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Abstract. Direction of arrival (DOA) estimation is 
an important problem in array signal processing. An effec-
tive multiple signal classification (MUSIC) method based 
on the short-time Fourier transform (STFT) and forward/ 
backward spatial smoothing (FBSS) techniques for the 
DOA estimation problem of multiple time-frequency (t-f) 
joint LFM sources is addressed. Previous work in the area 
e. g. STFT-MUSIC algorithm cannot resolve the t-f com-
pletely or largely joint sources because they can only select 
the single-source t-f points. The proposed method con-
structs the spatial t-f distributions (STFDs) by selecting the 
multiple-source t-f points and uses the FBSS techniques to 
solve the problem of rank loss. In this way, the STFT-
FBSS-MUSIC algorithm can resolve the t-f largely joint or 
completely joint LFM sources. In addition, the proposed 
algorithm also owns pretty low computational complexity 
when resolving multiple LFM sources because it can re-
duce the times of the feature decomposition and spectrum 
search. The performance of the proposed method is com-
pared with that of the existing t-f based MUSIC algorithms 
through computer simulations and the results show its 
good performance. 
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1. Introduction 
In recent years, the direction of arrival (DOA) estima-

tion has received tremendous attention in different areas, 
such as radar, sonar and communication [1–5]. Many algo-
rithms, such as multiple signal classification (MUSIC) [6], 
estimation of signal parameters via rotation invariance 
techniques (ESPRIT) [7], [8] and their variants based on 
the Eigen-structure techniques, have been developed over 
the years and provided satisfactory performance. Neverthe-
less, the traditional MUSIC-like and ESPRIT-like algo-
rithms have limitations with regard to resolving coherent 

sources and wideband sources. Linear frequency-modu-
lated (LFM), or chirp, signals are frequently encountered in 
applications such as radar, sonar, bioengineering, and so 
forth. So the DOA estimation of LFM signals also has 
become a hot issue in array signal processing [9–17]. As 
we know, time-frequency (t-f) analysis tools are effective 
tools to deal with LFM signals because of the concentra-
tion property of the signals in the t-f domain, so a series of 
DOA estimation algorithms based on spatial time-fre-
quency distributions (STFDs) have been proposed [18–24]. 
These algorithms use the STFD matrices instead of the 
covariance matrices in the traditional subspace algorithms 
[6–8]. Compared to the traditional algorithms, the t-f based 
algorithms can provide better DOA estimation performance 
since the t-f analysis tools spread the noise power while 
localizing the source energy in the t-f domain. Moreover, 
the selection of t-f points belonging to a specific set of 
sources allows these algorithms estimate more sources with 
a small number of sensors [20], [25], [26]. By selecting 
auto-source t-f points, these algorithms can also solve the 
DOAs of closely-spaced sources [25–27]. 

The existing t-f based algorithms mainly use two 
kinds of assumptions. 1) The sources are disjoint in the t-f 
plane, which means the sources are completely independ-
ent of each other in the t-f domain. So, the t-f disjoint 
sources do not have the same t-f points in the t-f plane [25], 
[27–29]. 2) The sources are tiny joint in the t-f domain, 
which means multiple sources just have very few of the 
same t-f points in the t-f domain [26], [30], [31]. Under this 
scenario, auto-terms t-f points [18], [20], [25], [27], [30] or 
cross-terms t-f points [19] have been considered to con-
struct STFD matrices. Due to the computational complex-
ity and the cross-terms of quadratic t-f analysis tools, the 
linear t-f analysis tools, e.g., the fractional Fourier trans-
form (FRFT) [10], [13], [15], [16], [32] and the short-time 
Fourier transform (STFT) [33–35], also have been applied 
to the DOA estimation field. These algorithms also use the 
above two assumptions, which means they all cannot re-
solve the t-f completely or largely joint sources (the t-f 
points of the sources are all the same or the sources have 
a lot of the same t-f points), which limits their further 
developments. 
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In order to ease the limitations of the existing t-f 
based algorithms, including quadratic t-f analysis tools and 
linear t-f analysis tools, herein we propose a short-time 
Fourier transform based and forward/backward spatial 
smoothing (FBSS) based MUSIC (STFT-FBSS-MUSIC) 
algorithm. If the sources are t-f largely or completely joint, 
it is difficult to select the regions in the t-f domain, where 
a source exists alone. In our research, the STFT is used 
because its computational complexity is low and the cross-
terms are avoided compared to the quadratic t-f analysis 
tools. The forward/backward spatial smoothing (FBSS) 
technique is also used in our research, which is a kind of 
dimension decrease algorithm, aiming at solving the prob-
lem of rank loss in the covariance matrix caused by the 
coherent sources or high correlated sources [36–39]. In-
stead of selecting the single-source t-f points (i.e., the t-f 
points where only one source exists), we propose that we 
can select multiple-source t-f points to estimate DOAs of 
multiple-source simultaneously. In this way, we can solve 
the problem caused by the low t-f resolution of the linear 
STFT that appropriate single-source t-f points are difficult 
to be selected, especially in the case of completely joint or 
largely joint LFM signals, the single-source t-f points even 
cannot be selected. In addition, if selecting the multiple-
source t-f points, the times of feature decomposition and 
MUSIC spectrum search can be decreased in the case of 
multiple sources, which means the computational complex-
ity of the STFT-FBSS-MUSIC algorithm will be lower 
than the STFT-MUSIC algorithm and other t-f based algo-
rithms. Compared to the existing t-f based MUSIC algo-
rithms, the advantages of the proposed STFT-FBSS-
MUSIC algorithm are as follows: 

