¢ = 1. Obviously,
p(c = -11X;) = 1 - p(c = 1|X;). The parameters A and B
are computed by the optimization of cross-entropy error as
follows:

M
arg min— " ;log(p;) + (1 - ;) log(1 = p;) ©)
AB i=1

where #; = (1 + sign[y(X;)])/2 and p; = p(c = 1|1X;). The

numerical problems of optimization are introduced in [41].

So far, many fast implementations of SVM have been
proposed to compute the globally optimal solution. One of
the most popular is sequential minimal optimization (SMO),
proposed by Platt [42] in 1998. The SMO algorithm de-
composes the optimization problem into many smaller-scale

problems, which requires only two Lagrange multipliers at
one time. This strategy makes it possible to obtain the ob-
jective function value of quadratic programming by means
of the analytical method, which significantly accelerates the
training speed of SVM. The specific implementation of SMO
algorithm and numerical problems to be noted, please refer
to [42].

2.4 Template Attacks

TA is the most powerful power analysis attack in an in-
formation theory sense. The classical TA is based on the
multivariate Gaussian distribution N (t; (m, C)) as follows:

(2m) " FICI2 exp =2 (t-m) €' (£ - m) (10)

where t represents a N-dimensional vector, m is the mean
vector, C is the covariance matrix.

In parametric estimation theory, suppose that the num-
ber of traces is Py, the given operation is expressed as Ok,
and a power trace is recorded as t,, |O. The estimated tem-
plate consists of a set of mean vectors {mg} and a set of
covariance matrices {Cr}, k = 1,..., K. In the maximum
likelihood approach, the parameters that maximize the likeli-
hood are selected. Maximizing the likelihood is equal to the
log likelihood maximization, which is given by:

Py Py
log L =log [ | p(t,106) = > logN (tp, Imy, C) (1)
pr=1 ri=1
where p(tx|Ox) is the likelihood probability of power traces
t,, under the operation Oy performed on the cryptographic
device.

In terms of SCAs, where an erroneous environment is
assumed, an attacker is more interested in the probability of
an instance X; belonging to the class c. Hence, instead of
predicting the class ¢, we predict the posterior conditional
probability Psym (X;|c) of each class c. Since the probabil-
ity estimate of multi-class SVM is a very specialized disci-
pline, we refer to [41] for the knowledge of how to calculate
Psym (Xilc). The log likelihood of each possible key k is as
follows:

log Ly = log [ | Psvm(Xile) =

i=1 i=1
where M is the number of power traces belonging to the key
k. The key k* that maximizes the log likelihood in (11) or
(12) is chosen, which is given as follows:

log Psym(Xile)  (12)

arg max log Ly«. (13)
k*

3. Wavelet Kernel for Power Analysis

As we all know, the kernel function has been applied in
many pattern recognition and machine learning algorithms.
By introducing the kernel function, SVM avoids the problem
of processing data in high dimensional space and even theo-
retically infinite dimensional space. The kernel function also
maintains the reasonable computational complexity of SVM
in the feature space.
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3.1 Common Kernel Functions N (x =X
KX, X) = ﬂ h( ) (19)
In general, the kernel function consists of a linear ker- i=1 a
nel, a polynomial kernel, and an RBF kernel, which must ~ The Morlet wavelet function is given as follows:
satisfy the Mercer theorem [43]. The Linear kernel function 2
(Linear kernel): h(x) = cos(1.75x) - exp(—%). (20)

K(X;. X)) = X'X;. (14)
The Polynomial kernel function (Poly kernel):

KX, X)) = (XIX; + D%, (15)

The Gaussian kernel function (RBF kernel):

KX X)) = exp (<[Xi =Xy > 0 (16)

where d > 1 is the order of polynomials, y is the hyperpa-
rameter of RBF kernel, and the notation ||, -|| represents the
Euclidean distance between two vectors.

