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Abstract. This work proposes a low-cost and low-power
software-defined radio open-source platform with IEEE
802.11 a/g/p wireless communication capability. A state-
of-the-art version of the IEEE 802.11 a/g/p software for
GNU Radio (a free and open-source software development
framework) is available online, but we show here that its
computational complexity prevents operations in low-power
general purpose processors, even at throughputs below the
standard. We therefore propose an evolution of this software
that achieves a faster and lighter IEEE 802.11 a/g/p trans-
mitter and receiver, suitable for low-power general purpose
processors, for which GNU Radio provides very limited sup-
port; we discuss and describe the software radio processing
structuring that is necessary to achieve the goal, providing
a review of signal processing techniques. In particular, we
emphasize the advanced reduced-instruction set (RISC) ma-
chine (ARM) study case, for which we also optimize some of
the processing libraries. The presented software will remain
open-source.
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1. Introduction

Software Defined Radio (SDR) plays a key role in
present and future wireless communications; its advantage
over hardware realization is in providing flexible, maintain-
able, and low-cost radio equipment [1]. Since software can be
modified, cancelled and upgraded, SDR has become popular
both in products and in research, like mainstream cognitive
radio [2] as well in more selected applications like reconfig-
urable antennas [3], [4]; SDR is also an optimal approach for
researchers and students to experiment with radio commu-
nication and signal processing concepts [5]. It is also well

accepted in military, satellite communication and Vehicular
Ad Hoc Networks (VANET) primarily for safety, security
and privacy issues which can be meet by means of the SDR
flexibility [6], [7]. However, such flexibility comes at the ex-
pense of increased power consumption, that is the challenge
to overcome today. This work targets the implementation of
a low-power and low-cost IEEE 802.11 a/g/p SDR onGeneral
Purpose Platforms (GPP).

Since GPP implementation is not the only option ad-
dressed by the scientific community we first briefly review
the current state-of-the-art of general SDR implementation;
we will next focus on the state-of-the-art for GPP SDR im-
plementation.

1.1 State of the Art: General Implementation
of SDR
Existing platforms to implement SDR include Field

Programmable Gate Array (FPGA), Digital Signal Proces-
sors (DSP), GPP and combinations of these to distribute the
computational complexity of the software radio to the most
appropriate resource. Low-power and low-cost FPGA plat-
forms are usually employed to accelerate some performance-
critical functions of a software radio [8]. However, a full stack
IEEE 802.11 a/g/p SDR implementation requires a costly
hardware along with a large consumption as reported by the
open-source SDR implementation proposed in [9]. Another
disadvanges of FPGA is that, at present, they can be only
partially reconfigured at run-time [10]. Performance-critical
SDR tasks are also well assessed on DSP platforms, which
are architectures specialized for signal processing. Atomix,
a framework able to convert C code into DSP is presented
in [11]. This publication illustrates a partial implementation
of the IEEE 802.11a transceiver, with a reported consump-
tion of 7W. On the contrary our implementation targets the
full IEEE 802.11 a/g/p SDR (i.e. transmitter and receiver)
on a low-power GPP. Furthermore, [11] does not account
for the consumption of the Front-End (FE); the Universal
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Software Radio Peripheral (USRP)2 series employed in the
test has a consumption of about 14W, and a significant cost.
Finally, [11] does not clarify when and if the framework (in-
cluding the partial IEEE 802.11a implementation) will be
released as a free and open-source. It is also not clear if
this framework could be used with a specific DSP hardware
only (i.e. TI6670). Therefore, this solution is interesting
and promising, but at present it is still at too early a stage
to be assessed as low-cost and/or low-power; in contrast, our
proposed work provides a complete implementation of the
system and its validation.

1.2 State of the Art: SDR Implementation on
GPP
GPPs are architectures designed to perform more gen-

eral operation and they are commercially available at low-
cost. This explains why they are so widespread. They are
fully flexible and provide the advantages of dynamically con-
trolling both hardware and software components of a radio.
For example, a Linux shell script can schedule when the ra-
dio app and the FE should be active or off to further reduce
energy consumption.

However, the development of a low-power and low-
cost full stack IEEE 802.11 a/g/p SDR is still challenging
on GPP. First, this implementation requires a low-cost and
low-power FE for direct baseband conversion over the de-
sired frequency range. Commercial Digital Video Broadcast-
Terrestrial (DVB-T) hardware receivers, like Realtek-2832U
chip [12], have been discovered to be programmable by the
SDR community, and software to feed the In-phase and
Quadrature components (I/Q) of the received signal into
a host PC has been developed [13]. This device offers the
cheapest way to play with SDR concepts, but its frequency
coverage is limited to Ultra-High Frequency (UHF) band,
therefore is useless for standards that rely on Industrial, Sci-
entific andMedical (ISM) bands (e.g. 2.4GHz and 5.8GHz).
Thus, a transceiver equipment like the HackRF FE is required
to play with SDR at the mentioned bands [14].