 The ability to resolve largely t-f joint LFM sources. 

 The ability to resolve completely t-f joint LFM 
sources. 

 The low computational complexity. 

The simulation and experimental results verify the 
effectiveness of the proposed algorithm. 

2. The Received Signal Model 
Consider a uniform linear array (ULA) with N  iso-

tropic sensors exposed to M  far-field LFM sources 
s1(t) s2(t) … sM(t) whose DOAs are θ1, θ2,…, θM respec-
tively. The output of the array, including the signals and 
noise, can be modeled as [6], [12–15] 

 ( ) ( ) ( ) ( , ) ( ) ( )t t t t t t   x y η A θ s η   (1) 

where x(t) = [x1(t) x2(t) … xN(t)]T is the sensor array output 
vector, s(t) = [s1(t) s2(t) … sM(t)]T are the LFM sources and 
η(t) = [η1(t) η2(t) … ηN(t)]T is the additive white Gaussian 
noise vector. []T is the transpose operator. 
A(t,θ) = [a(t,θ1) a(t,θ2) … a(t,θM)] is a N  M manifold 
vector matrix [6–8], which is related to the parameters of 
the ULA and received sources. Each column of A(t,θ) 

corresponds to a single arrival and carries a clear bearing. 
a(t,θm) is the N  1 direction vector (steering vector [6]) of 
the mth (m = 1, 2, …, M) source at time t , which can be 
given by 
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where d denotes the inter-element spacing of the sensors 
and c is the propagation velocity. fm(t) is the instantaneous 
frequency of the mth LFM signal at t , which can be given 
by 

 ( )m m mf t f k t    (3) 

where fm and km denote initial frequency and frequency 
modulation rate of the mth LFM signal, respectively. 

3. The Proposed STFT-FBSS-MUSIC 
Algorithm 

3.1 The Spatial Time-Frequency Distribution 
Based on STFT 

The STFT of the array output x(t) in (1) is computed 
as [33, 35] 

 ( , ) STFT( ( )) ( , ) ( , ) ( , )t f t t θ t f t f  x s ηS x A S S   (4) 

where Sx(t, f) = [Sx1
(t, f) Sx2

(t, f) … SxN
(t, f)]T and Sxn

(t, f) 
denotes the STFT value of the thn  sensor output. 
Ss(t, f) = [Ss1

(t, f) Ss2
(t, f) … SsM

(t, f)]T and Ssm
(t, f) denotes 

the STFT value of the mth source. 
Sη(t, f) = [Sη1

(t, f) Sη2
(t, f) … SηN

(t, f)]T and Sηn
(t, f) denotes 

the STFT value of the thn sensor’s noise. 

Define Dxx(t, f) as the STFD matrix of the array out-
put based on STFT [18–20], [35], which can be formulated 
as 
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where the superscript []H denotes the complex conjugate 
transpose of a matrix and []*is the conjugate operator. 
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DSS(t, f) and Dηη(t, f) respectively denote the STFD matrix 
of the source and noise. 