The kernel function is equivalent to a similarity func-
tion in some feature space. Given two objects, the kernel
outputs a similarity score. As long as the kernel functions
know how to compare them, the objects can be anything. For
the Linear kernel in (14), the similarity is the product of the
length of X; and the projection length of X; in the direction
of X;. The similarity of RBF kernel between two vectors in
(16) is reweighted by the hyperparameter y. A small y will
result in low bias and high variance while a large y will get
higher bias and low variance [35]. Accordingly, when choos-
ing the appropriate kernel function and its hyperparameters
to solve practical problems, the expertise in the relevant areas
of problems is necessary.

3.2 Wavelet Kernel Functions

From a perspective of signal analysis, one power trace
is also a continuous signal in time domain. The traditional
signal analysis theory is based on Fourier analysis, which has
many deficiencies in the non-stationary signal. Compared
with Fourier analysis, wavelet analysis processes signal si-
multaneously in time domain and frequency domain, which
extracts information more effectively from processed sig-
nals. Wavelet analysis adopts fast attenuation, known as the
wavelet to represent signal waveforms, which can arbitrarily
scale and shift the input signal. The wavelet function is:

1 x—b
() = %h( . ) a7
where a is a dilation factor and b is a translation fac-
tor. A detailed introduction of wavelet analysis is given
in [44], [45]. Zhang et al. [33] proved the method of con-
structing wavelet kernel. Let h(x) be a wavelet function,
respectively a, b;, b';, x;, x’; € R, X,X’ € RV, and then the
wavelet kernel is:

b ’)) (18)

a

N Xi — b x/A
K(X,X’):l_[(h( = l) h( i
i=1
where X = (x1, x2, ..., xn) and X’ = (x'l,x’z, x3...,x’N) are
N dimensional vectors. and the translation-invariant wavelet
kernel is:

Thus, the wavelet kernel based on Morlet wavelet function
is [33]:

N 2
, L75(x; — x'3) llxi — x"ill
KX X") = T — - :
(X, X% E (cos ( P ) CXP( > ))
@n

Later, many wavelet kernel functions including Gaus-
sian wavelet kernel function [46], [47] were proposed. The
Gaussian wavelet function is defined as follows:

h(x) = (~1)TCp(x) exp (—%xz) 22)

where p is a positive even integer, Cp,(x) exp(—%xz) is the
pth step’s differential coefficient of Gaussian function. The
form of Gaussian wavelet function varies with the p value.
When p is zero, C, (x) is 1, which is actually a type of Gaus-
sian function. When the value of p is 2, C,(x) = x2 -1
is called the Mexican hat wavelet function. When the value
of pis 4, Cp(x) = x* — 6x* + 3 is a four order polynomial
that is unstable in the numerical theory. Therefore, we chose
Gaussian function and Mexican hat wavelet function as ker-
nel functions. The RBF kernel based on Gaussian function
is shown in (16). The wavelet kernel based on Mexican hat
wavelet function is:

N RN 12
K(X,X,) - 1—[((1 _ (x; a; i) )exp(_”xz za-; t“ )) (23)

i=1

For the purpose of theoretical completeness and paying
tribute to J. Fourier, here the Fourier kernel [48], [49] is given
as follows:

N 1—q2
KX, X) = .
( ) E 2(1 = 2g cos(x; — x’;) + q2)

(24)

The wavelet kernel approximates the non-stationary sig-
nal with high precision, which is impossible for the tradi-
tional kernels. The traditional kernel functions such as Gaus-
sian function are related and even redundant. However, the
wavelet function is orthonormal, which almost approximates
any function in continuous space, thus the generalization of
wavelet SVM is improved. Meanwhile, the sparse wavelet
kernel accelerates the training speed of SVM. Although the
wavelet kernel requires more time to process power traces
than other kernels, the overall training time of wavelet SVM
is significantly decreased. Consequently, we creatively pro-
posed an assumption that wavelet SVM has better stability
and fewer iterations than SVM based on others kernels in
power analysis.

