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Abstract. There are several techniques for detecting and 
classifying low probability of intercept radar signals such 
as Wigner distribution, Choi-Williams distribution and 
time-frequency rate distribution, but these distributions 
require high SNR. To overcome this problem, we propose 
a new technique for detecting and classifying linear fre-
quency modulation signal and polyphase coded signals 
using optimum fractional Fourier transform at low SNR. 
The theoretical analysis and simulation experiments 
demonstrate the validity and efficiency of the proposed 
method. 
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1. Introduction 
Electronic support measures (ESM) detect and clas-

sify low probability of intercept (LPI) radar signals, esti-
mate their parameters and provide them to the jammer [1]. 
However, LPI radar signals have low power and large 
bandwidth that represent a great challenge to ESM [1].  

ESM detection performance is inversely proportional 
to R2 rather than to R4 in the radar target detection equation. 
Therefore, the ESM can detect a radiating radar at distances 
far beyond those of the radar target detection capability. 
However, the radar’s advantage is the use of matched filter 
that cannot be used by ESM receiver because it does not 
know the radar signal [2]. 

Several techniques depending on time-frequency dis-
tribution (TFD) were developed to identify and classify LPI 
radar signals. Examples of such technique are Wigner dis-
tribution (WD) [1] and Choi-Williams distribution (CWD) 
[3–5]. By using time-frequency techniques, one can obtain 
different time-frequency images for different radar signals. 
However, TFD has some shortcomings, for example, Wig-
ner distribution images contain cross terms that make the 
measurement of the LPI signal parameters difficult. In 
order to attenuate these cross terms, smoothing operation 
(i.e. low-pass filtering) is needed, but this operation re-
duces time-frequency resolution [1]. In addition, WD re-

quires huge calculations that makes it unsuitable for real 
time ESM systems. In CWD, the extraction of the modula-
tion parameters is easier than it is in WD, because there is 
no strong cross terms in the time-frequency plane. The 
classification system is based on drawing a CWD image 
and extracting features from it. Time-frequency images are 
usually analyzed offline by a trained operator or by Bayes-
ian neural networks to classify signals and extract their 
parameters accurately at high SNR (Signal to Noise Ratio) 
[5]. However, at lower SNR values, Choi-Williams kernel 
causes undesired horizontal and vertical lines in the CWD 
image [5]. In general, TFD performs well only at high 
SNR, but at low SNR, it is does not work [1]. Recently, 
a new method was introduced for detecting polyphase 
coded signals using time-frequency rate (TFR) distribution. 
However, it requires high SNR and there is no classifier for 
polyphase coded signals in this method [6]. 

All the above techniques of detection and classifica-
tion of LFM (linear frequency modulation) signal and 
polyphase coded signals require a high SNR relatively. To 
overcome this problem, we propose to use fractional 
Fourier transform (FrFT). Compared with TFD, the FrFT is 
a linear operator and will not be influenced by cross-terms. 
This suggests that FrFT offers an advantage over using the 
TFD in practice. In addition, by using FrFT, the energy 
distribution of the LFM signal is more highly concentrated 
in the fractional domain [7]. Also, polyphase coded signals 
can be compressed by FrFT because these signals were 
developed by approximating LFM signal [2].  

The paper is organized as follows. In Sec. 2, a short 
overview of used radar signals is introduced. In Sec. 3, 
pulse compression using FrFT is shown. In Sec. 4, the 
proposed detection and classification technique is pre-
sented. Finally, in Sec. 5, the performance of the proposed 
technique is demonstrated as a function of the SNR, and 
the obtained results are compared with the results of other 
techniques. 