Secondly, code performance is an issue. A straight-
forward software implementation of the IEEE 802.11 a/g/p
standard, like the one offered by the GNU Radio commu-
nity, can only run on desktop PC, due to its high computa-
tional power demand [15]. This limitation is immediately
apparent when investigating the performance of the software
into low-power boards; this is seen, e.g., in the snapshots
reported in Fig. 1, that refer to the output of GNU Radio
flowgraph. While the 802.11 standard would require a sam-
pling rate of 20MHz, when the available GNU Radio soft-
ware is run at a sampling rate of 2MHz, the integrated cores
reach saturation and events like buffer underflow/overflow
occur over the upcoming/incoming samples stream respec-
tively. At this sampling rate (Fs,max = 2MHz), the software
receiver shows a high error rate of about 75 % that comes
with overflows ("O" in the output display) and core satura-
tions, which are inter-related, and most of the frames are cor-
rupted and discarded. This happens because the processing

Fig. 1. Receiver performance at sampling rate Fs,max = 2MHz,
existing code on the targeted low-power board (see
Sec. 2.2). The figure shows a snapshot of the GNU Ra-
dio flowgraph utility output for the existing IEEE 802.11
receiver, configured as described in Sec. 4.2. Top: Linux
- htop program output;

Fig. 2. Compiler output (make) building the work [16]. Issue
preventing usability on platform different from X86 due
to the lack of general implementation of part of the IEEE
802.11 software.

capability of the low-power board is insufficient for the exist-
ing state of the art GNU radio implementation. Even more
evidently, perhaps, the board goes in protection state after
a few minutes of operation.

Some parts of this code have been recently optimized
in [16]. The work in [16] was a source of inspiration to the
present work; unfortunately, the code is not portable in archi-
tectures different from X86 (i.e. SSE2 instruction set) due to
the lack of a generic implementation of a part of the software.
This issue prevents installation on platforms different from
X86, as reported in Fig. 2, thus requiringmodifications to run
on the targeted low-power platforms. Furthermore, although
the code has optimized for real-time performance, [16] does
not state or discuss the amount of throughput achieved with
the proposed improvements. Among all possible framework
for the development of SDR [17], we selected GNU Radio
since it is free, open-source, comes with a wide availability
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of signal processing libraries and a vast community [18]. To
the best of our knowledge, the GNU Radio framework (as
well as other SDR implementations) is fully optimized for
the X86 processor architecture, where the compiler toolchain
can fully exploit specific architectural features to improve ef-
ficiency. For instance, in [19] the authors describe a SDR
code optimized for the X86 architecture, targeting multi-
core acceleration; but it is not released as an open-source.
Conversely, Advanced Reduced instruction set computing
Machine (ARM)-based processors still suffer from a lack of
good compiler support, and from the lack of specific fea-
tures available in X86 counterparts [20], [21]. In fact, no
low-power implementations have been reported so far, es-
pecially on the new generation of low-cost, power-efficient
ARM platforms [22]. It is also worth noting that GNU Ra-
dio framework officially supports only X86 processors, thus
providing no guarantees for its porting on ARM (or other)
processors.

The open-source Sora project is, at present, a com-
plete realtime SDR compliant with the IEEE 802.11 stan-
dard; however, this implementation requires a specific and
costly hardware, and it needs to be employed on a PC [23]-
as opposed to the application targeted here.

With the aim to provide low-cost and low-power SDR,
the present work is intended to overcome the above limita-
tions, and to yield SDR software requiringminimal hardware,
i.e. a low-power and low-cost FE and GPP.

1.3 Proposed SDR Implementation on GPP

In our intended application, there are no stringent re-
quirements in terms of real-time performance; this allows to
target low-power and low-cost GPP processor instead of DSP
or FPGA implementations. As a result, our solution also
maintains a significantly larger flexibility and code portabil-
ity over other platforms. For example, in the case of a change
of the GPP architecture, our solution only requires the code
to be recompiled without the need for making changes in the
source code. We start from a generic SDR implementation
of the IEEE 802.11 a/g/p for desktop PC that at present is the
only free and open-source software, and illustrate how to en-
hance code performance to achieve integration in low-power
GPP while maintaining software portability, at minimal SDR
cost.

To the best of our knowledge, there is no other imple-
mentations that provide SDR IEEE 802.11 a/g/p with the ob-
tained performance on low-power and low-cost ARM-based
boards. The code is available online at [24].

The paper is structured as follows. We start by review-
ing requirements and available hardware for the FE (Sec. 2.1)
and the GPP (Sec. 2.2); we then describe the realization of
the SDR by describing the proposed method (Sec. 3) and we
present the achieved results in Sec. 4. Section 5 collects the
conclusions and perspectives.

2. Hardware Issues
We begin by discussing hardware issues, with specific

attention to low power, and their impact and requirements on
software development.

2.1 Front-End Issues
This section provides an overview of possible FEs suit-

able for the SDR implementation of the IEEE 802.11 a/g/p
in GNU Radio and discusses the related issues.
To the best of our knowledge, valuable FE options for low-
cost and low-power SDRwhich cover the IEEE 802.11 bands
are summarized in the following with comments relevant to
the present endeavor:

• HackRF (299$), supported byGNURadio; Half-duplex
operations only.

• microSDR (expected 100$) according to [8]; at the time
of this publication it is still under fabrication.

• PicoZeD SDR 1x1 (750$) [25]; Supported by Matlab
and Simulink, but not guaranteed for GNU Radio.

• USRP-B series (more or less 800$ based on the model);
supported by GNU Radio, Full-duplex operations.

Other FEs as Lime SDR are not considered in this discussion
since they do not provide coverage at 5.8GHz [26], [27]. In
view of the above, our analysis and tests have considered the
only two viable solutions, i.e. Hack RF and USRP-B. In the
following we will discuss tests and findings that have guided
our final selection.