4. Experiments

Prof. Lin Chih-Jen of Taiwan University has devel-
oped a widely used SVM kit, known as LIBSVM (Library
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for Support Vector Machines) [50]. LIBSVM is an inte-
grated software for distribution estimation (one-class SVM),
C-support vector classification (C-SVC), nu-support vector
classification (nu-SVC), epsilon-support vector regression
(epsilon-SVR), and nu-support vector regression (nu-SVR).
It supports different SVM formulations (multi-class SVM,
weighted SVM for unbalanced data), cross-validation, model
selection, various kernels, probability estimates, etc. The
one-aginst-one strategy is used to predict the probability out-
put Psym. The highly optimized C-SVC makes it easy to set
parameters for the given classification problem.

4.1 How to Set Parameters

It is theoretically possible to test an infinite number of
parameters, but in practice, it makes no sense. According to
article [51], we selected the regularization parameter C from
0.01 to 10, epsilon (tolerance of termination criterion) from
0.01 to 1 and various kernels including Linear kernel, Poly
kernel, RBF kernel, Fourier kernel and wavelet kernels, to-
gether it was 3600 of combinations. Besides, TA was selected
as a comparison. The Hamming weight model assumes the
intermediate power consumption of the entire byte instead
of only multiple bits, thus it is selected as the hypothetical
power leakage model in this paper.

The first dataset (DS 1) aims to break the 16th byte of the
first round key of the unmasked AES algorithm. TeSCASE
Group has [53] implemented this algorithm on the Sasebo-
GII board [52] provided by RCIS [54]. This board has
a mechanism to provide users various means to access the
reconfiguration function of FPGA. Only 900 power traces
were selected to locate interesting points in this dataset. We
computed the Pearson correlation between each instant of
power traces and the Hamming weight of the S-Box output
and then selected the 32 highest correlated points as interest-
ing points. An example of power traces is shown in Fig. 1.
The first peak is the plaintext loaded into the register, and the
next 10 peaks correspond to 10 rounds of the unmasked AES
algorithm.

The second dataset (DS2), which includes 1000 power
traces, is prepared for the masked AES implemented in soft-
ware. Power traces are freely available on the DPA Contest
v4 (DPACv4) website [56]. The masking scheme, known

Voltage (mV)
b
S

—40

0 500 1000 1500 2000 2500 3000
Sample points

Fig. 1. Power traces of the unmasked AES in DS1.

as RSM [55], is an additive Boolean masking countermea-
sure with 16 masked S-Boxes. The mask values are rotated
according to the offset value. All power traces were measured
during the first round and the beginning of the second round
of AES algorithm. The label value corresponds to the offset
value (0 to 15). The Pearson correlation between the offset
value and each instant of power traces was used to locate
interesting points. We selected the two highest correlated
points for each mask value, thus the number of interesting
points was 32. The offset value is highly correlated with
sample points except for the central part of each trace in
Fig. 2.

The third dataset (DS3) concentrates on the second byte
of the first round key of the masked AES algorithm. We se-
lected the Hamming weight of the second S-Box (SBox1)
output as the label of an SVM classifier. That is, the label
value corresponds to the Hamming weight value of the out-
put byte (0 to 8). This dataset includes 3600 power traces,
but only 1800 traces are randomly selected in each test. The
reason is that the number of traces corresponds to each label
may be not the same, namely SVM with imbalanced data.
We calculated the Pearson correlation between each instant
of 3600 power traces and the Hamming weight of the SBox 1
output to locate interesting points. Besides, the 32 highest
correlated points were selected as interesting points. Only
a particular interesting points have larger power leakage of
the S-Box output as illustrated in Fig. 3.

1.0

Correlation

0 100 200 300 400 500 600 700 800 900
Time of sample points (us)

Fig. 2. Correlation between the Hamming weight of the offset
value and the power consumption in the 1st round of the
masked AES in DS2.

0.54

Correlation
o
o

0 100 200 300 400 500 600 700 800 900
Time of sample points (us)

Fig. 3. Correlation between the Hamming weight of the Sbox1
output and the power consumption in the 1st round of the
masked AES in DS3.
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Here only the Pearson correlation was used for feature
selection. In addition, we recommend using other methods,
such as the minimum redundancy maximum correlation [57],
principal component analysis [58], etc.