2. Overview of LFM Signal and 
Polyphase Coded Signals 
LFM signal is commonly used in radar systems due to 

its high Doppler tolerance; the output of the matched filter 
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remains approximately constant for Doppler shift up to 
B/10 [2], where B is the sweep bandwidth of LFM signal. 
The complex envelope of a LFM signal is given by: 

 2( ) rect( )exp( j )
t

x t t
T

   (1) 

where rect is rectangular function, T is the pulse duration, 
and μ is the frequency modulation slope: 

 .μ B T   (2) 

In phase-coded signal, the long pulse of duration T is 
divided into N smaller sub-pulses called chips, each of 
width tc: 

 
ct T N .  (3) 

Each sub-pulse can be binary or polyphase modulated [2]. 
A polyphase-coded signal with unit energy is given by: 
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Frank code and P1- through P4-code signals are 
examples of polyphase coded signals. Polyphase coded 
signals are commonly used in search and track radars due 
to their high Doppler tolerance and their ability to achieve 
low level time-sidelobes at the output of the matched filter. 
The phase element of the each polyphase code is given in 
Tab. 1 [2].  

3. Pulse Compression using FrFT 
The FrFT is a general form of the Fourier transform 

(FT) that transforms a function into an intermediate domain 
between time and frequency by rotating the time-frequency 
plane [8–9]. Compared with FT, the FrFT of optimal angle 
αopt applied to a LFM signal, maximally concentrates the 
energy distribution of the signal in the fractional domain 
This illustrates the use of the FrFT for pulse compression 
of LFM signals [10]. 
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Tab. 1. The phase codes of polyphase signals. 

The continuous FrFT of a signal x(t) is given by [11]: 
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where Kα(t,u) is the transform kernel and when α ≠ n it 
equals [11]:  

2 2

( , ) 1 jcot exp( j2 ( )cot j2 csc )
2

t u
K t u ut     

     

  (6) 

where cot α = 1/(tan α), and csc α = 1/(sin α). Hence: 
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If Fα denotes the operator corresponding to the FrFT 
of angle α, then the following properties hold [11]: 

 F0 = I: zero rotation gives the same input. 

 F/2 = F: rotation by /2  gives Fourier transform. 

 Fα(Fβ) = Fα + β: successive rotations are additive. This 
means: Fα(F–α) = F0 = I.  

Applying the FrFT to the LFM signal given by (1) 
gives:  
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where 21 jcot exp( j cot )A u     . For arbitrary values 

of α, the integral in this equation involves an error function 
erf, which is a non-elementary function. But when:   

 0cot  .  (9) 

A condition considered in [12] as being optimal and de-
noted by αopt, then equation (8) reduces to the simple sinc 
function: 
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Usually, μ >> 1, so equation (9) gives csc αopt = μ, and 
consequently, 

opt| | | 1 jcot |A     . Hence [13]:  
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This is the same equation as that of the matched filter for 
LFM signal when BT >> 1. This means that the FrFT 
behaves like a matched filter for LFM signal [13]. 

Applying the FrFT to the polyphase coded signal 
given by (4) gives:  
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This solution involves an imaginary error function erfi (see 
Proof-1 at appendix) which can’t be simplified analytically 
easily. Therefore, it can be evaluated numerically.  

It is well known that the polyphase coded signal is 
a quantized form of the LFM signal [2]. Therefore, the 
optimal value of  is expected to be the same as that of the 
LFM signal, i. e. equation (9). The numerical search for αopt 
confirms this hunch. 

In [14] it was shown that FrFT may be obtained as 
a special case of the ambiguity function (AF) coordinate 
transformations. The AF of LFM signal has its energy 
concentrated along a diagonal ridge, but the AF of poly-
phase coded signal has two additional ridges on each side 
of the main ridge. Therefore, the main ridge energy of the 
P1, P2, and P4 codes is reduced by about 25% relative to 
the LFM signal, and the main ridge energy of the Frank and 
P3 codes are over 50% smaller than that of LFM signal 
[15], [16]. Consequently, the FRFT peak of LFM signal is 
greater than that of each of (P1, P2, P4) codes whose FRFT 
peak is greater than that of each of (Frank, P3) codes.  

It was shown in [1] that LFM signal appears as a di-
agonal line in WD, whereas polyphase coded signal ap-
pears as several parallel lines separated by T in WD. In 
fact, the FRFT induces a simple rotation of the WD [11]. 
Consequently, the FRFT peaks of polyphase coded signal 
will be separated by Tu = T cos αopt. This equation is de-
rived from the delay property of FrFT and confirmed by the 
numerical simulation. The pulse width of the detected sig-
nal is calculated as follows: 

 
opt/ cos .uT T    (13) 

Figure 1 shows the Matlab simulation results of the 
optimum FrFT of LFM signal and polyphase coded signals 
when B = 5 MHz and T = 100 µs. The following results can 
be shown: 

 LFM signal has one global FRFT peak. 