A simplified circuit that shows analog and digital com-
ponents of the receiver side is depicted in Fig. 3. The signal
received in the bandwidth of interest is baseband transformed
via a frequency down-conversion process. This analog elabo-
ration produces a complex signalmade up of I/Q components.
Then Analog to Digital Converters (ADC)s map the analog
values of the I/Q components to discrete levels. These con-
verters have fixed sampling rate, thus a digital interpolation
and decimation process is usually applied to get the sampling
rate required by the intended communication standard. Fi-
nally, the digital I/Q sample stream is feed in the GPP for
digital signal processing tasks. The same chain (reversed),
applies to the transmission process.

Fig. 3. Schematic circuit description of a typical homodyne re-
ceiver.
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The first issue to address is the interface between the
FE and the low-power GPP. In other worlds, the interface
has to support the transfer rate RT in bps as described by the
following equation:

RT = (Ibits +Qbits)Fs,max (1)

where Ibits and Qbits are the ADC bits dedicated to the In-
phase and Quadrature component respectively, while Fs,max
is the sampling rate (in Hz) required by the intended commu-
nication standard.

The Hack RF uses the Universal Serial Bus (USB)
v2.0 interface, which nominally supports 480Mbps transfer
rate; in this specific device the ADCs have 8 bits resolu-
tion for the I/Q components; inserting these values in (1),
together with the IEEE 802.11 maximum sampling rate of
Fs,max = 20MHz, one obtains RT = 320Mbps; thus, it ap-
pears to be fine for unidirectional (half-duplex) communica-
tion.

Ettus Research USRP-B operates via USB v3.0, which
nominally supports 5Gbps transfer rate. This FE provides
12 bits ADCs for I/Q, that coupled to a sampling rate of
Fs,max = 20MHz (IEEE 802.11) gives a transfer rate of
560Mbps, i.e. a large margin with respect the USB v3.0
limit [28].

However, as part of the selection process, we performed
standard transfer tests on both these front-ends; we found the
behaviors reported in the snapshots in Figs. 4 and 5, and
summarized by the data in Tab. 1.

It is apparent from these data that none is actually com-
pliant with the IEEE 802.11 standard as both are unable to
sustain the required sampling rate (i.e. 20MHz). Hack RF is
capable to transfer I/Q data into low-powerGPP at such rate in
standalone, while only in half-duplex mode. On the contrary,
when associated to any IEEE 802.11 software the effective
rate is very reduced, probably because the transceiver loses
the execution priority with respect the tasks of the running
software (i.e. availability of threads to perform its task on
time). Conversely, USRP-B fails the transfer test at 20MHz
rate in full-duplex mode even in standalone. In view of the
results in Tab. 1, we have selected USRP-B as front-end; it
is apparent that (in a symmetrical link) there is no signifi-
cant difference in throughput between half- and full-duplex;
most of our results will refer to half-duplex operation for
simplicity.

Front-End Samp.Rate[MHz] Mode Description
USRP-B 8 full-duplex Standalone connection
USRP-B 0.5 full-duplex Coupled with IEEE802.11 software
USRP-B 17 half-duplex Standalone connection
USRP-B 1 half-duplex Coupled with IEEE802.11 software
HACK RF 20 half-duplex Standalone connection
HACK RF 0.5 half-duplex Coupled with IEEE802.11 software

Tab. 1. The maximum sampling rate at which front-end devices
passed the standard transfer tests on the low-power board
in standalone, and coupled with existing IEEE 802.11
software.

Fig. 4. Data rate logger output of the Hack RF standard transfer
test at 20MHz rate (Half Duplex). Receiver test (Up) and
transmitter test (Bottom).

Fig. 5. Data rate logger output of the USRP-B205 mini standard
transfer test at 20MHz rate (Full Duplex).

2.2 GPP Platform

To satisfy the requirements of a more energy-efficient
hardware, with low-cost property (74$) and small form factor,
we targeted this project to the Odroid-XU4 [29]. This ARM-
based board is made up by a selectable high performance
quad-core Cortex-A15 and a lower-performance quad-core
Cortex-A7 Cental Processing Unit (CPU)s. These processors
include Neon-technology, an instruction set able to acceler-
ate signal processing algorithm [30]. The drawback is that
they come with a specific Linux distributions that in gen-
eral does not perform fast enough for a SDR environment,
e.g. slow USB buffer copies could prevent the interaction
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with the FE. A kernel modification is then required to fully
exploit the performance of such boards. The downgrade of
the kernel is accomplished by recompiling with options full
kernel-preemption, overclocking and Neon.

3. Operations, Algorithms and Opti-
mizations
The processing required by the IEEE 802.11 to code

and decode its waveform involves a massive number of arith-
metic operations. Therefore, in the following we will analyze
the most relevant such computational tasks, with a specific
emphasis on those that can be substantially improved; this
will constitute the starting point of the optimization.

In order to identify bottlenecks and heavy processing
blocks of the IEEE 802.11 a/g/p flowgraph for GNU Radio
we employed Control Port (CP) monitor performance, a tool
recently added in GNU Radio by the work [31].

Figure 6 shows a simplified flowgraph description of
the IEEE 802.11 a/g/p baseband processing showing with
a lighter color the blocks we found critical according to CP,
and that have been restructured by this work.

Fig. 6. Simplified GNU Radio flowgraph of the IEEE 802.11
a/g/p baseband processing chain.

The following sub-sections will discuss the restructur-
ing of such flowgraph in the order of the proposed optimiza-
tion methods.

Afirst note is about Fast Fourier Transform (FFT) and its
inverse; they are basic functions that GNU Radio provides;
accelerations of these functions are already available [32],
and thus will be not discussed here.

