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Abstract. In this paper, a novel rasorber with both Fre-
quency Selective Surface and absorptive periodical struc-
ture is developed. This rasorber works as a radome and 
an absorber. Firstly, the design procedure of the unit cell 
of this rasorber is explained. Then, the characteristics of 
the manufactured rasorber are measured. The characteris-
tics include the transmission/reflection coefficients of the 
rasorber, the radiation properties of the horn antenna 
covered by the novel rasorber and the scattering features 
of this rasorber. In the passband, the gain of the antenna 
with our rasorber radome is only 1~2 dB lower than the 
one of the horn antenna without any radome. Furthermore, 
the radome has little effect on the radiation patterns of the 
horn antenna. In the absorptive bands of the rasorber, the 
electric level of the scattered electromagnetic wave from 
the rasorber can be 16.5 dB lower than the one from 
a metallic plane with the same size as the rasorber. The 
feature proves that this rasorber can be a good candidate 
in the stealth radar radome area. 
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1. Introduction 
Each antenna or antenna array in a radar or communi-

cation system needs a radome. Recently, besides physical 
protection, more electromagnetic protection functions are 
developed and added to the radome. The radomes loaded 
with Frequency Selective Surface (FSS) are one branch of 
the research mainstream [1–4]. These radomes reflect at 
some frequencies and are electromagnetic transparent at 
other ones like spatial filters. So, the radome-antenna struc-
tures are named filtennas [5–7]. These filtennas show good 
performance in passband and effective rejection to the out-
band signals. Another branch is the investigation on rasorb-
ers [8–16]. These rasorbers are transparent at some 
frequencies and absorptive in certain frequency bands.  

In our paper, we propose a two-layer rasorber. It has 
one passband and two absorptive bands. These two absorp-
tive bands are separated by the passband. The transmis-
sion/reflection coefficients of the rasorber are simulated 

and tested firstly. Then it is applied to horn antennas to 
measure the radiation performance of the rasorber-antenna. 
Finally, the scattering feature of this rasorber is studied.  

2. Design Procedure 
Based on the principle of the Salisbury screen 

[8, 17, 18], a resistive layer and a perfectly conducting 
ground plane layer are applied to realize the absorption 
function of the rasorber. A resistive ring is dedicated to the 
resistive layer of our unit cell. To make the rasorber obtain-
ing bandpass feature, the ground plane is elaborately 
changed into a periodical slotted ground plane with capaci-
tive and inductive loading. In the filter design, the ring 
resonator is a good choice to generate a pair of degenerate 
modes that have the same resonant frequencies but orthog-
onal field distributions. It resonates at its fundamental fre-
quency f0 when 2r  0 [19]. Because of these degenerate 
modes, the ring resonator is insensitive to the polarization 
of the incoming wave. r is the median radius of the ring. It 
is utilized here to load the slotted ground plane. A metallic 
pad is inserted into the ring to lower the insertion loss 
within the pass band. Even with this effort, the insertion 
loss of the ring-pad FSS unit cell is still high. To achieve 
low insertion loss in the passband and wide absorptive 
bands, a better way is to increase the dimensions of the 
resistive ring and to combine four ring-pad FSS unit cells 
to form one combination FSS unit cell of the rasorber. The 
circular aperture in the center of the combination FSS unit 
cell lowers the insertion loss of the passband further, com-
pared with the combination unit cell without this aperture. 
The radius of the resistive ring of the combination FSS unit 
cell is twice as long as the one of a single ring-pad FSS unit 
cell. The configurations of the ring-pad unit cell and com-
bination unit cell are shown in Fig. 1. High Frequency Si-
mulation Software (HFSS) is applied to do the simulation 
and optimization. 

Two floquet ports (port 1 and port2) of the unit cell 
model are also shown in Fig. 1(b). After the optimization, 
the dimensional parameters of the combination FSS unit 
cell are listed in Tab. 1. 

When the incident wave impinges from port 1, the 
Transmission/Reflection (T/R) coefficients are presented in 
Fig. 2.  
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(a) A single ring-pad FSS unit cell. 
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(b) A combination FSS unit cell. 