As the noise is the additive white Gaussian noise, so 
there are E[A(t, θ) Ss(t ,f) Sη

H(t, f)] = 0 and 
E[Sη(t, θ) Ss

H(t ,f) AH(t, f)] = 0, in which E[] denotes the 
expectation operator. As a result, equation (5) can be 
written as 

  E ( , ) ( , ) ( , ) ( , ) E ( , )t f t θ t f t θ t f    xx ss ηηD A D A D . (6) 

Equation (6) is similar to the formula that has been 
commonly used in DOA estimation, relating the signal 
correlation matrix to the data spatial correlation matrix 
except for the correlation matrices replaced by the STFD 
matrices. The well-established results in conventional 
DOA estimation field [6–8] (i.e. MUSIC) could, therefore, 
be utilized in this situation, which means we can use the 
STFD matrix to estimate DOAs of LFM signals. 

It is noted that (6) holds true for every t-f point in the 
t-f plane. In the t-f DOA estimation field, the algorithm 
always makes the best of reducing the effect of noise and 
ensuring the full column rank property of the STFD matrix. 
Joint diagonalization [31], [40], [41] and t-f averaging 
[20], [27] are two main approaches that have been used for 
this purpose. In this paper, however, we only consider 
averaging over multiple t-f points. Assuming a group of t-f 
points in the t-f plane are determined, the averaged STFD 
matrix are obtained by [35] 
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where (ti, fi) denotes the selected t-f point and L0 is the 
number of the picked out t-f points. 

3.2 The Forward/Backward Spatial 
Smoothing Processing Technique 

As discussed in Sec. 1, if the LFM sources are com-
pletely joint or largely joint in the t-f plane, it is difficult to 
select the single-source t-f points in the t-f domain, which 
means the t-f points in (7) might contain the multiple-
source t-f points. With regard to the multiple-source t-f 
points, they denote that different sources own the same 
frequency at these t-f points, which means the far-field 
sources become the coherent signals. As is well-known, 
coherent signals can cause rank deficiency in the correla-
tion matrix of received signals [36]. So coherent LFM 
signals can also cause rank deficiency in the STFD matri-
ces. People have developed a series of algorithms to over-
come the coherency problem [36–39], [42], [43], e.g., the 
forward/backward spatial smoothing (FBSS) technique 
[37] and the Toeplitz methods [42], [43]. In this paper, we 
use the FBSS technique to overcome the rank deficiency in 
the STFD matrices caused by the multiple-source t-f 
points. The FBSS technique is a kind of dimension de-
crease algorithm, which segments the array into several 

overlapped sub-arrays and then utilizes the average of the 
STFDs matrices of sub-arrays to solve the rank deficiency 
problem. 

Assuming the ULA is divided into p overlapping for-
ward sub-arrays and each sub-array owns k sensors, which 
means N = p + k – 1. Let  xi

f(t) stand for the output of the 
ith sub-array for i = 1,2,…,p. Using (1), (2), we can get the 
sub-array model without noise 
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  01( ) diag exp( j ( )) exp( j ( )) ,Mt β t β tB    (9) 

 0( ) 2 ( )sin / c, 1,2, ,m m mβ t πdf t θ m M     (10) 

where M0 denotes the number of sources selected out from 
M sources based on the selected multiple-source t-f points. 

So, the STFD matrix of the ith sub-array can be given 
by 

 1 1 H H( , ) ( ) ( , )( ( )) ( , )f i i
i t t t f t t  ssD A θ B D B A θ .  (11) 

The forward spatially smoothed STFD matrix Df is 
the mean of the forward sub-array STFDs matrices, so 
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Additional p backward sub-arrays are generated from 
the same set of sensors by grouping elements at {N, N – 1, 
…, N – k + 1} to form the first backward sub-array and 
elements at {N – 1, N – 2, …, N – k} to form the second 
one, etc. Let xi

b(t) represent the complex conjugate of the 
out of the ith backward sub-array for i = 1,2,…,p. So, we 
have  
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The ith forward sub-array and the (p – i + 1)th 
backward sub-array have the following relationship 
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Then, the STFDs matrix of the (p – i + 1)th backward 
sub-array is given by: 
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Using (16), we can get * T H  J J J J , so 
H * * H( ( , ) ) ( ( , ))t tA θ J JA θ and * 1( , ) ( , ) ( )kt t tJA θ A θ B . 