 (P1, P2, P4) signals have one global FRFT peak and 
several local peaks. 

 (P3, Frank) signals have two global FRFT peaks sepa-
rated by Tu and several local peaks. 

 The global FRFT peak of LFM signal is greater than 
that of each of (P1, P2, and P4) codes whose global 
FRFT peak is greater than that of each of (Frank and 
P3) codes. Consequently, the detection performance 
of LFM signal is better than that of each of (P1, P2, 
P4) codes whose detection performance is better than 
that of each of (P3, Frank) codes. 

It has been shown that the FrFT can compress LFM 
and polyphase coded signals. The SNR at the output of 
FrFT equals SNRo = SNRi + G, where SNRi is the signal to 
noise ratio at the input of the FrFT, and G =BT >> 1 is the 
pulse compression gain, therefore FrFT can be used to 
detect the input signal at low SNR. 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Optimum FrFT of: (a) LFM, (b) (P1, P2, P4),  
(c) (Frank, P3). 

In the discrete domain the optimum transform angle 
αopt of the FrFT is given by [17], [7]:  
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where L is the number of samples in the time received 
window, and Fs is the sampling frequency. 

In practice, the optimal transform angle is not known 
in advance. Therefore, peak search is necessary to find the 
optimal transform angle with which the energy distribution 
of LFM signal concentrates well. However, this search is 
time consuming so the parameter searching problem can be 
solved by using the new strategy proposed in [18], which 
combines the principle of golden and the quasi-Newton 
iterative method, when it searches the signal FRFT peak, 
and then it takes advantage of the quasi-Newton iterative 
method to reduce the step size selection on the optimal 
transform order estimation accuracy, and achieves the same 
accuracy while reducing the computational search.  
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4. The Proposed Technique for 
Detection and Classification 
In the case of intercept radar, the aim is to detect the 

parameters of the transmitted pulse such as duration and 
bandwidth. The block diagram of the proposed detection 
and classification technique is shown in Fig .2, where r(t) is 
the baseband received signal that is composed of the sum 
of the radar signal x(t), and a white Gaussian noise n(t). 

The process of the proposed technique is shown in 
Fig. 2, and it goes as follows: 

1. Start computing FrFT and use a search method in 
order to tune the transform order αopt that gives the 
maximum magnitude response of FrFT, the received 
radar signal is compressed using FrFT at αopt as 
shown in Fig. 3. 

2. The local peaks could be buried in noise at low SNR 
as shown in Fig. 3, therefore only the global FRFT 
peak could be detected by CA-CFAR (cell average 
constant false alarm rate). 

3. The sample of each global FRFT peak and its adjacent 
samples (main lobe) are kept, and all other samples in 
the received window are put to zero to get the filtered 
signal in the optimal FrFT domain as shown in Fig. 4. 

4. Measure Tu when there are two global FRFT peaks as 
shown in Fig. 4(c). In this case, the filtered signal is 

Frank code or P3 code. Otherwise, the filtered signal 
is LFM or (P1, P2, P4) code, then the bandwidth of 
this signal is estimated by returning it to the frequency 
domain using FrFT at the complementary value of 
αopt, i.e. /2 – αopt as shown in Fig. 5. It is well known 
that the shape of LFM spectrum is rectangular, there-
fore its bandwidth is determined at –3 dB level, 
whereas the shape of P1, P2, P4 codes spectrum fol-
lows a sinc function, therefore its bandwidth is deter-
mined at –4 dB level. However, the detected signal is 
unknown, therefore both –3 dB bandwidth and –4 dB 
bandwidth of the filtered signal are determined. 

