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Abstract. In this paper, we propose an improved nondom-
inated sorting genetic algorithm-II with scope constrained
(INSGA-II/SC) with three modifications, which are dynamic
nondomination strategy, scope-constrained strategy, and
front uniformly distributed strategy. Here, the metric for mul-
tiobjective optimization mainly focuses on the computation
complexity, convergence, and diversity of the final solutions.
For a large search space in the initial process and a fast con-
vergence in the last process, dynamic nondomination factor
is considered in the rank operator. We can find a manage-
able number of Pareto solutions that are in the constrained
scope instead of the entire Pareto front (PF) to reduce the
computation complexity by scope-constrained strategy. In
order to obtain a high performance for good representatives
of the entire PF, the solutions closer to the uniformly dis-
tributed points on the current front will be chosen. In this
paper, the proposed methods and two efficient multiobjective
optimization methods are used for the optimization of math-
ematical problems and array pattern synthesis with lower
side lobe level (SLL) and null. Numerical examples show
that INSGA-II/SC has a high performance of diversity and
convergence for the final solutions when compared with the
other techniques published in the literature.

Keywords
Multiobjective optimization, convergence, diversity, ar-
ray pattern synthesis, genetic algorithm

1. Introduction
Multiobjective optimization for array pattern synthesis

has been an academic issue [1–10]. Thinned arrays have been
an object of intense research due to several advantages asso-
ciated with their lower cost, weight, power, and complexity
compared with the fully filled arrays. The objectives of side
lobe level (SLL), directive, main beam width, and null depth
may conflict with each other.

Many algorithms [1], [2] combine these multiple objec-
tives into a single function, typically in, commonly known
as aggregating functions. An evolutionary method based on
backtracking search optimization algorithm (BSA) is pro-
posed for linear antenna array pattern synthesis with pre-
scribed nulls and lower SLL [2]. The result obtained by BSA
outperforms the results of the seventeen algorithms which
include particle swarm optimization (PSO), multiobjective
evolutionary algorithm based on decomposition (MOEA/D)
and nondominated sorting genetic algorithm-II (NSGA-II).
The SLL for 28-element array is−21.90 dB, and three nulls at
30◦, 32.5◦, and 35◦ are lower than −60 dB by BSA [2]. With
the same parameter set, a family of position-mutated hier-
archical particle swarm optimization algorithms with time-
varying acceleration coefficients (PM4HPSO-TVAC) [3] out-
performs these algorithms for synthesizing unequally spaced
28-element linear array with the best SLL suppression of
−23.63 dB and nulls control below −60 dB.

In [4], the authors show that the linear antenna array
design can bemodeled as amultiobjective optimization prob-
lem (MOP). Evolutionary multiobjective optimization meth-
ods, such as NSGA-II, differential evolution multiobjective
(DEMO), strength-Pareto evolution algorithm (SPEA-2), and
multiobjective particle swarm optimization (MOPSO), are
provided for the synthesis problem of linear antenna arrays
and concentric rings antenna arrays with the objectives of
main beamwidth and SLL [1], [4–7]. NSGA-II [10] is a pop-
ular and efficient multiobjective genetic algorithm, which has
been used in several engineering design problems [11–14],
[30]. For instance, NSGA-II has been extensively applied in
the synthesis of antenna arrays [15–18], which is considered
to be one of the best evolutionary optimizer formultiobjective
problems [7]. multiobjective differential evolution (MODE)
algorithm and NSGA-II are employed to design concentric
ring arrays with three-dimensional (3D) beam scanning [19].
The authors used NSGA-II for array pattern synthesis with
lower SLL and null control, and the values of null depth are
just −32.7 and −22 dB for the thinned linear array with 40
elements [20].

There are no improvements for the algorithms when
synthesizing array pattern. What can be focused, the simu-
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lation results of optimum solutions distributed in the Pareto
front (PF) lose the diversity, and not all the solution can con-
verge to the PF close enough. Some hybrid algorithms, such
as memetic generalized differential evolution (MGDE3) [21]
and the iterative fast Fourier transform (IFFT) technique with
a judge factor introduced into the NSGA-II [22], try to im-
prove the convergence and solution diversity.

J. Ouyang presented three modifications based on
NSGA-II and applied it for array pattern synthesis. These
modifications mainly focused on the distance selection strat-
egy, and from the simulation results, these modifications ob-
tain a better spread of the solutions and aremore efficient than
the NSGA-II algorithm in somemathematical problems [11].
For conformal phased array [14] and conformal conical sur-
face linear phased array [23], the main beam width and SLL
are taken into account simultaneously, and these modifica-
tions can get better solutions. From the objective space, the
distribution of the final solutions may lose the uniformness
for most mathematical problems and array pattern synthesis.