Then we can get 

 * H
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p i t t t f t t 
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The backward spatially smoothed STFDs matrix Db is 
the mean of the backward sub-array STFDs matrices, so 
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According to [37], Df and Db is of full rank if k  M0, 
p  M0. So, we can apply the Eigen-structure methods to 
this smoothed STFDs matrix to estimate the DOAs of LFM 
sources if selecting the multiple-source t-f points. Follow-
ing [36], [37], the use of forward and backward sub-array 
averaging schemes can reduce the number of extra sensors. 
So, define the forward/backward smoothed STFDs matrix 
Dfb as the mean of Df and Db; i.e., 

 ( ) / 2fb f b D D D . (21) 

According to [37], Dfb is of full rank if k  M0, 
2p  M0. Again, recalling that in presence of M0 LFM 
sources, the size k of each sub-array must be at least 
(M0 + 1), it follows that the number of sensors N must 
satisfy N  3M0/2.  

Since Dfb has exactly the same form as the traditional 
STFDs matrix, the Eigen-structure-based techniques [6–8] 
can be applied to this smoothed STFDs matrix, irrespective 
of the multiple-source t-f points or the single-source t-f 
points, to successfully estimate their directions of arrival. 
Based on this, we can propose the STFT-FBSS-MUSIC 
algorithm, which estimates the DOA by determining the M0 
peaks of the spatial spectrum [6] 
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where Un denotes the noise eigenvectors of the forward/ 
backward smoothed STFDs matrix Dfb in (21), which re-
placed by the covariance matrix of x(t) in the conventional 
MUSIC algorithm [6] and the STFDs matrix in the tradi-
tional t-f based MUSIC algorithm [9, 20]. 

3.3 Summary 

For the readers’ convenience, the step by step proce-
dure of the STFT-FBSS-MUSIC algorithm is given as 
follows: 

1) The STFT of the array output is obtained based on (4); 

2) The STFD matrix of the array output based on STFT 
can be obtained according to (5); 

3) Select t-f points (single-source points or multiple-
source points) and get the averaged STFD matrix 
based on (7); 

4) Use proper k  and p  to divide the ULA; 

5) Obtain the forward smoothed STFDs matrix and the 
backward smoothed STFDs matrix based on (12) and 
(19); 

6) Get the forward/backward smoothed STFDs matrix  
based on (21); 

7) Use the MUSIC algorithm to estimate the DOAs of 
the sources based on (22). 

It is noted that the premise of implementing the 
STFT-FBSS-MUSIC algorithm lies in the available multi-
ple-source t-f points or single-source t-f points sets to con-
struct the forward/backward smoothed STFDs matrix in 
(21). The t-f points of sources can be separately used for 
implementing the STFT-FBSS-MUSIC algorithm, which 
offers the potential ability to estimate the DOAs of LFM 
signals with a smaller number of sensors, i.e., M > N. As 
discussed above, if selecting the multiple-source t-f points, 
the number of sources involved in these points must satisfy 
M0  2N/3. 

4. Simulation 
In this section, the performance of the proposed 

method is evaluated and compared against existing t-f 
based DOA estimation algorithms through simulation 
examples. In the simulations, we separately choose quad-
ratic t-f analysis tools [18–31] and the linear t-f analysis 
tools [10], [13], [15], [16], [32] to estimate the DOAs of 
the LFM sources. In order to restrain the cross-terms of the 
quadratic t-f analysis tools, the smoothed pseudo Wigner-
Ville distribution (SPWVD) is considered in this paper 
[20]. The FRFT is selected as a linear t-f analysis tool [32]. 
In addition, the FBSS technique is also combined with the 
SPWVD and FRFT according to Sec. 3, which is in favor 
of contrasting the proposed STFT-FBSS-MUSIC algorithm 
and other t-f based algorithms. A linear array of 8 sensors 
with equal element spacing of 0.5 wavelength at fmax (fmax 
denotes the maximum value of the LFM signals frequency) 
is used. The sampling frequency of the system is 360 MHz 
and the snapshots’ number is 512. In the FBSS process, all 
the algorithms use p = 4, k = 5. 