5. The frequency modulation slope is calculated by 
using (14). 

6. Calculate the parameters (B, T, tc, N) of the detected 
signal using (2), (3), and (13). 

7. Now, in order to classify the detected radar signal, 
some reference signals will be generated depending 
on the estimated parameters (B, T, tc, N) of the previ-
ous step. If the received signal is classified in the first 
group (P3, Frank) because it has two global FRFT 
peaks, only P3 and Frank reference signals are gener-
ated, otherwise only LFM and (P1, P2, P4) reference 
signals are generated at –3 dB bandwidth and –4 dB 
bandwidth, respectively. Finally, the input signal is 
classified to the reference signal that has the highest 
cross-correlation with it. 

 

Fig. 2. The block diagram of the proposed detection and classification technique. 

 
(a) 

 
(b) 
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(c) 

Fig. 3. Optimum FrFT in the presence of noise:  
(a) LFM, (b) (P1, P2, P4), (c) (Frank, P3). 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Filtered signal in fractional domain: (a) LFM,  
(b) (P1, P2, P4), (c) (Frank, P3). 

 
Fig. 5. The spectrum of the filtered signal. 

The computation complexity of the proposed tech-
nique depends on the implementation of FrFT. The fast 
FrFT is approximated using algorithms based on the fast 
Fourier transform (FFT), and it was shown that the fast 
FrFT has a computational complexity O(NlogN) [8], [9], 
which is suitable for practical application [17].  

5. Simulation and Results 
In order to evaluate the performance of the proposed 

technique, different LFM signals and polyphase coded 
signals are generated in the presence of additive noise and 
under different SNR values of the received signal r(t). Then 
the Monte-Carlo simulation of 1000 trials for each SNR 
used to estimate the probability of detection Pd of each 
signal. Figure 6 shows the simulation results of Pd, as 
a function of SNR, for LFM signal and polyphase coded 
signals when B = 5 MHz, T = 100 µs. 

The following results are shown in Fig. 6: 

1. The FrFT is inferior to the matched filter by 3 dB in 
the case of LFM signal [19].  

2. The CA-CFAR causes a loss of about 0.4 dB in SNR 
when the number of the reference cells equals 50 and 
the probability of false alarm Pfa = 10–4 [20]. 

3. The proposed technique achieves high probability 
(about 90%) of successful detection under low SNR. 
In comparison with other works, the proposed tech-
nique works well at lower SNR than those based on 
time-frequency distributions and on time-frequency 
rate. 

4. The detection performance of LFM signal is better 
than that of each of (P1, P2, and P4) codes whose de-
tection performance is better than that of each of 
(Frank, P3) codes, because a higher FrFT peak leads 
to a better detection performance. Consequently, P3 
coded signal could be preferable to be used in LPI ra-
dars, first because it has lower detection performance 
that makes it difficult to be intercepted by ESM, and 
second because it has high Doppler tolerance [2]. 
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Fig. 6. Detection performance of LFM signal and polyphase 

codes when B = 5 MHz, T = 100 µs. 

The cross-correlation is used for signals classification, 
which is only optimal in the case of the generated reference 
signal maintaining the original properties of the detected 
signal. In this case, the reference signals will be generated 
accurately, and the input signal is classified to the reference 
signal that has the highest cross-correlation with it. Fig-
ure 7 and 8 show the classification results of the detected 
signals (LFM, P1, P2, P4) and (P3, Frank) respectively.  

Figure 7 shows that the classification performance of 
LFM signal is better than that of P1, P2, and P4 codes be-
cause these codes are a quantized form of the LFM signal 
[2], therefore a classification confusion between the LFM 
signal and (P1, P2, P4) codes occurs especially at low 
SNR. But as the SNR increases this confusion decreases. 

Figure 8 shows that the classification performance of 
(P3, Frank) codes is similar to their detection performance 
shown in Fig. 6, because of the search for the two global 
FRFT peaks, as mentioned above in the proposed tech-
nique, is considered as a detection and as an initial classifi-
cation simultaneously. Then, the input signal (P3, Frank) is 
classified accurately to the reference signal that has the 
highest cross-correlation with it. The proposed technique 
achieves high probability (about 90%) of successful classi-
fication under low SNR. In comparison with other works, 
the proposed technique works well at lower SNR than 
those based on time-frequency distributions and on time-
frequency rate. 

