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Abstract. In classic antenna analysis, there exist several 
methods of calculating input impedance when the source 
distribution of an antenna is known. The well-known in-
duced EMF method, based on spatially distributed cur-
rents, is typically applied for this purpose and, thereby, 
serves as a reference for this research. Conversely, the 
spectral domain method takes the opposite approach for 
the input impedance and is evaluated using a far-field 
pattern. This paper compares the induced EMF method 
and the spectral domain method. Furthermore, the quality 
factor of the dipole antenna, based on the impedance vari-
ation with frequency, is calculated for both methods. This 
study shows that the induced EMF method and the spectral 
domain method are in close agreement. 
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1. Introduction 
Quality factor Q [1] is one of the most fundamental 

characteristics of an antenna because of its connection to 
a bandwidth [2]. There are many ways to evaluate quality 
factor Q, both in the time [3] and frequency domains [4].  

The most popular method is probably the one based 
on input impedance frequency changes [1], [4]. If the dis-
tribution of currents on an antenna is known, the input 
impedance, and, consequently, quality factor Q [4], can be 
evaluated by the complex power balance in the spatial 
domain. This approach is known as the induced EMF 
method or the Poynting vector method [5]. 

Another way to determine Q is by spectral analysis, 
which is, in turn, based on the integration of the radiation 
pattern in visible and invisible space [6–8]. Integration in 
visible space (over real angles), which is well-known and 
demonstrated in the literature [5], facilitates the classic 
calculation of the radiation resistance of an antenna. A less 

well-known fact is that extending the integration to invisi-
ble space (complex angles) also allows the information 
pertaining to the reactance to become available thanks to 
the special properties of the radiation pattern as explained 
in [6]. 

In this paper we study the quality factor Q of a thin 
dipole from its input impedance by both methods, i.e., in 
the spatial and spectral domain method. The source current 
is prescribed as sinusoidal (one-term approximation which 
permits the semi-analytical evaluation of the background 
integrals). 

2. The Induced EMF Method 
When considering a thin linear antenna oriented in the 

z-axis, the input impedance (referred to current maximum) 
is given by the following double spatial integral [9]: 

       
j

2
2

0

j30 e
d d

kR

zz

Z

k I z I z I z I z z z
z z Rk I







        
 

  (1) 
where the current is assumed as: 
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where k is wavenumber and L is dipole length respectively. 
The wire radius a is incorporated in the thin-wire kernel by 

 22)'( azzR  . (3) 

The result of (1) is available in closed form [5] and is 
used as a reference. 

3. Spectral Domain Method 
The spectral domain approach considers a z-oriented 

thin-strip dipole of length L and width w. However, it was 
shown [7] that thin-strip and small-radius dipoles are 
electromagnetically equivalent when 
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Hence, the above equation allows a comparison to be made 
between the thin-wire and thin-strip structures which is 
subsequently used to calculate the results.  

The thin-strip current is assumed to be constant along 
the dipole width: 
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Following the approach from [7], the far-field pattern is 
a Fourier transform of (5): 
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where ky and kz are vector propagation constant compo-
nents and k2 = ky

2 + kz
2. Consequently, the real and imagi-

nary parts of the input impedance are given by [6]: 
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The numerical evaluation of these integrals will be 
discussed in Sec. 5. 

4. Quality Factor 
For the purpose of this paper, we use a well-estab-

lished definition of the quality factor based on the variation 
of the input impedance with frequency [1], [4]: 
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5. Numerical Validation 
Equations (7–9) have been numerically evaluated in 

Matlab [10] using the rectangle method for integration. The 
input impedance and the untuned quality factor (9) of 
a dipole antenna have been investigated and compared with 
the analytical solution of (1). 

Since equation (8) for the reactance contains the defi-
nite integrals with infinite upper limits, the numerical im-
plementation is not straightforward making it necessary to 
estimate how large a number is needed to replace the infi-
nite limits, and how many subintervals must be used to 
obtain a calculation with sufficient accuracy.  

The initial value for the upper limits has been chosen 
(N = 20 000) and the integrals have been calculated in 
20 000 subintervals. The input impedance of a strip dipole 
of length L, ranging from 0.15 λ to 0.6 λ, with widths of 
0.01 λ, 0.001 λ and 0.0001 λ of the dipole, are presented in 
Fig. 1 which depicts both the EMF method and the spectral 
domain method.  

It can be seen that the input reactance for both 
methods, in particular the short dipole, is very similar for 
w = 0.01 λ and 0.001 λ. The results for the longer lengths 
show greater variation. Furthermore, the radiation 
resistance R (the spectral domain method) and REMF (the 
EMF method) provide the same results with only negligible 
differences as both methods overlap perfectly for all three 
widths in the graph. 
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Fig. 1. Input impedance evaluated by (7), (8) of a dipole vs. 

electrical length for N = 20 000, compared with EMF. 