Fig. 1. The configuration of the FSS unit cell. 
 

p = 17 mm lpad = 16 mm  r1 = 1.5 mm  

r2 = 0.7 mm r3 = 1.2 mm r4 = 3 mm  

w1 = 0.8 mm  wgap = 0.5 mm  rab = 7.5 mm  

wab = 2 mm  hsub = 5 mm  εr = 3 

Tab. 1. Dimensions of the combination FSS unit cell. 
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Fig. 2. Transmission/reflection coefficients vs. frequency. 

S11 represents the reflection coefficient and S21 is the 
transmission coefficient. From Fig. 2, S21 of the single ring-
pad unit cell is S21 < –3.5 dB in the whole frequency band. 
It means that the insertion loss is very big and it cannot be 
applied  to  the  rasorber.  From 15 GHz to 16.5 GHz, S21 of 
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Fig. 3.  Transmission/reflection coefficients vs. incident angles. 

the combination FSS unit cell is higher than –3 dB and S11 
is lower than –10 dB, this is the passband of the rasorber. 
Otherwise, from 7 GHz to 10.5 GHz, and from 24 GHz to 
30 GHz, both S11 and S21 are lower than –10 dB, these two 
bands are absorptive bands. 

Since the incidence angle of the impinging incoming 
wave is unknown for antenna radome to be designed in the 
real life application, the dependence of absorption and 
passband frequency intervals on the angle of incidence is 
plotted in Fig. 3. From this figure, the solid lines represent 
the transmission coefficients and the dash lines are reflec-
tion coefficients. It shows that when the incident angle 
θ  45°, this combination FSS unit cell has both passband 
and absorptive bands. When θ = 60° the passband is gone 
and only a very narrow absorptive band exist around 
10 GHz.  

3. Experiments of the Radome 
Performance 
The rasorber radome is manufactured and measured, 

shown in Fig. 4. It has 16 periods in X and Y directions. Its 
size is 300 × 300 × 5 mm3. The dielectric substrate is TSM-
DS3 from Taconic Company with the dielectric constant 
and loss tangent given by εr = 3 and tanδ = 0.011, respec-
tively. The resistance of the resistive film is 50 ohm/sq. 
The circuit board processing technology of the resistive 
layer and slotted ground plane layer are the same. Both of 
them are etched on the dielectric substrate.  
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Fig. 4.  The manufactured rasorber radome. 
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3.1 Transmission and Reflection Coefficients 

Figure 5 shows the setup for the T/R coefficients 
measurement in an anechoic chamber. One wideband four 
arms horn antenna (1~18 GHz) and several standard horn 
antennas working to 30 GHz are applied to transmit waves. 
The receiving antennas are standard horn antennas to cover 
the whole test frequency bands, from 3.9 GHz to 30 GHz. 
When lowering than 3.9 GHz, the aperture of the horn 
antenna is bigger than our radome. So the lowest frequency 
for measurement is 3.9 GHz. 

First of all, the transmitting and receiving antennas 
face each other. The measured ̅S21 and ̅S11 are reference 
values, which are normalized to 0 dB and –30 dB, respec-
tively. Then the rasorber radome is located between these 
antennas. The measured S21 and S11 are the transmission/ 
reflection coefficients of the rasorber radome based on ̅S21 
and ̅S11. The measured curves of the T/R coefficients vs. 
frequency are shown in Fig. 6. The measured passband 
(S21 ≥ –3 dB and S11 ≤ –10 dB) is from 14.6 GHz to 
18.6 GHz, which is wider than the simulation result. The 
measured absorptive bands (S21 ≤ –10 dB and S11 ≤ –10 dB) 
are respectively from 5.6 GHz to 10.8 GHz and from 
21.2 GHz to 28.6 GHz. Within higher absorptive band, S21 
is a little bit bigger than –10 dB from 22.8 GHz to 
24.7 GHz. Since the antennas are in the open boundary, 
which is different from the Master/Slave boundary in the 
unit  cell’s simulation in HFSS,  the reflection coefficient of 
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Fig. 5. Test of T/R coefficients of the rasorber radome. 
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Fig. 6.  Measured T/R coefficients of the radome. 

the antennas themselves are very small. So even when the 
radome is located between the transmitting and receiving 
antennas, the reflection coefficient of the receiving antenna 
is still very low throughout the whole frequency band, 
which is different from the simulation results in Fig. 2.  