4.2 How to Compare Performance

In order to compare TA and several SVM algorithms,
we performed different experiments on three datasets. We
assumed that the attacker had complete control over the cryp-
tographic device, who measured enough power traces to re-
cover the secret key.

Our experimental methodology was as follows: Given
a dataset, a random two-third was reserved as the learning
set and the remaining one-thirds was used as the test set.
The learning set generated training and validation sets by us-
ing 5-fold cross validation. The validation sets of all folds
were used to optimize hyperparameters of SVM. The optimal
hyperparameter (the one that has the highest average accu-
racy on the validation folds) was used to train the final SVM
algorithm on the training set.

The most popular evaluation method is the accuracy
(success rate) of the independent test set. Consequently, we
selected the success rate as a measure in the offset recovery
phase. In order to make the results more reliable, each ex-
periment was repeated 10 times, and then the success rate of
the corresponding test set was recorded. The final result was
the average of all success rates.

The success rate is adequate when the number of power
traces corresponding to each predicted class is the same.
However, for the key recovery phase, which assumes multi-
ple traces, the success rate is not suited as a measure. The
problem is that the most likely Hamming weight class has
the largest number of power traces when the success rate is
selected as a metric. The guessing entropy [59] was selected
to evaluate the number of remaining keys. The guessing
entropy is defined as follows: let g include the descending
probability ranking of all possible keys and i represent the
position of the correct key in g. After performing s experi-
ments, one gets a matrix [g1, g2, ..., &s] and a corresponding
vector [i,17,...,is]. In other words, the guessing entropy
represents the average number of power traces required to
recover the correct key. Thus, GE' (a guessing entropy of 1)
was selected as a measure in the key recovery phase.

5. Results and Analysis

We recovered the offset value of the masked AES by
using DS2, especially DS1 and DS3 were used for the key
recovery phase. Each attack extracted the offset value before
performing the key recovery of DS3. All our experiments
were performed on Asus laptop with 2.50GHz Intel Core
(TM) i5, 8GB 1067MHz DDR3 (Windows7 x64 Ultimate).
The attack lasted about 5 weeks without considering the time
to create three datasets.

5.1 Finding the Offset Value

This section explores the performance of different ap-
proaches that expose the offset value by using power traces of
DS2. We randomly selected 500 traces as a training set and
250 traces as a test set. Moreover, 3~32 interesting points
were used in our experiments, which were the most corre-
lated with the offset value. We compared TA and various
SVM algorithms such as SVM-Linear, SVM-Poly, SVM-
RBF, SVM-Fourier, and wavelet SVM from the success rate
and the time required. The impact of the training set size on
the success rate was also discussed.

The first experiment explored the effect of various ker-
nels on the success rate of SVM when the training set size
was different. Figures 4 and 5 describe the success rate of
different numbers of interesting points when using SVM-
Linear and SVM-Poly to recover the offset value. First, the
performance of SVM-Linear or SVM-Poly is basically not
affected by the training set size, which is mainly due to the
fact that the feature space of traces is not linearly separable.
Furthermore, SVM-Linear and SVM-Poly require a lot of it-
erations to find the appropriate hyperplane, resulting in very
low training efficiency. Second, the number of interesting
points per trace significantly determines the success rate. In
general, the more interesting points, the higher the success
rate. Interestingly, the success rate of 100% size of the train-
ing set is obviously lowest for SVM-Poly when the number
of interesting points is 16 to 28. One possible explanation
is that SVM-Poly appeared overfitting when the training set
size is small. We did not give the results of SVM-Linear and
SVM-Poly due to the poor performance.

Figures 6, 7, 8, and 9 reveal the corresponding suc-
cess rates for different numbers of interesting points when
SVM-RBF, SVM-Fourier, SVM-Morlet, and SVM-Mexican
are used to predict the offset value. As expected, the success
rate of SVM increases as the number of interesting points
increases. Moreover, the larger training set size, the higher
the success rate. This can be explained that the performance
of SVM is determined by its parameters, and the training
set size is critical to the best parameters of SVM. When the
training set size is expanded from 25% to 50%, the success
rate of SVM increases significantly, but when the training set
size is expanded from 75% to 100%, the success rate of SVM
is not obviously improved. Wavelet SVM and SVM-Fourier
obtain much higher success rates than SVM-RBF due to the
powerful approximation capability.