From the literatures proposed, the classical multiobjec-
tive optimization algorithms may be directly applied, and the
null control for the array pattern synthesis is sparse in the
multiobjective optimization problem. In this paper, we pro-
pose an improved NSGA-II with scope constrained (INSGA-
II/SC) for the optimization of mathematical problems and
array pattern synthesis. The metric for multiobjective op-
timization mainly focuses on the computation complexity,
convergence, and diversity of the final solutions. INSGA-
II/SC makes three modifications based on NSGA-II.

1) Dynamic nondomination strategy: In the initial pro-
cess, a smaller nondomination factor can make a large search
space, and a larger nondomination factor can sort the rank
quickly, and the dynamic nondomination factor can get a fast
convergence near the true PF.

2) Scope-constrained strategy: We can find a manage-
able number of Pareto solutions that are in the scope con-
strained instead of the entire PF to reduce the computation
complexity.

3) Front uniformly distributed strategy: For every front,
the best solutions are those closer to the uniformly distributed
points on the current front, and the chosen solutions have
good diversity compared with the solutions chosen by the
crowded distance.

The remaining part of this paper is organized as fol-
lows. In Sec. 2, INSGA-II/SC with three modifications is
proposed. The multiobjective optimizations of the mathe-
matical problem and array pattern synthesis are presented
in Sec. 3. Section 4 gives the metric for evaluating the per-
formance of the multiobjective evolutionary algorithms and
simulates numerical examples and describes the compara-
tive performance of the presented technique. Concluding
remarks are given in Sec. 5.

2. INSGA-II/SC with Three Modifica-
tions

2.1 Multiobjective Optimization Problem and
NSGA-II

The multiobjective optimization problem can be ex-
pressed as

min F (x) = ( f1(x), f2(x), ..., fM (x))T

subject to x = (x1, x2, ..., xn) ∈ Ω (1)

where x is the decision vector, and Ω is the feasible region in
decision space. Here M is the number of objectives, and n is
the size of the decision vector.

Very often, since the objectives in (1) contradict each
other, no point in Ω minimizes all the objectives simultane-
ously. One has to balance them. The best tradeoffs among the
objectives can be defined in terms of Pareto optimality [24].

Considering a minimization problem for each objective
and p, q ∈ RM , p is said to dominate q (written as p � q)
if and only if pi ≤ qi for every i ∈ {1, ..., M } and pi < qi
for at least one i. We can get a solution x∗ ∈ Ω, the Pareto
optimal to (1), if we cannot find a solution x ∈ Ω such that
F (x) � F (x∗). Then F (x∗) is called a Pareto optimal (ob-
jective) vector. In other words, any improvement in a Pareto
optimal solution in one objective must lead to the deteriora-
tion of at least one other objective. The set of all the Pareto
optimal solutions is called the Pareto set (PS), and the set of
all the Pareto optimal objective vectors is the PF [24]. The
multiobjective optimization algorithm is aimed to find the
optimum solutions approximating the actual PF.

Genetic algorithm is widely used in multiobjective
problems with rooted position because it can produce and
choose the solutions in one single iteration. NSGA-II is
a popular and efficient multiobjective genetic algorithm that
is considered to be one of the best evolutionary optimiz-
ers [10]. In this paper, we will present three modifications
based on NSGA-II, and the procedure [1] for NSGA-II can
be described as follows.

Step 1) Set generation number r = 0 and generate an initial
population P[0] with size N .

Step 2) Classify the individuals according to nondominated
ranking system.

Step 3) Set a counter i = 1.

Step 4) Use Binary Crowded Tournament Selection, and ap-
ply crossover with probability pc and mutation with proba-
bility pm.

Step 5) Set i=i+1. If i > N then go to Step 6; otherwise go
to Step 4.

Step 6) Replacement. Assign ranks to individuals in the
population generated by the union of Parents and Children
populations. Copy into the new population individuals from
a front with lower index as long as the number of individuals
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in the front does not overflow the population size (N). In
the last front to be copied, sort the individuals according to
their crowding distance, eliminating those individuals with
smaller crowding distance, until the total number of individ-
uals (N) is completed.

Step 7) Set r = r + 1. If r reaches the maximum number of
generations, then stop; otherwise, go to Step 3.

The main idea in Step 2 is to classify the individuals
according to their dominance relation, i.e., the set of nondom-
inated individuals is said to be in front 0. After removing
these individuals, the remaining nondominated solutions are
in front 1. The procedure continues until all individuals
are assigned to a front. Deb [10] explains the procedures
involved in each step of this algorithm in detail. The indi-
vidual representations as well as the crossover and mutation
operators are same with those in [10].

2.2 Dynamic Nondomination Strategy
The ability of escaping the local optimum and conver-

gence to the PF is the motivation for the improvement of
the multiobjective optimization algorithm. For NSGA-II, the
fast nondomination sorting approach has high performance
and low computation complexity of O(M N2) for sorting the
front rank for every individual.