3.2 Radiation Characteristic of the Radome-
antenna Configuration 

Based on the passband of the radome, a horn antenna 
working from 12 GHz to 18 GHz is utilized. The radiation 
characteristics of the antenna without our radome (‘Only-
antenna’ curve) and of the antenna with the radome (‘Ra-
dome-antenna’ curve) are measured, depicted in Fig. 7. The 
distance between the radome and the antenna is 18 mm, 
which equals the wavelength of the center frequency 
(16.8 GHz) in passband. From 15.9 GHz to 17.7 GHz, the 
differences between the gain of the only-antenna and the 
gain of the radome-antenna are less than 2 dB. Especially, 
at 16.9 GHz, the gain of the only-antenna is only 1.5 dB 
higher than the one of the radome-antenna. 

Figure 8 shows the normalized E-plane radiation 
patterns  of  the radome-antenna  and of the only-antenna at 
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Fig. 7.  Gains of the radome-antenna and of the only-antenna 

vs. frequency. 
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Fig. 8. The normalized E-plane radiation patterns of the 

radome-antenna and of the only-antenna. 
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16.9 GHz. When θ  [–40°, 40°], the shapes of the main 
lobes are uniform. Out of this angular range, the side lobe 
level of the radome-antenna is higher than the one of the 
only-antenna. It can be concluded that the radome has little 
effect on the radiation characteristics of the antenna. 

3.3 The Scattering Characteristic of the 
Radome-antenna Configuration  

To test the absorption function of this rasorber ra-
dome, when the incoming electromagnetic wave emitted by 
a transmitting antenna impinges on a metallic plane and on 
our radome respectively, the Electric Level (EL) values of 
the wave scattered by the metallic plane and by the radome 
are recorded and compared instead of the monostatic RCS 
values, shown in Fig. 9. The transmitting antenna and re-
ceiving antenna are at the same place. The dimension of the 
metallic plane is the same as the one of the radome. The 
resistive rings layer of the radome faces the transmitting/ 
receiving antenna. From Fig. 10, it is illustrated that the 
electromagnetic wave is absorbed at three frequency bands: 
from 3.9 GHz to 10.9 GHz, from 12.7 GHz to 19.5 GHz, 
and from 21.5 GHz to 27.7 GHz. It is apparent that even in 
the passband, the radome still absorbs the electromagnetic 
wave. At 8.53 GHz, the EL value of the radome is 16.5 dB 
lower than the one of the metallic plane. At 16.55 GHz, the  
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Fig. 9.  Measurement setup of the EL value of the scattered 

wave from the radome and from a metallic plane. 
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Fig. 10.  The measured EL values. 

EL value of the radome is 11.8 dB lower than the one of 
the metallic plane. At 25.05 GHz, the EL value of the ra-
dome is 13.8 dB lower than the one of the metallic plane. 

4. Conclusion 
A two-layer rasorber radome is developed and meas-

ured in this paper. This radome has two absorptive bands 
separated by one passband. The passband is from 14.6 GHz 
to 18.6 GHz, and the absorptive bands are from 5.6 GHz to 
10.8 GHz and from 21.2 GHz to 28.6 GHz. From 15.9 GHz 
to 17.7 GHz, the difference between the gain of the ra-
dome-antenna and of the only-antenna is less than 2 dB. 
The radome has little effect on the radiation patterns of the 
horn antenna. Meanwhile, in the two absorptive bands 
besides the passband and at the direction of the mainlobe, 
the electric level value of the scattered wave from the ra-
dome can be 16.5 dB and 13.8 dB lower than the one from 
a metallic plane with the same dimensions as the radome. 
From this experiment, it is deduced that this rasorber ra-
dome can lower the monostatic RCS of a metallic antenna 
or an antenna array whose dimension is the same as the one 
of the radome. It is a good choice for the radar stealth ra-
dome application. 
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