4.1 T-f Disjoint Sources 

Let us consider three t-f disjoint LFM sources 
impinging on the ULA from –20°, 0° and 20°. The 
frequency distributions of these three sources separately 
are [25, 50] MHz, [65, 95] MHz and [120, 160] MHz. 
Figure 1 shows the SPWVD, FRFT and STFT of the t-f 
disjoint LFM sources at 10 dB SNR and Figure 2 shows 
the estimation results of these three t-f disjoint LFM 
sources using multiple algorithms. 
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Fig. 1. (a) SPWVD, (b) FRFT, (c) STFT of the t-f disjoint 

LFM sources at 10 dB SNR. 

The spatial MUSIC spectrum (see Fig. 2(a)) indicates 
that there are three sources because we can see three sharp 
peaks around the correct DOAs for all the algorithms. 
When using the FBSS technique, we can see that the spa-
tial MUSIC spectrum has a higher energy around the cor-
rect DOAs, however, the noise is also elevated. In Fig. 2(b), 
for comparison purpose, the Cramer-Rao lower bound 
(CRLB) [44], [45] is also presented. In the next simulation, 
we present all the CRLB in the RMSE results for the pur-
pose of comparison. It can be seen from the results shown 
in Fig. 2(b), when estimating the DOAs of t-f disjoint LFM 
signals, the estimation accuracy of the t-f based FBSS-
MUSIC algorithms is slightly lower than that of the origi-
nal t-f based MUSIC algorithms. This is because the FBSS 
technique is a kind of dimension reduction algorithm, 
which makes the loss of the array aperture. From the 
results, we can also see that the STFT-based MUSIC al-
gorithms have the best estimation performance. In the case 
of low  SNR, the  TF-based  MUSIC algorithms and FRFT- 

 
Fig. 2. The estimation results of three t-f disjoint LFM sources 

using multiple algorithms. (a) The spatial MUSIC 
spectrum at 10 dB SNR. (b) The estimated RMSE 
versus different SNR levels.  

based MUSIC algorithms have comparative estimation 
performance. With the increase of SNR, the estimation 
accuracy of the FRFT-based MUSIC algorithms is much 
lower than that of the TF-based MUSIC algorithms. In 
order to restrain the cross-terms, we choose SPWVD as the 
quadratic t-f analysis tool which brings about the lower 
estimation accuracy of the TF-based MUSIC algorithms 
compared with the STFT-based MUSIC algorithms. In this 
case, the selected t-f points are definitely single-source t-f 
points. If there are M t-f disjoint LFM sources from far-
field, these algorithms need M times feature decomposition 
and M MUSIC spectrum search [6]. 

4.2 T-f Tiny Joint Sources 

Let us consider three t-f tiny disjoint LFM sources 
impinging on the ULA from –20°, 0° and 20°. The fre-
quency distributions of these three sources separately  are 
[10, 90] MHz, [40, 150] MHz and [140, 10] MHz. Figure 3 
shows the SPWVD, FRFT and STFT of the t-f tiny disjoint 
LFM sources at 10 dB SNR and Figure 4 shows the estima-
tion results of these three sources using multiple algorithms. 
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Fig. 3. (a) SPWVD, (b) FRFT, (c) STFT of the t-f tiny joint 

LFM sources at 10 dB SNR. 

The spatial MUSIC spectrum (see Fig. 4(a)) illustrates 
that these algorithms can estimate the DOAs of the t-f tiny 
joint sources because we can see three sharp peaks around 
the correct DOAs for all the algorithms. It can be seen from 
the estimation RMSE curves (see Fig. 4(b)) that the perfor-
mance of these algorithms is reduced if the LFM sources 
are t-f tiny joint compared to the t-f disjoint LFM sources. 
Especially for the FRFT-based MUSIC algorithms [10], 
[13], [15], [16], [32], in the case of high sources SNR, its 
estimation RMSE is still more than 1°. The simulation 
results also show the estimation performance of the STFT-
FBSS-MUSIC algorithm and the TF-FBSS-MUSIC algo-
rithm if they select the multiple-source t-f points. As can be 
seen from the results that they also have high DOA estima-
tion accuracy, however, their estimation performance is 
slightly declined compared to the algorithms selecting the 
single-source t-f points. In addition, if selecting the multi-
ple-source t-f points, the computational complexity of the 
STFT-FBSS-MUSIC algorithm and TF-FBSS-MUSIC 
algorithm can be reduced obviously. As described above, if 
there are M LFM sources, when selecting the single-source 
t-f points, the algorithms need M times feature decomposi- 