The normal nondomination strategy has been stated
clearly in published literature [10]. For the bi-objective opti-
mization problem, the domination relationship can be shown
in Fig. 1(a). With the origin point p, the left bottom is the
nondomination region whose solutions dominate the solution
p, and the top right is the domination region whose solutions
are dominated by the solution p.
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Fig. 1. The nondomination relationship for the normal strategy
and the dynamic strategy.

In Step 6 of the NSGA-II, the operator of replacement is
mainly based on the rank, which is obtained by the operator
of the fast nondominated sorting approach. As a result, the
nondomination strategy has great influence on the solution
evolution. For a large search space, we need keep varied dis-
tributed solutions in the initial process. In this case, we need
to control the weak nondomination strength, which means
that a lot of similar individuals stay in one rank. For a fast
convergence in the last process, the nondomination strength
should be enhanced to remove the dominated individuals.

In this paper, we define the nondomination factor αM to
control the nondomination strength. The fast nondominated
sorting approach can be shown as follows: for p, q ∈ RM , we
say that p dominates q if and only if pi ≤ αM (qj−pj )+qi for
every i, j ∈ {1, ..., M }, where i , j and pi < αM (qj − pj )+qi
for at least one i, j.

Here we use the bi-objective optimization problem as
an example to state the meaning of the nondomination fac-
tor. Different from the normal nondomination strategy, we
set two lines with slope b1 and b2 shown in Fig. 1(b), and
b1=1/b2 = α2. The nondomination region can be distin-
guished by linear inequalities that are shown as{

p2 ≤ b1(p1 − q1) + q2
p2 ≥ b2(p1 − q1) + q2

(2)

where the second inequality can also be written as p1 ≤
1/b2(p2 − q2) + q1, where b2 , 0.

For the case of α2 = 0, the nondomination situation is
the same with normal nondomination, and the second func-
tion can be shown as p1 ≤ q1. Combined with the equations,
we can describe the nondomination region for the bi-objective
optimization problem as{

p1 ≤ α2(q2 − p2) + q1
p2 ≤ α2(q1 − p1) + q2

(3)

Then, we can easily state the domination region as{
p1 > α2(q2 − p2) + q1
p2 > α2(q1 − p1) + q2

(4)

To implement the dynamic nondomination strategy to
rank the individuals, the value of the nondomination fac-
tor must be cautiously chosen for different PFs. The value
is always small to prevent the effective individuals to be dis-
carded. In the initial process, a positive nondomination factor
can make a large search space, and a negative nondomina-
tion factor can sort the rank quickly in the last process. For
a fast convergence near the true PF, we present the dynamic
nondomination factor, which can be shown as

αM (t) =αp
M −

t
T

(αp
M − α

n
M ) (5)

where αp
M and αn

M are the positive nondomination factor
and the negative nondomination factor respectively, and t is
the current iteration with the total iteration number T . This
dynamic nondomination factor is easily realized, and we can
use different formations according to the optimization prob-
lem [25].

The domination count np and the set of solutions Sp
dominated by p can be calculated. For the comparison of
two individuals, the computation complexity may increase to
O(M (M − 1)), so the comparison complexity of one non-
domination sorting is O(M2N2), which is larger than the
normal nondomination sorting approach. For most optimiza-
tion problems, the number of objectives M is always much
smaller compared with the number of individuals N , and the
comparison complexity may have little change.
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2.3 Front Uniformly Distributed Strategy
To approximate the PF, the final preferred solution

should be selected by a decisionmaker. InmanyMOPs, many
or even infinite Pareto optimal vectors are distributed in the
complete PF. Nevertheless, many multiobjective optimiza-
tion algorithms are to find a manageable number of Pareto
optimal vectors that are evenly distributed along the PF and,
thus, are good representatives of the entire PF [1–10], [24].
Found in the literature, the goal for distributing individuals
is that, along with convergence to the Pareto optimal set. It is
also desired that an evolutionary algorithm maintains a good
spread of solutions in the obtained set of solutions.

In MOPs, however, domination does not define a com-
plete ordering among the solutions in the objective space, and
a preferred selection operator is needed to produce a number
of Pareto optimal solutions as diverse as possible for repre-
senting the whole PF.

In the well-known algorithm of NSGA-II [10], the au-
thors use the crowded-comparison operator for maintain-
ing diversity among population members instead of a user-
defined parameter. This approach has a better computational
complexity, and the performance is better than NSGA.

MOEA/D [24] explicitly decomposes the MOP into N
scalar optimization subproblems, in which the objective is
an aggregation of all the functions but not limited to the
weighted sum approach and the Tchebycheff approach [26].
At each generation, the best solutions found so far for each
subproblem are evolved simultaneously to compose the new
population. The neighborhood relations among these sub-
problems are defined based on the distances between their
aggregation coefficient vectors. The optimal solutions to two
neighboring subproblems should be very similar. Each sub-
problem (i.e., scalar aggregation function) is optimized in
MOEA/D using information only from its neighboring sub-
problems.