The purpose of the second experiment was to study the
success rate of TA and compare the efficiency of TA and
SVM based on various kernels. Figure 10 illustrates the re-
lationship between the success rate of TA and the size of
the training set when the number of interesting points is 3 to
32. Generally, the larger number of interesting points, the
higher the success rate of TA. However, for the small train-
ing set (25%~50% size), the success rate of TA is reduced
when the number of interesting points exceeds a certain value.
The reason is that when the number of interesting points is
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too large, the covariance matrix may be an ill-conditioning
matrix [11]. The results illustrate that SVM extracts more
information of the offset value than TA. The performance
of TA is equivalent to wavelet SVM when the training set
size exceeds 75%, but the computational complexity of TA
is higher than SVM based on various kernels (see Fig. 11).
More precisely, the success rate of TA is very good while its
prediction time increases exponentially with the number of
interesting points. Although the classical TA does not work
well in terms of efficiency, it is still selected for comparison
in later experiments.

The third experiment was used to find the optimal dila-
tion factor a in (21) and (23) by comparing the success rate of
wavelet SVM. If a is very large, then even if two vectors are
quite similar, the kernel function will output a small value.
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In other words, the support vectors obtained by a training set
have little impact on the classification of the test set, which
causes the model may be prone to overfitting. When the
value of a is small, support vectors have a great effect on
the classification. This means that you may not be able to
obtain a complex decision boundary. The optimal value of
a is 3.2 in our experiments. We used the wavelet function
and the value of a to construct a new symbol that represents
the type of wavelet kernel. For example, the symbol Mexi-
canl represents the wavelet function is Mexican hat wavelet
function and the value of a is 1. From the perspective of
success rate, wavelet SVM is 5~8% higher than SVM-RBF
in Fig.12. Note that the success rates of SVM-Morletl and
SVM-Mexicanl are very low when the number of interesting
points exceeds a certain value. This can be interpreted as
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ferent kernels by using 500 power traces of DS2 [Mor
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C=03 | C=0.7 | C=1 | C=7 | C=10
RBF 70.3 853 | 904 | 956 | 912
Fourier 78 96.8 | 97.1 | 98.6 | 97.1

Morletl 18.4 35.6 36.7 | 40.1 40.3
Morlet2 82.6 93.7 959 | 96.7 | 95.6
Morlet3 86.2 95.8 96.7 | 97.5 | 96.5
Morlet3.2 85.8 96.4 975 | 984 | 97.6
Morlet5 78.9 93.5 96.6 | 97.1 97.6
Mexicanl 17.8 58.4 60.3 | 62.3 60.2
Mexican2 82.7 96.1 97.9 98 97.8
Mexican3 85.6 96.4 97.1 | 97.8 | 96.2
Mexican3.2 82.6 97.6 98.8 | 99.2 | 97.0
Mexican5 80.1 94.6 954 | 97.3 96.8
TA 83.5 95.3 96.2 | 97.5 | 95.1

Tab. 1. The effect of parameters C on success rate of SVM based
on different kernels by using power traces of DS2 when
the number of interesting points is 32, epsilon=0.32.

an inappropriate value of a. When the value of a is too small,
the simple decision boundary deteriorates the generalization
of wavelet SVM.