3.1 Platform Generic Optimization

A ubiquitous source of inefficiency is the handling of
shift register which are to perform a large number of oper-
ations. However, shift registers have a finite set of possible
states and therefore their associated operation can be com-
puted once at run-time and stored in Look Up Tables (LUT).
This operation is beneficial in typical SDR platform since
they are processor-based system with large amounts of avail-

able memory that can be exploited for reducing the runtime
complexity of signal processing tasks. This approach is also
discussed in [23] but never addressed from the implementa-
tion point of view.

Another significant enhancement in performance is ob-
tained by operating on bytes instead of bits since the same
operation is parallelized over 8 bits at the same time.

Some examples of operations towhich this optimization
process is applied are:

• Scrambler process

• Convolutional encoder

• Interleaving

• CRC computation

Significant improvements can also be reached by un-
rolling for–loops. This is the case of the OFDM Carrier
Allocator. Its body was constituted by an initialization of
a large output buffer onto which two sequential loops write
information and pilot symbols, respectively. In our imple-
mentation of the OFDM Carrier Allocator the information,
pilot symbols and guard intervals are allocated cyclically
avoiding initialization and stressing loops. This effectively
reduces the computational complexity on all architectures
and, even more so, on ARM-based board since the compiler
is not able to efficiently handle for-loops. The proposed im-
plementation of the OFDM Carrier Allocator is reported in
Appendix.

Regarding the demapping-decision process, we have
implemented the same suboptimal method that has recently
added online by the work [16]. We found that this method
gives a 70× boost in the code speedup with respect the op-
timal method proposed by the IT++ library. Several authors
have investigated the performance of this approach, and the
works in [33–35] have demonstrated a loss of only 2 dB in
the Bit Error Rate (BER).

Finally, frequency offset compensation and equaliza-
tion are not modified since the CP analyses has not revealed
critical aspects in performance.

3.2 A Practical Example of Platform Generic
Optimization

To provide a concrete example, in the following we re-
port a step-by-step demonstration to speedup the scrambling
processing function, showing some tricks. The IEEE 802.11
a/g/p scrambler is defined by (2), which shows the polynomial
representation

p(x) = x7 + x4 + 1. (2)

Its flow graph is reported in Fig. 7. The scrambler Shift Reg-
ister (SR) starts with the all-ones state. The Pseudo-Random
Binary Sequence (PRBS) is periodic and repeats after a pe-
riod defined in the (3), which shows the number of possible
states.
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PRBS_PERIOD = 27 − 1. (3)

Fig. 7. Scrambler block diagram and illustration of the Pseudo-
Random Binary Sequence (PRBS) generator.

The scrambler provided by the IEEE 802.11 a/g/p for
GNU Radio computes the PRBS state for each input data bit
(i.e. unpacked bytes) as shown in the following code:

0 /**General work**/

1 for (int i = 0; i < n_data_bits; i++)

2 {

3 PRBS = (!!(state & 64)) ^ (!!(state & 8));

4 out[i] = PRBS ^ in[i];

5 state = ((state << 1) & 0x7e) | PRSB;

6 if(state > 127) state = 1;

7 }

where the general work describes the part that reads inputs,
processes, and writes outputs. This code offers poor perfor-
mance since carry out many operations for each input bit.
The complexity of signal processing can be reduced by ex-
ploiting memory availability. Since PRBS is periodic, it can
be generated once in the constructor and stored in a LUT. In
C/C++ programming language, the constructor is a section
of code executed only once at run-time (i.e. when the object
is created). We proposed the following restructuring of the
PRBS:

0 /**Code constructor**/

1 SR = 0x7F;

2 for(int state = 0; state < PRBS_PERIOD; state++)

3 {

4 PRBS[state] = SR & 0x01;

5 PRBS[state] ^= (SR >> 3) & 0x01;

6 SR = SR >> 1;

7 SR |= PRBS[state] << 6;

8 }

This optimization yields the following general work:

0 /**General work**/

1 for(int i = 0; i < n_data_bits; i++)

2 {

3 out[i] = in[i] ^ PRBS[state];

4 state = (state + 1) % PRBS_PERIOD;

5 }

As a consequence, the number of operation reduces to amem-
ory access and an XOR operation for each bit. Furthermore,
a second step optimization is still possible by operating on
bytes instead of bits. In this case eight information bits are

STATE PRBS PACKED_PRBS
0 0 11111110
1 0 11111100
2 0 11111000
3 0 11110000
4 1 11100001
5 1 11000011
6 1 10000111
7 0 00001110
8 1 00011101
9 1 00111011
10 1 01110111
11 1 11101111
12 0 11011110
.. . ........

126 1 11111111

Tab. 2. Look Up Tables (LUT)s for the Scrambler processing
function.

packed in one byte. This operation requires a different LUT
that stores eight successive states of the PRBS, as reported in
Tab. 2. In this way, the new PRBS LUT is generated in the
constructor as:

0 /**Code constructor**/

1 for(int state = 7; state < PRBS_PERIOD+7; state++)

2 for(int j = 7; j >= 0; j--)

3 PACKED_PRBS[state % PRBS_PERIOD] |=

(PRBS[((state - j) % PRBS_PERIOD)] & 0x01) << j;

Then, assuming that input data are packed in a byte (i.e. 8 bit
to process at once), the processing operation reduces to:

0 /**General work**/

1 for(int i = 0; i < n_data_bytes; i++)

2 {

3 packed_out[i] = packed_in[i] ^ PACKED_PRBS[state];

4 state = (state + 8) % PRBS_PERIOD;