For the uniformness of final solutions, NSGA-II has no
directly driven ability to select the uniformly distributed in-
dividuals. MOEA/D is better than NSGA-II for most ZDT
test instances and three-objective test, but it has poor per-
formance on ZDT3, which is attributed to the fact that the
objectives in ZDT3 are disparately scaled. Although the re-
sult of ZDT4 has good distribution, some individuals deviate
from the PF. The reason may be that the fixed aggregation
coefficient vectors and mere neighborhood relations lead to
lose the diversity of the individuals.

In this paper, front uniformly distributed strategy is pre-
sented to choose the individuals with high performance for
good representatives of the entire PF. There are three steps to
assign the expected error order for every individual. The first
step is to find the expected positions that may be uniformly
distributed or other distribution mode in current front. The
next step is to calculate the expected error between the ex-
pected positions and every individual. We can choose the
preferred individuals according to the lower expected error
in the last step. The detail procedure can be shown below.

To find the expected positions, we should calculate the
entire length of the current front, which is the total distance of
every two nearest individuals after sorting the population ac-
cording to each objective function value in ascending order
of magnitude. The distance of two individuals is the Eu-
clidean distance. The quantity ς̂ serves as an estimate of the
expected positions whose value is the total distance divided
by the expected number K . All solutions in the current front
are in a nondominated set P with the size L. The process is
shown as

Step 1) Set ς (i) = 0 for each i, and assign the size of P
with L, the number of objectives with M . Initialize m = 1
and i = 2.

Step 2) If m > M , go to Step 4; else go to Step 3, and
sort P according to the mth objective value.

Step 3) If i > L, set m = m + 1 and go to Step 2, else
stay in this step with i = i + 1 and calculate the Euclidean
distance for every two individuals

ς (i) =
√
ς2(i) + (( f im − f i−1

m )/( f max
m − f min

m ))2
. (6)

Step 4) Assign the number of the expected points as

K =
{

L if L ≤ N,
N if L > N, (7)

and calculate the estimate of expected positions as

ς̂ =

L∑
i=2

ς (i)

K − 1
. (8)

Here, f im refers to the mth objective function value of
the ith individual in set P, and the parameters f max

m and f min
m

are the maximum and minimum values of the mth objective
function. Each objective function is normalized before cal-
culating the distance. Thereafter, for each objective function,
the solutions with the smallest function value are assigned to
zero. All other intermediate solutions are assigned a distance
value equal to the square root of the normalized difference
in the function values of two adjacent solutions. This cal-
culation is continued with other objective functions. The
total distance is calculated as the sum of every individual
distance value, and the expected number K is constrained as
a maximum value of the population size N .

For the ith individual in set P, its expected error to the
jth expected position can be calculated as

∆̂i j =

������
ς̂ × ( j − 1) −

i∑
i=1

ς (i)
������
. (9)

This expected error ∆̂i j can constitute the expected er-
ror matrix R̂. In this matrix, we can find k individuals with
a smaller expected error. The error-comparison operator to
obtain the expected error order can be described below.

For every t that is set from 1 to K , we should find the
minimum element σ̂t in R̂, and the individual correspond-
ing to the row is assigned with the expected error order of t,
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while the values in R̂ orresponding to the row and column
are assigned with infinite values.

For this error-comparison operator, one expected po-
sition can map only one individual in P with the smallest
expected error of distance. Other individuals without order
will be set to infinite values. After all population members in
set P are assigned an expected error order, we can compare
the value with other solutions. The individuals with a smaller
expected error order will be copied to the new population,
which are, in some sense, closer to the expected positions. It
is obvious that ∆11 and ∆lk are zero, which state that the first
and last individuals must be chosen for the new population.

The complexity of this procedure is governed by the
sorting algorithm, which is the same with the computation
of crowded density in NSGA-II. Therefore, the front uni-
formly distributed strategy has O(M N log N ) computational
complexity.

2.4 Scope-Constrained Strategy
For most multiobjective optimization method, limited

individuals evolve to approximate and represent the PF, but
not all of them are useful for the application. In some cases,
a part of the PF is enough with the constrained scope of
certain objectives.

In this paper, under scope-constrained Fl
i and upper

scope-constrained Fu
i for the ith objective are presented to

get a part of PF. Then, the procedure for replacement is de-
scribed as follows.

The new population individuals will be copied from the
front with lower index as long as the number of individuals
in the front does not overflow the population size N . In the
last front, the individuals with lower expected error will be
copied. For the last front, scope-constrained strategy should
be adopted when the front uniformly distributed strategy is
used to compute the expected error. When the number of the
new population with the chosen number betweenFl

i and Fu
i

exceeds the total number N of individuals, only the individu-
als in the scope constrained are used to calculate the expected
error distributed in the front. Thereafter, the individuals with
smaller expected error in this scope constrained would be
copied to the new population. On the contrary, the number
of individuals in the scope constrained cannot meet the to-
tality of the new population, and all the individuals in the
last front will be used to calculate the expected error. When
choosing the new population, the individuals in the scope
constrained are all selected, then the individuals with smaller
expected error out of the scope constrained will be copied to
the new population until the total number N of individuals is
completed.