In the fourth experiment, a fixed number of power traces
were selected to compare the efficiency of SVM based on var-
ious kernels. The efficiency of SVM was evaluated by mea-
suring the time required to use the kernel function to process
interesting points (Precomputed), the time required to train
parameters of SVM (Parameters setting), and the time re-
quired to perform a complete training (Fulltime for training).
The results indicate that when the value of a is appropriate,
the overall time of wavelet SVM is less than SVM based on
other kernels (see Fig. 13). However, wavelet SVM requires
more time to process interesting points. Hence, the value of a
is crucial for the efficiency of wavelet SVM. When the value
of a is near 3.2, the overall training time of wavelet SVM is
greatly reduced. Although the Precomputed time is negligi-
ble, the overall time of SVM-RBEF is still more than wavelet
SVM. In the view of time cost, SVM-Fourier and SVM-RBF
are similar, but the Precomputed time of SVM-Fourier is
equal to wavelet SVM. When the value of a is appropriate,
the overall time of wavelet SVM is almost reduced by 30% to
40% compared with SVM-RBFE. Consequently, the wavelet
kernel accelerates the convergence speed of setting parame-
ters and ultimately reduces the overall training time.

The last experiment was conducted to verify the effect
of penalty factor C on the success rate of SVM. The penalty
factor controls the cost of misclassification on the training
set, which indicates the importance of misclassification to
SVM. The large value of C implies the high cost of misclas-
sification (hard margin), which allows SVM to increase the
number of iterations to optimize the separating hyperplane.
In other words, the generalization of SVM drops due to the
large value of C. When the value of C is small, the cost of
misclassification is low (soft margin), allowing some mis-
classifications. The small value of C makes SVM tend to
accelerate the speed of training, resulting in a decrease in
success rate. The best C is to find a balance between hard
margin and soft margin. When the value of C is 0.3, 0.7, 1,
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7, and 10, the success rates of SVM based on various kernels
are given in Tab. 1. The final results show that the optimal
value of C is 7 when the value of epsilon is 0.32.

5.2 Key Recovery Phase

The experiments were carried out to recover the secret
key by using power traces of DS1 and DS3. Here, the num-
ber of power trace was not limited to only one, thus we made
use of various methods to recover the key. In this paper,
the Hamming weight leakage model is based on the entire
intermediate value of the S-Box output rather than a single
bit. Therefore, we adopted the probabilistic multi-class SVM
algorithm to distinguish nine different classes. We combined
the prediction results of a binary-class SVM classifier from
N power traces X; belonging to the class ¢ by using the
posterior probability output Psym (X;|c). We performed the
maximum likelihood estimate for each possible key and then
selected the key that maximizes the likelihood in (13) by us-
ing multiple power traces. Ultimately, a guessing entropy of 1
(GE") was selected to measure and compare the performance
of different algorithms in the key recovery phase.

In the first experiment, the 16th byte of the last round
key of the unmasked AES was extracted by using power
traces of DS1. We randomly selected 400 power traces as
a training set, 200 power traces as a test set. As can be
seen from Figure 14, the success rate of the Hamming weight
of the S-Box output increases as the number of interesting
points increases. When the value of a is appropriate, the
performance of wavelet SVM is still better than SVM-RBF
in the key recovery phase. However, with the increase in
the number of interesting points, the success rate of SVM-
RBF decreases significantly and becomes very unstable. The
reason may be that sample points of power traces of DS1
don’t obey the multivariate Gaussian distribution. In order to
improve the performance of SVM, we adopted cross valida-
tion and grid search algorithms to optimize hyperparameters.
Overall, the success rate of SVM based on various kernels is
maintained at 60~90%. Especially, when the value of a is 2,
the success rates of SVM-Morlet and SVM-Mexican reach
about 90%. Note that SVM-Fourier obtains a fairly good
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Fig. 14. Success rate of the Hamming weight of the S-Box out-

put based on various kernels by using power traces of
DSI.

success rate when the number of interesting points exceeds
a certain value, but the time required is more than wavelet
SVM. Therefore, wavelet SVM has advantages over TA and
SVM based on other kernels when using power traces of DS1
in the key recovery phase.