 

Fig. 4.  The estimation results of three t-f tiny joint LFM 
sources using multiple algorithms. (a) The spatial 
MUSIC spectrum at 10dB SNR. (b) The estimated 
RMSE versus different SNR levels. 

tion and MUSIC spectrum search, however, if selecting the 
multiple-source t-f points, the algorithms just need one 
time feature decomposition and MUSIC spectrum search 
no matter how many sources are involved in these multi-
ple-source t-f points. 

4.3 T-f Largely Joint Sources 

Let us consider three t-f largely joint LFM sources 
impinging on the ULA from –20°, 0° and 20°. The fre-
quency distributions of these three sources separately are 
[60, 120] MHz, [40, 100] MHz and [50, 110] MHz. Fig-
ure 5 shows the SPWVD, FRFT and STFT of the t-f 
largely joint LFM sources at 10 dB SNR and Figure 6 
shows the estimation results of these three sources using 
multiple algorithms. 

It can be seen from the results shown in Fig. 5, when 
the LFM  sources  are t-f largely  joint, the single-source t-f 
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Fig. 5. (a) SPWVD, (b) FRFT, (c) STFT of the t-f largely 

joint LFM sources at 10 dB SNR. 

points are pretty difficult to be selected or are not able to 
be selected by using the SPWVD or STFT. The FRFT can 
make the LFM sources show three close peak points in the 
fractional Fourier domain, so we can still separate the peak 
points for DOA estimation. The MUSIC spectrum of the 
algorithms shown in Fig. 6-(a) shows that they can resolve 
the t-f largely joint LFM sources. However, the estimation 
performance of the FRFT-based algorithms has been very 
powerful. In the case of low SNR, the estimation accuracy 
of the TF-FBSS-MUSIC algorithm and STFT-FBSS-
MUSIC algorithm is low, however, with the increase of 
SNR, the estimation RMSEs of these two algorithms 
decrease rapidly. 

4.4 T-f Completely Joint Sources 

Let us consider three t-f completely joint LFM 
sources impinging on the ULA from –20°, 0° and 20°. The 

 
Fig. 6. The estimation results of three t-f largely joint LFM 

sources using multiple algorithms. (a) The spatial 
MUSIC spectrum at 10 dB SNR. (b) The estimated 
RMSE versus different SNR levels.  

frequency distributions of these three sources are all 
[60, 120] MHz. Figure 7 shows the SPWVD, FRFT and 
STFT of the t-f completely joint LFM sources at 10 dB 
SNR and Figure 8 shows the estimation results of these 
three sources using multiple algorithms. 

As can be seen from the results shown in Fig. 7, when 
the LFM sources are t-f completely joint, they are com-
pletely coherent sources and these three t-f analysis tools 
cannot resolve the sources in the t-f plane, which means all 
of the t-f points in the t-f plane are the multiple-source t-f 
points. Figure 8(a) shows that the spatial MUSIC spectrum 
of the FRFT-FBSS-MUSIC algorithm has been unable to 
display the peaks around the correct DOA position, which 
means it cannot resolve the t-f completely joint LFM 
sources. The STFT-FBSS-MUSIC algorithm and the TF-
FBSS-MUSIC algorithm can still work in this case and 
have pretty high estimation accuracy. 
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Fig. 7. (a) SPWVD, (b) FRFT, (c) STFT of the t-f completely 

joint LFM sources at 10 dB SNR. 

4.5 Multiple Kinds of Sources using the 
Proposed Algorithm 

Let us consider nine LFM sources impinging on the 
ULA from –40°, –10°, 18°, 23°, –38°, –20°, –10°, 20°, and 
–22°. The frequency distributions of these sources 
separately are [10, 60] MHz, [10, 60] MHz, [10 ,60] MHz, 
[150, 30] MHz, [120, 70] MHz, [20, 100] MHz, 
[40, 140] MHz, [50, 110] MHz and [165, 165] MHz. As 
can be seen from the parameters of the LFM sources, 
source 1, source 2 and source 3 are t-f completely joint 
sources. Source 4, source 5 and source 6 are t-f tiny joint 
sources. Source 7 and source 8 are t-f largely joint sources. 
Source 9 is the t-f disjoint source. Figure 9 shows the 
estimation results by using the proposed STFT-FBSS-
MUSIC algorithm. 