For this strategy, the advantage is that the smaller size
of individuals can achieve the goal of optimization. In the
following examples, we use half the size of the population
for the optimization with the scope of certain objectives con-
strained, and the result also has high performance.

3. Multiobjective Optimization Prob-
lems

3.1 Mathematical Optimization Problems
We use five widely used bi-objective ZDT test instances

in comparing the proposes method with MOEA/D [24] and
NSGA-II [10]. All these test instances are minimization of
the objectives.

• ZDT1

f1(x) = x1,

f2(x) = g(x)[1 −
√

f1(x)/g(x)]

where g(x) = 1 + 9(
n∑
i=2

xi)/(n − 1) and x = (x1, ..., xn)T ∈

[0, 1]n. Its PF is convex, and we choose n = 30 for our
experiments.

• ZDT2

f1(x) = x1,

f2(x) = g(x)[1 − ( f1(x)/g(x))2]

where g(x) and the range and dimensionality of x are the
same as that in ZDT1. Its PF is nonconvex.

• ZDT3

f1(x) = x1,

f2(x) = g(x)[1 −
√

f1(x)/g(x)

−( f1(x)/g(x)) sin(10πx1)]

where g(x) and the range and dimensionality of x are the
same as that in ZDT1. Its PF is disconnected. The two ob-
jectives are disparately scaled in the PF, and f1 is from 0 to
0.852, while f2 is from −0.773 to 1.

• ZDT4

f1(x) = x1,

f2(x) = g(x)[1 −
√

f1(x)/g(x)]

where g(x) = 1 + 10(n − 1) +
n∑
i=2

[x2
i − 10 cos(4πxi)] and

x = (x1, ..., xn)T ∈ [0, 1]n × [−5, 5]n−1. It has many local
PFs, and we choose n = 10 for our experiments.

• ZDT6

f1(x) = 1 − exp(−4x1)sin6(6πx1),

f2(x) = g(x)[1 − ( f1(x)/g(x))2]

1
d

i
d

Z

2
d

1
x

2
x -1i

x
i
x

n
x

Fig. 2. Geometry of the 2n-elements linear array placed along
the x-axis.
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where g(x) = 1 + 9[(
n∑
i=2

xi)/(n − 1)]0.25 and x =

(x1, ..., xn)T ∈ [0, 1]n. Its PF is nonconvex. The distribution
of the Pareto solutions in the Pareto front is very nonuniform.
For a set of uniformly distributed points in the Pareto set in
the decision space, their images are crowded in a corner of
the Pareto front in the objective space. We choose n = 10 for
our experiments.

3.2 Array Pattern Optimization Problems
Consider a linear array of 2n isotropic elements with

a spacing of d as shown in Fig. 2. The position of each
sensor along the x-axis is symmetric about the origin, which
can be written as xi . We just consider the array factor, which
can be expressed as

AF (θ) =
n∑
i=1

wi cos(2πxi sin θ/λ) (10)

where xi =
i∑

j=1
d j , and θ (measured from z-axis) is the pitch

angle of radiation for the transmit array and the incidence of
the plane wave for the receive array. λ is the wavelength,
and wi is the weight coefficient of the ith sensor. Here, the
decision vector is the sensor positions, and in this paper, we
set d with a search range of [0.25, 1] normalized by λ.

As the objective of optimization is to minimize the SLL
and null control of the array pattern by adjusting the geom-
etry of the array subject to given design specifications and
constraints, the fitness function can be defined as

f1 = 20log10

(
max

θSL∈[−90o,θb)∩(θe,90o]

�����
AF (θSL)

max AF (θ)

�����

)
, (11)

f2 = 20log10
*
,

J∑
i=1

�����
AF (θi)

max AF (θ)

�����
+
-

(12)

where θSL is the spanned angle within the side lobe band
except the range of the main lobe. [θb, θe] is the range of the
main lobe, which will be fixed to a given range according to
design specifications. θi is the direction of ith null, and J is
the number of nulls. The first objective is then evaluated ex-
cluding the main beam, and the SLL is measured in decibel.
The f1 works for optimizing SLL, and f2 works for optimiz-
ing nulls. It is well known that array pattern optimization
should be organized along a specific trade-off rule between
the SLL and the null depth.

4. Numerical Examples and Results
Analysis

4.1 Metrics for Evaluating the Performance of
Algorithms
All the mathematical optimization problems have been

independently run for 30 times for each instance. For NSGA-
II, we have set the crossover and mutation probabilities equal
to 0.9 and 0.1, respectively. All algorithms are compiled

using the same compiler (MATLAB 2012a) in a PC with
Intel Core i7-7500U, at 2.70 GHz with 8 Gb RAM running
Windows 10.