The second experiment was aimed at the masked AES
implementation in terms of the assumption that the offset
value of each trace is known. The distribution of the Ham-
ming weight of the S-Box output is not uniformly distributed,
which has little effect on the experimental results. After all,
the prediction results of SVM are independent of the dis-
tribution of the Hamming weight class when the guessing
entropy is selected as a measure. As long as the dataset en-
sures that the number of power traces per Hamming weight
class is sufficient, SVM for the unbalanced data is also com-
petent. Here, we performed the maximum likelihood esti-
mate for each possible key by using probabilistic multi-class
SVM. A fixed value of the guessing entropy was selected to
assess how many power traces of DS3 were required. Fig-
ures 15, 16, 17 and 18 describe the maximum likelihood
probability of all possible guessing keys (0x00~0xff, and the
correct key is Oxec) when using 1 to 20 power traces. SVM-
RBF requires the maximum number of power traces to obtain
the secret key. Also, SVM-Mexican requires 6 or so power
traces to guess the correct key. SVM-Morlet works slightly

° o o

The estiamted probability

°

100
Guessing key values 150

0xec g5 20

Fig. 15. The maximum likelihood estimation of guessing en-
tropy based on SVM-RBF by using traces of DS3.

The eatimated probability

. 100
Guessing key values {5,

15
Number of traces
0xeCo55 " 20

Fig. 16. The maximum likelihood estimation of guessing en-
tropy based on SVM-Fourier by using traces of DS3.
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Fig. 17. The maximum likelihood estimation of guessing en-
tropy based on SVM-Morlet by using traces of DS3.

The estimated probability

100
Guessing key values 150
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Fig. 18. The maximum likelihood estimation of guessing en-
tropy based on SVM-Mexican by using traces of DS3.

DS1 | DS3
SVM-RBF 9.8 7.2
SVM-Fourier 9.7 6.7
SVM-Morlet 6.7 5.4
SVM-Mexican 6.3 53
TA 76 58

Tab. 2. The number of power traces required by SVM and TA
when the guessing entropy is set to 1 (GE).

better than SVM-Mexican, which needs about 5 power traces.
The performance of SVM-Fourier has some instability, which
requires over 10 power traces. The results of SVM based on
various kernels further confirmed the superiority of wavelet
SVM in the key recovery phase.

In the third experiment, TA and SVM were used to re-
cover the secret key by using power traces of DS1 or DS3.
For fairness considerations, we repeated hundreds of similar
experiments by using TA and SVM based on various kernels
and then calculated the average as the final results. The re-
sults were recorded in Tab. 2. TA requires about 58 traces
to break the key of the unmasked AES implementation by
using power traces of DS3. In contrast, wavelet SVM needs
a smaller number of power traces for the key recovery of DS3
(5.4 traces in average for SVM-Morlet, 5.3 traces in average
for SVM-Mexican). SVM-RBF requires 9.8 traces (using

DS1) and 7.2 traces (using DS3) when the guessing entropy
is setto 1 (GEY). The performance of SVM-Fourier is much
better than TA, slightly inferior to wavelet SVM. Similar re-
sults can be obtained by using power traces of DS1. The
results confirm that wavelet SVM is very suitable for the key
recovery of the unmasked or masked AES algorithm.

5.3 Comparison with Other Work

In Tab. 3, we summarized the previous work of using
non-SVM learning algorithms we have discussed in Sec. 1.
We described the results of learning algorithms such as MLP,
k-NN, and RF in detail.

The MLP algorithm recovered the key based on one
power trace [14]. It achieved 85% empirical success rate and
80% theoretical success rate. They focused on the first byte
of the secret key. The authors [15] later proposed averaging
of power traces as the preprocessing method, which improved
the success rate to 96%. However, they did not give a spe-
cific feature selection method and training time. The training
process of MLP is very time-consuming in practice.

The k-NN algorithm exhibited great potential in power
analysis attacks [19]. The standard CPA and Pearson corre-
lation were used to locate interesting points. They chose 50
sample points for each trace on three datasets as interesting
points. The success rate of k-NN (k = 5) was 94.97%. The
time required to perform one 10-fold cross validation was
less than 1 s. The training time of k-NN is much less than
other learning algorithms, but the k nearest neighbor search
for all training instances is very time-consuming in the test-
ing phase. Moreover, the k-NN algorithm is very sensitive to
neighbor instances. If the neighbor instance happens to be
noise, the prediction results will go wrong [35].