 
Fig. 7. Classification performance of LFM signal and  

(P1, P2, P4) codes when B = 5 MHz, T = 100 µs. 

 
Fig. 8. Classification performance of (P3, Frank) codes when 

B = 5 MHz, T = 100 µs. 

It has been shown that the proposed technique has two 
advantages over other methods, first because it works 
under low SNR where other methods do not work, and 
second because it classifies signals without using compli-
cated neural networks like TFD methods.  

6. Conclusion 
In this paper, a new technique for detecting and clas-

sifying LFM signal and polyphase coded signals is pro-
posed. This technique is based on the optimum fractional 
Fourier transform, and it requires few calculations so the 
ESM can estimate radar signal's parametric data in near 
real time. The performance of the proposed technique is 
demonstrated as a function of SNR using Monte-Carlo 
simulation. The simulation results show that the proposed 
technique has the advantages over other techniques because 
it has accurate detection and classification at low SNR. 

Acknowledgement 
The authors would like to thank Hatem Najdi for his 

helpful discussions and for reviewing the final version of 
this paper.  

References 
[1] PACE, P. E. Detecting and Classifying Low Probability of 

Intercept Radar. Artech House, 2009. ISBN: 978-1596932340 

[2] SKOLIK, M. Radar Handbook. 3rd ed. McGraw-Hill, 2008. 
ISBN: 978-0071485470 

[3] LUNDEN, J., TERHO, L., KOIVUNEN, V. Classifying pulse 
compression radar waveforms using time-frequency distributions. 
In Proc. 39th Annual Conf. Information Sciences and Systems 
(CISS 2005). Baltimore (USA), 2005. 

[4] LUNDEN, J., TERHO, L., KOIVUNEN, V. Waveform 
recognition in pulse compression radar systems. In 2005 IEEE 
Workshop on Machine Learning for Signal Processing. Mystic 
(CT, USA), 2005, p. 271–276. DOI: 10.1109/MLSP.2005.1532912 

[5] LUNDEN, J., KOIVUNEN, V. Automatic radar waveform 
recognition. IEEE Journal of Selected Topics in Signal Processing, 
2007, vol. 1, no. 1, p. 124–136. DOI: 10.1109/JSTSP.2007.897055 



1124 S. BAHER SAFA HANBALI, R. KASTANTIN, CLASSIFICATION OF LFM AND POLYPHASE-CODED RADAR SIGNALS 

 

[6] JIANG, L., LI, L., ZHAO, G. Q. Polyphase coded low probability 
of intercept signals detection and estimation using time-frequency 
rate distribution. IET Signal Processing, 2016, vol. 10, no. 1, 
p. 46–54. DOI: 10.1049/iet-spr.2014.0020 

[7] ELGAMEL, S. A., CLEMENTE, C., SORAGHAN, J. J. Radar 
matched filtering using the fractional Fourier transform. In Sensor 
Signal Processing for Defence (SSPD 2010). London (UK), 2010, 
5 p. DOI: 10.1049/ic.2010.0242 

[8] OZAKTAS, H. M., ARIKAN, O., KUTAY, M. A., BOZDAGT, G. 
Digital computation of the fractional Fourier transform. IEEE 
Transactions on Signal Processing, 1996, vol. 44, no. 9, p. 2141 to 
2150. DOI: 10.1109/78.536672 

[9] CANDAN, C., KUTAY, M. A., OZAKTAS, H. M. The discrete 
fractional Fourier transform. IEEE Transactions on Signal 
Processing, 2000, vol. 48, no. 5, p. 1329–1337. DOI: 
10.1109/78.839980 

[10] SUN, H. B., LIU, G. S., GU, H., et al. Application of the fractional 
Fourier transform to moving target detection in airborne SAR. 
IEEE Transactions on Aerospace and Electronic Systems, 2002, 
vol. 38, no. 4, p. 1416–1424. DOI: 10.1109/TAES.2002.1145767 

[11] ALMEIDA, L. B. The fractional Fourier transform and time–
frequency representations. IEEE Transactions on Signal 
Processing, 1994, vol. 42, no. 11, p. 3084–3091. DOI: 
10.1109/78.330368 