To compare the performances of different algorithms,
several metrics should be used according to the nature of
MOPs. Both generational distance and spread (∆) [10], [27]
have been widely used for evaluating the performance of the
multiobjective evolutionary algorithms. In [24], the distance
from representatives in the PF (D-metric) is adopted to mea-
sure both the diversity and convergence of the final popula-
tion when the number of uniformly distributed points is large
enough to represent the PF very well. For the mathematical
optimization problems, the expected positions ς calculated
from the actual PF are used to evaluate the performance of the
final population. However, for the practical problem in engi-
neering, the true Pareto front cannot be obtained [28], [29].
In the case when we cannot get the actual PF, we use the
expected positions ς̂ calculated from the optimum front to
evaluate the performance of the final population.

In this paper, we present two metrics, expectation value
and variance value, to evaluate the performance.

1) Expectation value

To have good diversity and convergence to the PF, we hope
that all the individuals in the optimized population set P∗ can
approximate the expected positions with one-to-one corre-
spondence. The performance index of the expectation value
is calculated by the expected error for every individual. The
expectation value can be defined as

E(P∗, ς̂) =

k∑
t=1

σ̂t

|P∗ |
. (13)

Here, the number k of expected positions is set as the size
of P∗. The minimum expected error σ̂t for every individual
can be obtained through the error-comparison operator. If we
know the actual PF, we can calculate the expectation value
by ς and σt . The smaller expectation value illustrates that
most individuals can approximate the PF very well.

2) Variance value

Ensuring that every individual approximates the correspond-
ing position without a large error, we define the performance
index of variance value as

D(P∗, ς̂) =

k∑
t=1

[σ̂t − E(P∗, ς̂)]2

|P∗ |
. (14)

The smaller variance value illustrates that no one in the pop-
ulation deviates the PF.

4.2 Experimental Results of Mathematical Op-
timization Problems

In this experimental study, we compare the performance
of MOEA/D, NSGA-II with the proposed INSGA-II (com-
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bined with dynamic nondomination strategy and front uni-
formly distributed strategy), and INSGA-II/SC (combined
with the proposed three strategies).

The parameters for all algorithms follow the same set
with NSGA-II and MOEA/D in [10], [24]. In mathemati-
cal optimization problems, the population size in NSGA-II,
MOEA/D, and INSGA-II is set to be 100 for all test instances,
while this is 50 in INSGA-II/SC.All the algorithms have 2000
generations.

InMOEA/D, the setting of weight vectors is used by the
Tchebycheff approach, and T is set to be 20 in this section.

Initial populations are generated by uniform random
sampling from the feasible search space in both algorithms.
MOEA/D is initialized as the lowest value found in the initial
population. The simulated binary crossover (SBX) and poly-
nomial mutation are used in these algorithms. The setting
of the control parameters in these two operators is the same
with [10], [24]. Following the practice in [19], the distribu-
tion indices in both SBX and the polynomial mutation are set
to be 20. The crossover rate is 1.00, while the mutation rate
is 1/n, where n is the number of decision variables. We use
the same distribution indices [8] for crossover and mutation
operators as ηc = 20 and ηm = 20, respectively. All the
algorithms have been run 30 times independently for each
test instance. The positive nondomination factor αp

m is set
to 0.01, and the negative nondomination factor αn

m is set to
−0.01 for INSGA-II and INSGA-II/SC.

Table 1 presents the average CPU time used by each
algorithm for each test instance. It is clear that MOEA/D
can run about twice as fast as NSGA-II with the same num-
ber of function evaluations, which is coincident with the
results in [24]. INSGA-II need more time than NSGA-II be-
cause front uniformly distributed strategy spends more time
in choosing the preferred individuals. The complexity of
INSGA-II/SC is consistent with the population size, which is
about half the time of INSGA-II and lesser time than NSGA-
II.

To compare the performances of these algorithms, the
performance indices of expectation value and variance value
are used for each instance. The number of uniformly dis-
tributed points in the PF is much larger than the size of
the population in the D-metric [24]. A better value of the
D-metric cannot guarantee the final solutions uniformly dis-
tributed in the PF. In this paper, for the two performance
indices, the number of uniformly distributed points is the
same with the size of population, and every individual can
be constrained.

Tables 2 and 3 present the average expectation value and
variance value by different algorithms for each instance. It is
clear that NSGA-II is better than MOEA/D with the Tcheby-
cheff approach, which is opposite with the results in [24] be-
cause we change the number of uniformly distributed points

in the PF. These tables reveal that the final solutions ob-
tained by INSGA-II and INSGA-II/SC have great improved
performance with several orders of magnitude. The smaller
expectation and variance values illustrate that the final solu-
tion obtained by the proposed method can approximate the
PF very well.