5 }

where 8 bits are processed with one access to memory and
an XOR operation. This optimization is architecture inde-
pendent (i.e. the software is accelerated on any processor
architectures). This method significantly boost the perfor-
mance at the expense of using more memory. On complex
architectures like ARM, the modulo division could be time
consuming with respect to an IF condition due to low-level
initialization issues. Thus, a further step of which all ar-
chitecture benefits is restructuring the general work in the
following way:

0 /**General work**/

1 for(int i = 0; i < n_data_bytes; i++)

2 {

3 packed_out[i] = packed_in[i] ^ PACKED_PRBS[state];

4 state += 8;

5 if( state > PRBS_PERIOD )

6 state -= PRBS_PERIOD;

7 }

In this way, the modulo division is removed.
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3.3 Platform Specific Optimization
High speed Single InstructionMulti Data (SIMD) func-

tions are very efficient and allow parallel operations, and their
use was proposed in work [16], [19], [23], [36]. They are
usually employed for the most critical task requiring acceler-
ation. However, this type of optimization is strictly related to
the architecture employed, because it exploits registers and
instruction sets intrinsic to the processor. The code written
with this method is therefore not portable; because of this, we
used it only for the most critical tasks (e.g. to accelerate the
Viterbi decoder), and always also keeping (i.e. providing)
a generic version suitable for all processors.

At the receiver side, the synchronizer implements the
maximum normalized correlation algorithm. This part in-
volves many arithmetic operations at the signal sampling rate
(i.e. before packet detector) and the use of accelerators is usu-
ally required. For this purpose we used the SIMD functions
whose implementation and performance impact on ARM
processors are well discussed in [36]. As these functions are
architecture dependent, our proposed software provides also
a platform-independent (generic) implementation to main-
tain the code portable. At the software building stage the
compiler can choose the SIMD functions if supported on the
target platform, otherwise select the generic-implementation
counterpart.

We found out that the Viterbi decoder was a significant
computational load, and in fact it turns out to be the decod-
ing function requiring the highest computational power at
the receiver side. At the beginning, the IEEE 802.11 a/g/p
for GNU Radio employed the Viterbi decoder provided by
the mathematical library of communication functions (ITpp).
However, this straightforward implementation was not effi-
cient for a SDR [37], and GNU Radio community provided
a more performing version of the Viterbi which was actually
employed in its DVB-T receiver project, usually referred to
as the Karn-Ettus Viterbi [38]. This function has also an
accelerated SIMD version, but unfortunately it can run on
X86 machine only (i.e. supporting SSE2 instruction set).
We adapted and tested the generic version of the Karn-Ettus
Viterbi on our IEEE 802.11 a/g/p implementation, and we
found that it is still too slow on ARM-based boards, i.e.
packet are frequently missed due to overloading. Therefore,
we implemented a SIMD accelerated version suitable for
ARM processors, by exploiting Neon-technology. Since this
optimization is architecture dependent we also maintained
the generic version (i.e. Karn-Ettus Viterbi) for all architec-
tures and the SSE2 optimization which can be exploited on
X86 architectures.

4. Results
4.1 Software Performance

To assess the performance of single sub-blocks of code
within a block – for instance scrambler, convolutional en-

coder, interleaver and mapping within the block MAPPER–
we used the following metric:

Fspeedup =
〈Tproc,Ex 〉
〈Tproc,Prop 〉

(4)

where we define the speedup factor Fspeedup as the ratio be-
tween the average processing time 〈Tproc,Ex 〉 required by the
existing code and that, 〈Tproc,Prop 〉 of the proposed sub-block
of code. In other words, 〈Tproc〉 is the time required to pro-
cess a frame in a specific task, averaged over N instances. In
the performed test it is evaluated over the processing of 500-
Byte frames, and averaged over N = 100 frames. Speedup
factors have been obtained for the convolutional encoder,
scrambler/descrambler, and interleaver/deinterleiver, which
are part of the blocks CODER and DECODE MAC, accord-
ing to the method presented in Sec. 3.1. The improvements
with respect the existing IEEE 802.11 a/g/p for GNU Radio
have been reported in Tab. 3.

According to CP profiling of all blocks of Fig. 6 we
found the OFDM Carrier Allocator to be the block consum-
ing the majority of the runtime. After the restructuring of
the OFDM Carrier Allocator (Sec. 3.1) we obtained a large
improvements as reported in Fig. 8, which illustrates the run-
time speedups based on (4).

As shown in Fig. 8 the acceleration increases as the
modulation becomes more complex. This is justifiable from
the fact that transmitting the same quantity of information,
the highest the modulation order the lesser is the frame size
(i.e. bytes). This achievement does not saturate buffers along
the run-time, as the original code does. This also explains
why the latter code has a high execution time that results
independent from the modulation employed.

Function Speedup factor
Convolutional Encoder 5×
Scrambler/Descrambler 7×
Interleaver/Deinterleaver 6×

Tab. 3. Improvements w.r.t. the existing IEEE 802.11 a/g/p for
GNU Radio.

Fig. 8. Processing time comparison of proposed OFDMAlloca-
tor w.r.t GNU Radio OFDM Allocator.
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Fig. 9. Processing time comparison of proposed Viterbi imple-
mentation (Neon) against others on ARM-based proces-
sor.

Fig. 10. Time and memory comparison, CODER block. The
figure shows the percentage of runtime (bar plot) and
buffers full (line plot) of the existing and proposed
CODER block when running the GNURadio flowgraph
for different modulation orders and packet lengths.

Fig. 11. Time and memory comparison, DECODE MAC block.
The figure shows the percentage of runtime (bar plot)
and buffers full (line plot) of the existing and proposed
DECODE MAC block when running the GNU Radio
flowgraph for different modulation order and packet
lengths.