The goal was to attack a single bit of 3DES by using
the RF algorithm, and its performance went beyond TA [23].
Besides, they used many feature selection methods such as
Ranking, PCA, Minimum redundancy maximum relevance
(mRMR), and SOM. They selected 20 sample points as inter-
esting points in all experiments. The RF algorithm increased
the probability of recovering one byte of the key from 5.80%
(TA) to 15.33%. Lerman et. al [27] presented the machine
learning attack against the masked AES algorithm by using
1500 power traces of DPACv4. The Pearson correlation co-
efficient between the offset value and sample points of each
trace was used to locate interesting points. They chose 50
points that are most correlated with the offset value as in-
tereting points. Due to the strategy of feature selection, inter-
esting points may be too concentrated to extract more power
consumption leakage information. For the RF algorithm, the
success rate of recovering the offset value was about 80%.
The time to process one trace in the learning phase was less
than 1 ms.

In our work, wavelet SVM successfully recovered the
offset value of the masked AES algorithm for each power
trace, which was obviously 5~8% higher than SVM-RBF
and the time required was almost reduced by 40% when
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Ref. | Machine learning | Algorithm No. of traces Performance

[13] k-means ECC 9 traces recovers the secret scalar from single execution attack
[14] MLP AES 2560 traces the theoretical and empirical success rates are 80% and 85%
[15] Improved MLP AES 2560 traces recovers the key from one trace with accuracy > 96%
[17] GA DES 2000 (time), 7000 (freq.) reduces no. traces by 60% by attacking multiple S-Boxes
[19] k-NN AES 2560 traces recovers the secret offset with accuracy 94.97%

[23] RF 3DES 400 (a byte of the key) performs binary bit classification better than TA

[27] RF AES 1500 traces finds the offset value with accuracy 80%

Tab. 3. Machine learning in power analysis attacks.

using the optimal hyperparameters. In order to break the
secret key, wavelet SVM only required in average 5.4 traces
for the unmasked AES algorithm and less than 7 traces for
the masked AES algorithm. Considering the training time
and success rate, we firmly believe that the performance of
other learning algorithms is slightly inferior to SVM.

6. Conclusion and Future Work

As can be seen from the above description, power anal-
ysis attacks are viewed as the classification problems. Power
analysis attacks and machine learning create templates (fea-
tures) to describe power traces of a training set and then cal-
culate the similarity between templates (features) and power
traces of a test set. Finally, the results are given with a cer-
tain probability. Generally, power analysis attacks assume
that sample points of power traces are approximated by a set
of finite normal distributions. However, machine learning
assumes that sample points are independent and identically
distributed, but not restrict to a certain distribution.

TA assumes that sample points of each power trace fol-
low a multivariate Gaussian distribution. Moreover, TA not
only describes the power consumption information but also
inevitably describes the noise, which makes it need a lot of
traces to improve the signal to noise ratio. However, the
strategy adopted by SVM is quite different from TA. The key
of SVM is to quickly find the separating hyperplane of the
offset values or the Hamming weights. TA aims to simulate
the real power consumption distribution by considering all
sample points of traces. However, SVM focuses on the sepa-
ration of classes, using only support vectors. Consequently,
TA requires more power traces than SVM in the learning
(profiling) phase.

Wavelet analysis can approximate any function, which
is a powerful tool to process nonlinear and multidimensional
signals. SVM is very suitable for solving the classification
problems of small-scale dataset. SVM-RBF based on Gaus-
sian function is the most commonly used in engineering, but
not necessarily the optimal solution to solve all classification
problems. In light of our experiments, wavelet SVM signif-
icantly improves the success rate of finding the offset value,
which requires less power traces than SVM-RBF in the key
recovery phase. Accordingly, wavelet SVM show excellent
performance and efficiency in power analysis attacks.

The application of machine learning in power analysis
attacks has not been fully explored. Animportant direction of
research is to use the learning algorithms for feature selection.
Furthermore, the development of a customized learning al-
gorithm for power analysis attacks will be a challenging area
of future work.
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