[12] CAPUS, C., BROWN, K. Short-time fractional Fourier methods 
for the time-frequency representation of chirp signals. Journal of 
Acoustical Society of America, 2003, vol. 113, no. 6, p. 3253 to 
3263. DOI: 10.1121/1.1570434 

[13] BAHER SAFA HANBALI, S., KASTANTIN, R. Fractional 
Fourier transform-based chirp radars for countering self-protection 
frequency-shifting jammers. International Journal of Microwave 
and Wireless Technologies. [Online] Cited April 3, 2017, 7 p. 
DOI: 10.1017/S1759078717000289 

[14] DJUROVIĆ, I., STANKOVIĆ, L. Relationship between the 
ambiguity function coordinate transformations and the fractional 
Fourier transform. Annals of Telecommunications, 1998, vol. 53, 
no. 7, p. 316–319.  

[15] JANKIRAMAN, M. Design of Multi-Frequency CW Radars. 
SciTech Publishing Inc., 2007. ISBN: 978-1891121562 

[16] JENNISON, B. K. Detection of polyphase pulse compression 
waveforms using the radon-ambiguity transform. IEEE 
Transactions on Aerospace and Electronic Systems, 2003, vol. 39, 
no. 1, p. 335–343. DOI: 10.1109/TAES.2003.1188915 

[17] COWELL, D. M., FREEAR, S. Separation of overlapping linear 
frequency modulated (LFM) signals using the fractional Fourier 
transform. IEEE Transactions on Ultrasonics,  Ferroelectrics, and 
Frequency Control, 2010, vol. 57, no. 10, p. 2324–2333. DOI:  
10.1109/TUFFC.2010.1693 

[18] XIN, L., JIANG, Y. Y. Golden-section peak search in fractional 
Fourier domain. In IEEE International Conference on Electric 
Information and Control Engineering (ICEICE). Wuhan (China), 
2011, p. 4230–4233. DOI: 10.1109/ICEICE.2011.5778100 

[19] LIU, J. C., LIU, Z., WANG, X. S., et al. SNR analysis of LFM 
signal with Gaussian white noise in fractional Fourier transform 
domain. Journal of Electronics and Information Technology, 2007, 
vol. 29, no. 10, p. 2337–2340. (in Chinese) 
DOI: 10.3724/SP.J.1146.2006.00314 

[20] RICHARDS, M. Fundamentals of Radar Signal Processing. 2nd 
ed., McGraw-Hill, 2014. ISBN: 978-0-07-179833-4 

About the Authors... 
Samer BAHER SAFA HANBALI received the B.Sc. 
degree in Electronic Engineering from Damascus Univer-

sity, Syria, in 2000, the M.Sc. degree from FH-Joanneum, 
Austria, in 2011, and the Ph.D. degree from the Higher 
Institute of Applied Sciences and Technology, Damascus, 
Syria, in July 2017. He works in the same institute, and his 
current research is focused on radar signal processing. 

Radwan KASTANTIN received the B.Sc. degree in Elec-
tronic Engineering from Damascus University, Syria, in 
1986, and the Ph.D. degree from ICP-INPG, France, in 
1996. He is a professor of communication and signal pro-
cessing at the Dept. of Communication Engineering in the 
Higher Institute of Applied Sciences and Technology, 
Damascus, Syria. 

Appendix: Proof-1 
The FrFT of polyphase coded signals equals: 
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Then: 
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Let’s define the integral I 
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where:  cotp ,  csc2q , equation (A.3) can be 

rewritten: 
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 (A.4) 

Let’s define z: 
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2
 . (A.5) 

Hence:  d
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 . (A.6) 

By substitution (A.5) and (A.6) in (A.4) then: 
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where: 
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By substitution the following expression in (A.4): 
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where erfi is the imaginary error function. Hence: 

2 2

c

c

exp( j )[erfi j
42 j 2

erfi j ( 1) ].
2

q u qu
I pit

pp p

qu
p i t

p

         
   

      
   

 (A.9) 

By substitution (A.9) in (A.2): 
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 (A.10) 

Since analytic expression cannot be easily obtained, 
this equation was evaluated by numerical computation as 
mentioned before. 

 