The results of our proposed Viterbi implementation
compared to the others supported by the target platform are
reported in Fig. 9, while a piece of code illustrating the most
intensive computational part rewritten with ARM intrinsic
functions is reported in appendix.

The improvements obtained from the restructuring of
the blocks CODER and DECODE MAC, depicted in Fig. 6,
have inspected with CP which allows to test the overall per-
formance of blocks, instead of sub-blocks. Figures 10 and 11
report the results of this analysis for both existing and pro-
posed blocks when running the software for different packet
lengths and modulations. The bar chart shows the percentage
of the total runtime (i.e. the number of CPU ticks) during
the call to a specific block. We also report the runtime ratio

between the existing and proposed blocks (i.e. speedup fac-
tor within the bar). The line chart, with secondary axis at the
right side, reports the percentage of the buffers full allocated
by the inspected block.

TheCODERBlock analysis, Fig. 10, revealed a speedup
factor around 30× for all modulation orders and packet
lengths, while buffers are less busy of a factor of 15.

The DECODE MAC proves an overall speedup factor
around 11× which in average persists for all modulation or-
ders and packet lengths. Buffers result less full of a constant
factor of 10.

4.2 Wireless Communication Link Perfor-
mance

We begin by noting that the communication perfor-
mance of IEEE 802.11 a/g/p software has been provided
in the work [15]. Since there are no difference in coding/de-
coding chains which form the IEEE 802.11 waveform there
also no significant change in communication performance
(including the negligible loss of the demapper). Therefore,
we will not address this issue further in our discussion.

The performed tests aim to evaluate the maximum
throughput that the proposed implementation achieves in the
target low-power platform. The analysis addresses a point-
to-point wireless communication between two equal nodes
spaced 5m apart. The characteristic of the single node (trans-
mitter or receiver) is reported in Tab. 4.

Component Type
CPU Quad Cortex-A15 2.0GHz, Quad Cortex-A7 1.6GHz

Operating System Ubuntu 15.04, Linux odroid 3.10.92-rt101
Environment GNU Radio 3.7.10.1
Front-End USRP B205 mini
Interface USB v3.0
Antenna Antenova Titanis AE030054-I 2.4GHz, peak gain 2.2dBi

Tab. 4. Overview of the most important components of the test
bed.

Proper Radio Frequency (RF) gains have been set to
provide a reliable and stable communication for the data rate
under test. In view of the results in Sec. 2.1, for the sake
of simplicity we have chosen half-duplex communication in
these tests. We conducted the tests by stressing the receiver
transmitting continuous frames (e.g. broadcasting commu-
nication) to validate the tolerance to saturation. We success-
fully tested the code at Fs,max = 2MHz without encountering
issues related to the execution of the code, such as underflow
at the transmitter and/or overflow at the receiver, and trans-
mitting with the maximum order modulation (i.e. 64QAM).
We also found that the decoder became the bottleneck after
such wireless data rate.

For completeness, we performed the same test also with
the HACK RF Front-End, however Fs,max remained 0.5MHz
as with the initial code (in Tab. 1). With this data we can
thus assess the associated maximum bit rate R of the wireless
link
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R =
(

R
B

)
Fs,max (5)

where
R
B

is the maximum spectral efficiency, that with

the 64QAM modulation of IEEE 802.11 a/g/p is
R
B
=

2.7 bit/s/Hz [39].

On the transmitter side, we experimentally assessed that
the transmitter supported up to 5MHz sampling rate with the
existing software, and 9MHz sampling ratewith the proposed
code. This corresponds to a wireless bit rate of 24.3Mbps
for the proposed code, and it is apparent that the link bit rate
is limited by the lower sampling rate achievable by the re-
ceiver, due to decoding saturation; for our measured data of
Fs,max = 2MHzwithUSRP-Bwe obtain an overall maximum
bit rate of R = 5.4Mbps in the receiver.

These results can be different with other processors, de-
pendent on the availability of parts of code that can exploit
accelerators and the efficiency of the compiler.

Comparison of the existing and proposed code perfor-
mance have been reported in Fig. 1 and Fig. 12, focusing
only on the (more critical) receiver side. For the sake of
readability, in generating these figures we have employed
16QAMmodulation instead of 64QAM. At a difference with
the results in Fig. 1, our proposed solution is able to keep
the sampling rate (Fs,max = 2MHz) and correctly decode the
information.

In conclusion, the wireless communication improve-
ment in transmission rate is measured from the achievable
sampling rate Fs,max, which is 1MHz for the existing code
(Tab. 1), and 2MHz for the proposed implementation; this
corresponds to a two-fold increase in (maximum) transmis-
sion rate, from 2.7 to 5.4Mbps in half-duplex for the 64QAM
of the 802.11 standard. There is a likely increase in the
transmitter performance, but this is less relevant due to the
limitation coming from the receiver.

Fig. 12. Receiver performance at Fs,max = 2MHz, existing
code. The figure shows a snapshot of GNU Radio flow-
graph output for the proposed IEEE 802.11 receiver,
configured as described in Tab. 4. (see Sec. 2.2). Top-
left: Linux - htop program output; bottom-left: GNU
Radio terminal output; right: GNU Radio Constellation
GUI. (16QAM has been used instead of 64QAM only
for ease of visualization.)

Radio Platform State Typical Power Consumption [W]
Idle 5

Transmitter 11
Receiver 16

Tab. 5. Consumption Profile Odroid-XU4 (Linux) and USRP
B205 mini transmitting and receiving at the maximum
achieved throughput of 6Mbps.