970 M. CERVENY, P. HAZDRA, EVALUATION OF THE INPUT IMPEDANCE AND IMPEDANCE QUALITY FACTOR OF A DIPOLE … 

 

How the number of subintervals changes the results 
of the spectral domain method can be seen in the following 
scenario. A dipole antenna of width 0.001 λ and length 
0.6 λ has been considered and the upper limit has been set 
again to N = 20 000. For 20 000, 50 000 and 100 000 sub-
intervals the differences between XEMF and X are 16.5 Ω, 
11.4 Ω and 8.7 Ω, respectively. The expected trend shows 
that increasing the number of subintervals decreases the 
differences between the two methods. From the results it 
can also be seen that the convergence of the rectangle 
method, which was used for integration, is slow and the 
presented differences between the two methods are given 
mainly by this numerical error. 

The effect of the low value of the upper limit can be 
seen in Fig. 1 where the shifted black solid line 
(w = 0.0001 λ) does not reach the dash-dotted EMF line. 

To determine which upper limit of the integrals is 
suitable, the convergence of the spectral domain method 
has been investigated. Figure 2 clearly illustrates the dif-
ferences between the EMF and spectral domain methods. 
The input reactance is shown for the width of 0.0001 λ and 
lengths 0.4, 0.5 and 0.6 λ. The results are displayed for the 
upper limit N from 5 000 to 640 000. It can be seen that the 
input reactance requires the upper limit to be set to ap-
proximately 300 000 in this case where the spectral domain 
method converges for all three widths of the dipole. 

According to the previous results, the upper limits 
have been set to N = 300 000 and every integral has been 
calculated in 300 000 subintervals. Now it can be seen that 
both methods agree well for the width of 0.0001 λ, espe-
cially the short dipoles. 

In the next step, the untuned quality factor Q has been 
calculated for both methods using (9) as it is presented in 
Fig. 4. The width of the dipole antenna is 0.01 λ, 
N = 20 000 and 10 000 subintervals have been chosen for 
a faster but still reliable calculation as the graph is 
constructed from 60 different samples of L/λ. It can be seen 
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Fig. 2. Input reactance of dipoles of varying lengths with 

width 0.0001 λ versus integration limit N. 
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Fig. 3. Input impedance of a dipole versus electrical length, 

N = 300 000, compared with EMF. 
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Fig. 4. Untuned quality factor of a dipole antenna of length L. 

that both methods present a very similar pattern of quality 
factor Q. 

The last graph (Fig. 5) shows the quality factor Q of 
a dipole antenna (L = 0.5 λ) for both methods versus the 
width of the antenna. Moreover, the results of the closed-
form equation for radiation Q are displayed for compara-
tive purposes [11]. The well-known fact that wider dipole 
antennas have a lower quality factor can be seen in the 
figure. In this case, the same settings that were used in 
previous calculations have been used when calculating the 
Q factor.  

The differences between the results can be caused by 
several factors. The first is the previously mentioned nu-
merical error in the integration where an increased number 
of subintervals is required and, unfortunately, it will cause 
a significant increase in the calculation time. Thus, future 
work could incorporate more advanced techniques for the 
numerical evaluation of integrals. Secondly, the Induced 
EMF method is only valid for very thin dipoles in terms of 
wavelength which is also true for the calculation of the 
equivalent radius in (8). 
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Fig. 5. Quality factor of a dipole antenna of width w. 

6. Conclusion 
In this paper we have studied two completely differ-

ent methods for the calculation of the complex input im-
pedance of a dipole antenna. The first one (EMF method) 
is based on spatially distributed currents on a thin dipole 
while the second one (spectral domain method) evaluates 
the input impedance from a far-field pattern obtained by 
the Fourier transform of the current’s density. While the 
radiation resistance in the spectral domain method can be 
easily calculated with a classic numerical approach, the 
reactance requires more effort as the integrals with infinite 
upper limits need to be evaluated.  

For the numerical calculation of the reactance, the in-
finite upper limits have been replaced by a finite number. 
From our graphs it can be seen that the number can be 
estimated via a convergence of the results. Furthermore, 
the number of subintervals can be estimated when the 
characteristics calculated by the EMF method are known. 
The disadvantage of this numerical approach lies in the 
calculation time, as it can take several days for a ubiqui-
tous, generic PC to complete the calculations. In order to 
improve the accuracy and the computation time more ad-
vanced integration techniques are required.  

In conclusion, the upper limit can be lower for thicker 
dipoles. When a calculation of a thin dipole is required, 
a higher upper limit has to be set. To maintain the accuracy 
of the results, the number of subintervals has to be 
increased appropriately, especially for dipoles longer than 
0.4 λ.  

The quality factor of the dipole antenna has been 
calculated by both methods and the results are in close 
agreement. 

Finally, from the application point of view, for its 
simplicity and closed-form, the induced EMF method is 
more convenient for determining dipole impedance and 
consequently, the quality factor.  
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