 
Fig. 8. The estimation results of three t-f completely joint 

LFM sources using multiple algorithms. (a) The spatial 
MUSIC spectrum at 10 dB SNR. (b) The estimated 
RMSE versus different SNR levels.  

As can be seen from the STFT of the LFM sources 
(see Fig. 9(a)), except for the source 9, all the LFM sources 
are t-f joint (tiny, largely, completely), so we can use 
STFT-FBSS-MUSIC algorithm to estimate the DOAs of 
these sources. As can be seen from the results, we can see 
the STFT-FBSS-MUSIC algorithm not only can resolve 
multiple kinds of LFM sources, which contain t-f disjoint 
sources, t-f tiny joint sources, t-f largely joint sources and 
t-f completely joint sources, but also can classify the 
closely-spaced sources. The proposed algorithm owns 
a good DOA estimation performance for all kinds of LFM 
signals. 

4.6 Summary 

The simulation results explain that the STFT-FBSS-
MUSIC algorithm can achieve accurate DOA estimation 
for all kinds of LFM sources. The proposed algorithm can 
estimate  the DOAs  of multiple LFM sources accurately by 
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Fig. 9. The estimation results of multiple LFM sources by 

using the proposed algorithm. (a) The STFT of the 
LFM sources at 10 dB SNR. (b) The spatial MUSIC 
spectrum at 10 dB SNR. (c) The estimated RMSE 
versus different SNR levels.  

 selecting the multiple-source t-f points if the sources are t-
f largely joint or completely joint in the t-f plane and the 
single-source t-f points are difficult to be obtained or can-
not be obtained. If the LFM sources are t-f tiny joint, the 
proposed algorithm also can select the multiple-source t-f 
points to estimate the DOAs. Although the estimation 
accuracy is lower than that of the algorithm selecting the 
single-source t-f points, the computational complexity of 

the proposed algorithm also will be reduced. If the algo-
rithm selects the multiple-source t-f points with M LFM 
sources, only one time feature decomposition and MUSIC 
spectrum search need to be carried. In contrast, if we select 
the single-source t-f points, M times feature decomposition 
and MUSIC spectrum search need to be carried out. In the 
case of t-f tiny joint or t-f disjoint LFM sources, the pro-
posed algorithm also can select the single-source t-f points 
to estimate DOAs of the sources, however, the estimation 
accuracy is lower than that of the STFT-MUSIC algorithm 
[35]. This is because the FBSS technique uses the dimen-
sion decrease algorithm to solve the problem of rank loss 
in the STFD matrix caused by the multiple-source t-f 
points, which brings about the loss of the array aperture 
and the declines in the estimation performance of the 
algorithm.  

As can be seen from the DOA simulation results of 
the STFT, SPWVD and FRFT, the estimation performance 
of the FRFT-based algorithms [10], [13], [15], [16], [32] is 
poor. Especially in the case that the LFM sources are t-f 
completely joint, the FRFT-FBSS-MUSIC algorithm even 
cannot work. In the simulations, we choose the SPWVD 
for DOA estimation in order to eliminate the influence of 
the cross-terms generated by the quadratic t-f analysis tools 
as much as possible. However, the accuracy of the 
SPWVD is lower than that of the original WVD, which 
makes the accuracy of the TF-based algorithms [18–20] is 
less than that of the STFT-based algorithms. The STFT-
based algorithms effectively eliminate the influence of the 
cross-terms and its computational complexity is pretty low. 
Table 1 shows the computational complexity of several 
algorithms in the above simulations. In Tab. 1, K denotes 
the sum of the times selecting the single-source t-f points 
and multiple-source t-f points. If the t-f points are all sin-
gle-source t-f points, K = M. If there are multiple-source t-f 
points in the selected t-f points, K < M. For the M incident 
sources, the more the number of sources included in the 
multiple-source t-f points is, the smaller the value of K is. 
The more the times of selecting the multiple-source t-f 
points is, the smaller the value of K is. As can be seen from 
the table, the FRFT-based algorithms own the lowest 
computational complexity, followed by the STFT-based 
algorithms and the TF-based algorithms. In addition, the 
computational complexity of the proposed STFT-FBSS-
MUSIC algorithm is lower than that of the STFT-MUSIC 
algorithm. 
 