Figure 3 shows in the objective space the distributions of
the final solutions obtained in the run with the lowest expec-
tation value for each test instance using NSGA-II, MOEA/D,
and INSGA-II. It is evident that as to the uniformness of the fi-
nal solutions, INSGA-II is better than others for all instances.
For NSGA-II, the convergence has poor performance with
several individuals deviating from the PF. The dynamic non-
domination strategy overcomes this disadvantage, by which
all the individuals can be distributed in the PF in INSGA-II.
In terms of the solution quality of uniformity, INSGA-II ob-
viously has high performance, which is attributed to the front
uniformly distributed strategy.

Figure 4 shows the distributions of the final solutions
obtained by INSGA-II/SCwith Fl

2 of 0 and Fu
2 of 1 for ZDT3,

and Fl
2 of 0.5 and Fu

2 of 1 for other instances. This method
can achieve the same effect with INSGA-II in the scope con-
strained by half the size of the population. The convergence
and diversity can match the analysis hereinbefore.

Instance NSGA-II MOEA/D INSGA-II INSGA-
II/SC

ZDT1 82.50 45.30 97.34 51.40
ZDT2 82.42 45.27 96.48 49.20
ZDT3 86.92 48.03 108.15 53.99
ZDT4 78.96 41.63 93.95 47.41
ZDT6 73.94 40.49 89.09 44.59

Tab. 1. Average CPU time (in seconds) used by MOEA/D
with the Tchebycheff approach, NSGA-II, INSGA-II and
INSGA-II/SC.

Instance NSGA-II MOEA/D INSGA-II INSGA-
II/SC

ZDT1 0.0304 0.0695 2.2418e−4 3.3478e−4
ZDT2 0,0300 0.0343 1.9252e−4 6.5512e−4
ZDT3 0.0974 0.2944 0.0094 0.0068
ZDT4 0.0247 0.0691 3.1623e−4 4.1927e−4
ZDT6 0.0284 0.0402 4.8340e−4 4.4752e−4

Tab. 2. Average expectation values of the solutions found by
MOEA/D, NSGA-II, INSGA-II and INSGA-II/SC.

Instance NSGA-II MOEA/D INSGA-II INSGA-
II/SC

ZDT1 0.0171 0.0316 1.1409e−7 2.4260e−7
ZDT2 0,0166 0.0161 8.8773e−8 8.3267e−7
ZDT3 0.1049 0.4252 3.9017e−4 3.5462e−4
ZDT4 0.0117 0.0314 1.6993e−7 3.6739e−7
ZDT6 0.0147 0.0252 3.3582e−7 2.6759e−7

Tab. 3. Average variance values of the solutions found by
MOEA/D, NSGA-II, INSGA-II and INSGA-II/SC.
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Fig. 3. The distributions of the final solutions obtained in the run with the lowest expectation value for each test instance using NSGA-II,MOEA/D,
and INSGA-II.
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Fig. 4. The distributions of the final solutions obtained in the run with the lowest expectation value for each test instance using INSGA-II/SC.

Method NSGA-II MOEA/D NSGA-II/SC INSGA-II/SC
Expectation 32.1001 77.2667 9.2885 0.0563
Variance 1.6542e3 2.8320e3 249.8846 0.0137

SLL (dB) (Null=−60dB) −23.98 −20.32 −24.05 −24.12

Tab. 4. Average expectation and variance values of the solutions found by MOEA/D with the Tchebycheff approach, NSGA-II, NSGA-II/SC and
INSGA-II/SC.

4.3 Experimental Results of Array Pattern
Synthesis

In this experimental study, we compare the performance
ofMOEA/D,NSGA-IIwith the proposedNSGA-II/SC (com-
bined with scope-constrained strategy), and INSGA-II/SC.
We synthesize a symmetric 28-element array with nulls in
six specified directions at ±30◦, ±32.5◦, and ±35◦ [1], [3].
The desired first null position is set to 8.5◦ with ±12% toler-
ance [3]. Two objectives of SLL and null depth are adopted
to array pattern.

In the optimization problems of array pattern synthesis,
the population size in each algorithm is set to be 400, and
the algorithms have 2000 generations. The parameters about
crossover and mutation and the size of neighborhood T are
the same with that in mathematical optimization problems.
All the algorithms have been run 30 times independently.

For NSGA-II/SC and INSGA-II/SC, the scope con-
strained is set to null depth with a lower scope of−100 dB and
an upper scope of−50 dB. The positive nondomination factor
α
p
m is set to 0.01, and the negative nondomination factor αn

m

is set to −0.01 for INSGA-II/SC.