Consumption of both transmitter and receiver have
been evaluated by measuring the current absorbed from the
Odroid-XU4 through a digital ammeter. The estimation in-
cludes the FE which is self-powered through the USB and
the operating system that together with the FE establish the
power overhead of the idle state. The measurements are re-
ported in Tab. 5. Usually the idle state is used for less time
(i.e. when boot and before shutdown), since in a real ap-
plication scenario, e.g. Wireless Sensor Networks (WSN),
great energy efficiency is obtained by turning on the platform
when data need to be transmitted and turning off as soon as
the communication terminates.

5. Conclusions and Future Perspec-
tives
This work described an extension of GNU Radio on

ARMwith a lighter implementation of the IEEE 802.11 a/g/p
transmitter and receiver to allow operation on low-power and
low-cost boards. To the best of our knowledge, there is
no other instrumentation/implementation that provides a full
SDR IEEE 802.11 a/g/p with these performance on low-cost
ARM-based GPPs, without employing external hardware.
Among the extensions of this work, a valuable option to fur-
ther extend the bandwidth is to bring some computational
complexity in the small FPGA of the FE as, for example,
the receiver synchronizer or the Viterbi task. Another valu-
able option could be analysing the code at a very low level
(i.e. assembly-ARM to further reduce the required number
of operations).
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Appendix
OFDM Allocator (Proposed implementation)

0 /**General work - Packet based**/

1 // Copy Sync word

2 for (unsigned i = 0; i < d_sync_words.size(); i++)

3 {

4 memcpy((void *) out, (void *) &d_sync_words[i][0],

sizeof(gr_complex) * d_fft_len);

5 out += d_fft_len;

6 }

7 // Allocates information/pilot symbols and guard intervals

8 long n_ofdm_symbols = 0;

9 int symbols_to_allocate = d_occupied_carriers[0].size();

10 int symbols_allocated = 0;

11 for (int i = 0; i < ninput_items[0]; i++)

12 {

13 out[(n_ofdm_symbols) * d_fft_len +

d_occupied_carriers[0][symbols_allocated]] = in[i];

14 symbols_allocated++;

15 if(symbols_allocated==48)

16 {

17 unsigned int symoffset = n_ofdm_symbols * d_fft_len;

18 int piloffset =

n_ofdm_symbols % d_pilot_symbols.size();

19 out[symoffset + 0] = 0;

20 out[symoffset + 1] = 0;

21 out[symoffset + 2] = 0;

22 out[symoffset + 3] = 0;

23 out[symoffset + 4] = 0;

24 out[symoffset + 5] = 0;

25 out[symoffset + 11] =

d_pilot_symbols[piloffset][0];

26 out[symoffset + 25] =

d_pilot_symbols[piloffset][1];

27 out[symoffset + 39] =

d_pilot_symbols[piloffset][2];

28 out[symoffset + 53] =

d_pilot_symbols[piloffset][3];

29 out[symoffset + 32] = 0;

30 out[symoffset + 59] = 0;

31 out[symoffset + 60] = 0;

32 out[symoffset + 61] = 0;

33 out[symoffset + 62] = 0;

34 out[symoffset + 63] = 0;

35 symbols_allocated = 0;

36 n_ofdm_symbols++;

37 }

38 }

VITERBI Decoder (Proposed implementation)

0 /** Trellis transition - main computation **/

1 // The code operates on 4 symbols at a time

2 void viterbi_butterfly2_neon(unsigned char *symbols,

uint8x16_t *mm0, uint8x16_t *mm1,

uint8x16_t *pp0, uint8x16_t *pp1)

3 {

4 // Definition of neon register for the computation

5 int i;

6 uint8x16_t *metric0, *metric1, *path0, *path1,

decision0 , decision1 , survivor0 , survivor1 ,

m0, m1, m2, m3, metsv, metsvm, sym0v, sym1v, tmp0, tmp1;

7 uint16x8_t shift0, shift1;

8 // They are the paths and metric related to the

9 // previous and actual state

10 metric0 = mm0;

11 metric1 = mm1;

12 path0 = pp0;

13 path1 = pp1;

14 // Copy first two symbols on neon registers

15 sym0v = vdupq_n_u8(symbols[0]);

16 sym1v = vdupq_n_u8(symbols[1]);

17 // compute all possible brunch metric of

18 // trellis for the first two symbols, 0 and 1

19 for (i = 0; i < 2; i++)

20 {

21 if (symbols[0] == 2)

22 {

23 metsvm = veorq_u8(d_branchtab27_neon[1].v[i],sym1v);

24 metsv = vsubq_u8(vdupq_n_u8(1),metsvm);

25 }

26 else if (symbols[1] == 2)

27 {

28 metsvm = veorq_u8(d_branchtab27_neon[0].v[i],sym0v);

29 metsv = vsubq_u8(vdupq_n_u8(1),metsvm);

30 }

31 else

32 {

33 metsvm = vaddq_u8(

veorq_u8(d_branchtab27_neon[0].v[i],sym0v),

veorq_u8(d_branchtab27_neon[1].v[i],sym1v));

34 metsv = vsubq_u8(vdupq_n_u8(2),metsvm);

35 }

36

37 // Each symbol generates 2 output metrics

38 m0 = vaddq_u8(metric0[i], metsv);

39 m1 = vaddq_u8(metric0[i+2], metsvm);

40 m2 = vaddq_u8(metric0[i], metsvm);

41 m3 = vaddq_u8(metric0[i+2], metsv);

42 // Decision metric1 - metric0 > 0 and so on...