Algorithm The computation complexity 

STFT-MUSIC 2
2( log )O MNL L  

STFT-FBSS-MUSIC 2
2( log )O KkL L  

TF-MUSIC 2 2
2( log )O MN L L  

TF-FBSS-MUSIC 2 2
2( log )O Kk L L  

FRFT-MUSIC 2( )O NL MN  

FRFT-FBSS-MUSIC 2( )O kL Mk  

Tab. 1. Comparison of the computational complexity. 
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5. Experimental Verification 
We carry out the experiment in the standard micro-

wave anechoic chamber and the sketch map of the experi-
mental platform is shown in Fig. 10. We use two signal 
generators to produce two far-field sources. The eight 
channels digital receiver receives the sources from the 
ULA and stores the signals into the data collector, then, the 
computer can use the STFT-FBSS-MUSIC algorithm to 
estimate the DOAs of the sources. In the standard micro-
wave  anechoic  chamber, the  turntable is controlled by the 

 
Fig. 10. The sketch map of the experimental platform. 

 
Fig. 11. The experimental results using the proposed algorithm. 

(a) The STFT of the sources. (b) The spatial MUSIC 
spectrum.  

computer and the distance between the horn and the turn-
table is 17 m. The standard horns are respectively located 
at –5° and 5.5° relative to the ULA. 

Because of the conditions, our signal generators just 
can produce the single frequency pulse, so we use the two 
signal generators to produce two signals whose frequency 
are 3.0 GHz and 3.0 GHz, respectively. The amplitude of 
the signals is 0 dbm. The local frequency of the eight chan-
nels digital receiver is 2.875 GHz and the sampling fre-
quency of the data collector is 250 MHz. The experimental 
results of the STFT-FBSS-MUSIC algorithm are shown in 
Fig. 11. As can be seen from Fig. 11(a), the sources are the 
t-f completely joint sources, which means the STFT-FBSS-
MUSIC algorithm is suitable for estimating the DOAs of 
these two sources. The spatial MUSIC spectrum (see 
Fig. 11(b)) indicates that there are two sources because we 
can see two sharp peaks around the correct DOAs. 
Through the spectral peak search, we can obtain that the 
DOA estimations are –4.86° and 5.43°, which are in ac-
cordance with the sets. The experimental results show that 
the proposed algorithm can estimate DOAs of the t-f joint 
sources correctly and has a broad application prospect. 

6. Conclusion 
In order to improve the accuracy of the DOA estima-

tion and eliminate the influence of the cross-terms as much 
as possible, the existing t-f based DOA estimation algo-
rithms generally need to select the auto-term location of the 
sources [18], [20], [25], [27], [30] and the single-source t-f 
points [26], [28], [29], [35], however, if the incident LFM 
sources are t-f largely joint or completely joint (coherent), 
the single-source t-f points are very difficult to be selected 
or cannot be selected, which makes it more difficult for 
estimating the DOAs of these LFM sources. In order to 
relax these limitations, this paper presents the STFT-FBSS-
MUSIC algorithm based on the FBSS technique [37]. The 
proposed algorithm uses the STFT as the t-f analysis tool, 
which effectively prevents the influence of the cross-terms 
and owns a pretty low computational complexity [35]. The 
proposed algorithm can work in the case of selecting the 
single-source t-f points or multiple-source t-f points. When 
selecting the multiple-source t-f points, the estimation 
accuracy will be reduced slightly, however, selecting the 
multiple-source t-f points can effectively reduce the times 
of feature decomposition and MUSIC spectral search, 
which can reduce the computational complexity. If the 
LFM sources are t-f largely joint or completely joint, the 
proposed algorithm can estimate the DOAs by selecting the 
multiple-source t-f points and using the FBSS technique to 
solve the problem of rank loss in the STFD matrix caused 
by the multiple-source t-f points. The simulation results 
and experimental results show the effectiveness and robust-
ness of the proposed STFT-FBSS-MUSIC algorithm. It can 
deal with closely-spaced sources and can be applied to all 
kinds of LFM sources, so it has a high application value. 
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