Table 4 shows the average expectation and variance val-
ues for each algorithm in 30 trials and lists the SLL with null
depth of −60 dB in the best case. It is clear that the pro-
posed NSGA-II/SC and INSGA-II/SC have lower expected

and variance values, which means good convergence and di-
versity of the final solutions. At the same time, the SLL
obtained by the two proposed methods can be much lower
than others. Attributing to the dynamic nondomination strat-
egy and scope-constrained strategy, INSGA-II/SC can have
faster convergence in the setting part of PF with the same size
of the population. INSGA-II/SC has the lowest expectation
and variance values through the front uniformly distributed
strategy, which means good performance on uniform diver-
sity of the final solutions.

Figure 5 shows the distributions of the final solutions
obtained in the run with the lowest expectation value for ar-
ray pattern synthesis using MOEA/D. Compared with other
figures, the solutions obtained byMOEA/D gather more seri-
ously in a small scope. MOEA/D explicitly decomposes the
MOP into N scalar optimization subproblems by different
aggregation coefficient vectors. The weighted sum approach
and the Tchebycheff approach were introduced in [10], [24],
and other decomposition approaches could also be used in
MOEA/D. Under the condition of a wide range of one-
function value and a narrow range of one-function value,
there are many difficulties to choose the appropriate ag-
gregation coefficient vectors. The fixed vectors may lead
individuals to the small scope where the objective rapidly
changes without fault tolerance. In INSGA-II/SC, the error-
comparison operator for R̂ can avoid this problem.
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Fig. 5. The distributions of the final solutions obtained in the
run with the lowest expectation value for array pattern
synthesis using MOEA/D.

Side lobe level relative to the main beam (dB)
-25.4 -25.2 -25 -24.8 -24.6 -24.4 -24.2 -24 -23.8

N
ul

l d
ep

th
 (

dB
)

-160

-140

-120

-100

-80

-60

-40

-20
NSGA-II

Fig. 6. The distributions of the final solutions obtained in the
run with the lowest expectation value for array pattern
synthesis using NSGA-II.
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Fig. 7. The distributions of the final solutions obtained in the
run with the lowest expectation value for array pattern
synthesis using NSGA-II/SC.
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Fig. 8. The distributions of the final solutions obtained in the
run with the lowest expectation value for array pattern
synthesis using INSGA-II/SC.
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Figures 6 and 7 show the distributions of the final so-
lutions obtained in the run with the lowest expectation value
for array pattern synthesis using NSGA-II and NSGA-II/SC.
NSGA-II may have good performance on the convergence
and diversity, but there are many useless solutions for the
oversized null depth or oversized SLL. Hereafter, we find
the excellent characteristic of scope-constrained strategy in
NSGA-II/SC. It also promotes the convergence and diversity
of final solutions further.

The final solutions shown in Fig. 8 by INSGA-II/SC
have good spread in the PF, and the convergence is best
than others. The best SLL of PM4HPSO-TVAC in [3]
is −23.63 dB, whereas this value found by INSGA-II/SC
is −24.12 dB when the null depth is below −60 dB. Fig-
ure 9 shows the array patterns obtained by INSGA-II/SC
and PM4HPSO-TVAC. INSGA-II/SC outperforms other al-
gorithms for synthesizing unequally spaced linear array with
SLL suppression and null control. Table 5 shows the ge-
ometry of the best array found by INSGA-II/SC with a null
depth of −60 dB for 28-element non-uniform linear array. In
this paper, only linear arrays are dealt with. However, there
are other antenna array structures that could provide a wider
coverage than the linear geometry such as circular and planar
geometries.
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Element Position
(Normalized to λ) Element Position

(Normalized to λ)
1 0.170 8 0.518
2 0.434 9 0.508
3 0.311 10 0.534
4 0.490 11 0.503
5 0.320 12 0.827
6 0.498 13 0.769
7 0.326 14 0.801

Tab. 5. Geometry of the best array found by INSGA-II/SC with
null depth of −60dB for 28-element non-uniform linear
array.

5. Conclusion
The objective of the proposed INSGA-II/SC is to get

a set of solutions with good convergence and diversity. Con-
tributing to the dynamic nondomination strategy, scope-
constrained strategy, and front uniformly distributed strat-
egy, the final solutions can converge nearly to the PF and be
uniformly distributed on the PF through a fewer size of the
population. INSGA-II/SC needs less computation time be-
cause it can achieve the same effect with a smaller size of the
population. The results of five ZDT instances reveal that the
final solutions obtained by INSGA-II and INSGA-II/SC have
greatly improved performance with several orders of mag-
nitude in the expectation value and variance value. For the
array pattern synthesis of the 28-element linear array, the final
solutions obtained by INSGA-II/SC have good convergence
and diversity. The SLL obtained by the two proposed meth-
ods can be much lower than NSGA-II and MOEA/D with the
Tchebycheff approach. The best SLL found by INSGA-II/SC
is −24.12 dB with the null depth below −60 dB, which is
better than the SLL of PM4HPSO-TVAC of −23.63 dB.
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