43 decision0 = vcgtq_s8(

vsubq_s8(vreinterpretq_s8_u8(m0),

vreinterpretq_s8_u8(m1)), vdupq_n_s8(0));

44 decision1 = vcgtq_s8(

vsubq_s8(vreinterpretq_s8_u8(m2),

vreinterpretq_s8_u8(m3)), vdupq_n_s8(0));

45 // Best metric selection m1 or m0...

46 survivor0 = vorrq_u8(

vandq_u8(decision0 ,m0),
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vandq_u8( vmvnq_u8(decision0),m1));

47 survivor1 = vorrq_u8(

vandq_u8(decision1 ,m2),

vandq_u8( vmvnq_u8(decision1),m3));

48 // Update the metric and the path

49 // based on the new survivors

50 uint8x16x2_t interleave =

vzipq_u8(survivor0 ,survivor1);

51 metric1[2*i]= interleave.val[0];

52 metric1[2*i+1]= interleave.val[1];

53 shift0 = vshlq_n_u16(

vreinterpretq_u16_u8(path0[i]), 1);

54 shift1 = vshlq_n_u16(

vreinterpretq_u16_u8(path0[2+i]), 1);

55 uint8x16_t temp_shift0 =

vreinterpretq_u8_u16(shift0);

56 uint8x16_t temp_shift1 =

vaddq_u8(vreinterpretq_u8_u16(shift1), vdupq_n_u8(1));

57 tmp0 = vorrq_u8( vandq_u8(decision0 ,temp_shift0),

vandq_u8(vmvnq_u8(decision0),temp_shift1));

58 tmp1 = vorrq_u8( vandq_u8(decision1 ,temp_shift0),

vandq_u8(vmvnq_u8(decision1),temp_shift1));

59 uint8x16x2_t interleave2 = vzipq_u8(tmp0, tmp1);

60 path1[2*i]= interleave2.val[0];

61 path1[2*i+1]= interleave2.val[1];

62 }

63 // Swap current and next states

64 metric0 = mm1;

65 metric1 = mm0;

66 path1 = pp0;

67 path0 = pp1;

68 // copy second two symbols on neon registers

69 sym0v = vdupq_n_u8(symbols[2]);

70 sym1v = vdupq_n_u8(symbols[3]);

71 // compute all possible brunch metric of

72 // trellis for the first two symbols, 2 and 3

73 for (i = 0; i < 2; i++)

74 {

75 if (symbols[2] == 2)

76 {

77 metsvm = veorq_u8(

d_branchtab27_neon[1].v[i], sym1v);

78 metsv = vsubq_u8(vdupq_n_u8(1),metsvm);

79 }

80 else if (symbols[3] == 2)

81 {

82 metsvm = veorq_u8(

d_branchtab27_neon[0].v[i], sym0v);

83 metsv = vsubq_u8(vdupq_n_u8(1),metsvm);

84 }

85 else

86 {

87 metsvm = vaddq_u8(

veorq_u8(d_branchtab27_neon[0].v[i],sym0v),

veorq_u8(d_branchtab27_neon[1].v[i],sym1v));

88 metsv = vsubq_u8(vdupq_n_u8(2),metsvm);

89 }

90 // Each symbol generates 2 output metrics

91 m0 = vaddq_u8(metric0[i], metsv);

92 m1 = vaddq_u8(metric0[i+2], metsvm);

93 m2 = vaddq_u8(metric0[i], metsvm);

94 m3 = vaddq_u8(metric0[i+2], metsv);

95 // Decision metric1 - metric0 > 0 and so on...

96 decision0 = vcgtq_s8( vsubq_s8(vreinterpretq_s8_u8(m0),

vreinterpretq_s8_u8(m1)), vdupq_n_s8(0));

97 decision1 = vcgtq_s8( vsubq_s8(vreinterpretq_s8_u8(m2),

vreinterpretq_s8_u8(m3)), vdupq_n_s8(0));

98 // Best metric selection m1 or m0...

99 survivor0 = vorrq_u8( vandq_u8(decision0 ,m0),

vandq_u8( vmvnq_u8(decision0),m1));

100 survivor1 = vorrq_u8( vandq_u8(decision1 ,m2),

vandq_u8( vmvnq_u8(decision1),m3));

101 // Update the metric and the path

102 // based on the new survivors

103 uint8x16x2_t interleave =

vzipq_u8(survivor0 , survivor1);

104 metric1[2*i]=interleave.val[0];

105 metric1[2*i+1]=interleave.val[1];

106 shift0 = vshlq_n_u16(

vreinterpretq_u16_u8(path0[i]), 1);

107 shift1 = vshlq_n_u16(

vreinterpretq_u16_u8(path0[2+i]), 1);

108 uint8x16_t temp_shift0 = vreinterpretq_u8_u16(shift0);

109 uint8x16_t temp_shift1 = vaddq_u8(

vreinterpretq_u8_u16(shift1), vdupq_n_u8(1));

110 tmp0 = vorrq_u8( vandq_u8(decision0 ,temp_shift0),

vandq_u8(vmvnq_u8(decision0),temp_shift1));

111 tmp1 = vorrq_u8( vandq_u8(decision1 ,temp_shift0),

vandq_u8(vmvnq_u8(decision1),temp_shift1));

112 uint8x16x2_t interleave2 = vzipq_u8(tmp0, tmp1);

113 path1[2*i]=interleave2.val[0];

114 path1[2*i+1]=interleave2.val[1];

115 }

116 return;

117 }


