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Abstract. This paper deals with estimation of time differ-
ence of arrival (TDOA) and phase and frequency offsets be-
tween the channels in a receiving system with two distributed
time synchronized, but phase and frequency unlocked chan-
nels. The system receives a radio signal with a known wave-
form. We analyze the impacts of using the carrier phase of
arrival (CPOA) on parameter estimation accuracy. Depend-
ing on which of the parameters are unknown, three cases
are considered. For the case when phase, frequency, and
time shifts are all unknown, we derive the Fisher Informa-
tion Matrix (FIM) in closed form, and Cramer-Rao bound
(CRB) closed form expressions for the unknown phase and
frequency offsets case, and the unknown TDOA case. Two
maximum likelihood type (ML) statistically efficient estima-
tion algorithms are proposed. The CRBs and simulation
results show that in the unknown TDOA case the accuracy
of TDOA estimation can be significantly increased by using
CPOA.

Keywords
Time Difference of Arrival (TDOA), Carrier Phase of
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unlocked sensors, Distributed Beamforming (DB)

1. Introduction
Consider the complex representation exp(jωct) s̃(t) of

a radio signal (ωc is the circular carrier frequency, s̃(t) is the
complex envelope). When delayed by any D, its baseband
representation becomes exp(−jωcD) s̃ (t − D). This paper
focuses on the analysis of effects of taking into account the
carrier phase term exp(−jωcD) on the performance of time
difference of arrival (TDOA) and frequency and phase off-
sets estimation in a distributed dual-channel receiving system
whose receivers are time-synchronized, but have independent
local oscillators. The estimation accuracy improvement by
using the carrier phases has not been systematically studied in
the state-of-the-art literature, although it could be beneficial

to Distributed Beamforming (DB) and Distributed Multiuser
Multiple-Input Multiple-Output systems (DMMIMO) appli-
cations, [1–5].

The problem of time, frequency and phase shifts esti-
mation in dual-channel systems has been extensively studied
in the literature, see [6–12]. An estimator for TDOA, phase
and discrete Doppler shifts using Gaussian random signals
was proposed in [7]. A signal model with TDOA, arbitrary
Doppler shifts, and random phase using unknown determin-
istic signals was analyzed in [8]. In these papers and in
a number of TDOA/FDOA localization related papers such
as [10], the carrier phase of arrival (CPOA) termwasmodeled
as a part of an unknown or random phase term or complex
attenuation. The Root-Mean-Square (RMS) error of TDOA
estimation is then inversely proportional to the complex en-
velope bandwidth.

Unlike this, we consider a fully coherent propagation
scenario, i.e. CPOA of the signal due to propagation from the
transmitter, Tx, to receiver Rxi is modeled by exp(−jωcDpi),
where Dpi is the propagation time. In this scenario, if the term
exp(−jωcDpi) weremodeled as a part of an unknown/random
phase term/complex attenuation, a part of distance (delay)
related information would be lost. Therefore, this term is
a separate term in our model. Unwrapped phase ωcDpi
carries information about distances between the transmitter
and receivers. Since it is measured modulo 2π, this model
is ambiguous. Weiss and Weinstein in [12] have analyzed
TDOA estimation of analog bandpass signals, which implic-
itly takes into account CPOA. They have recognized the am-
biguity problem and derived a composite theoretical bound
on TDOA estimation accuracy. For high SNRs it coincides
with the Cramer-Rao bound (CRB). However, we estimate
TDOA based on digital baseband versions of those signals.
Possible solutions to the ambiguity problem were analyzed
in [13] and [14].

The assumptions of our model are: the frequency shifts
are due to local oscillator mismatch (not Doppler), with an ar-
bitrary (usually smaller than the DFT resolution, unlike [7])
and constant value in the observation interval, time shifts
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are not integer multiples of the sampling interval in general,
the distance between receiving antennas can be significantly
larger than the carrier wavelength, and the signal is arbi-
trarily wideband and known (unlike [7], [8], [10], so phase,
frequency, and time shifts are all modeled even in the referent
channel).

We analyze three cases. In case 1 all three types of pa-
rameters (phase, frequency, and time shifts) are unknown,
which corresponds to the over-the-air calibration of a 2-
channel receiving system using a transmitter at an unknown
location, or to theTDOAestimationwith phase and frequency
non-calibrated channels. In case 2 TDOA is known (phase
and frequency offsets are unknown), which corresponds to
a transmitter at a known location used to calibrate the re-
ceiving system (e.g. over-the-air calibration of sensors on
a master-slave principle in DB systems). In case 3 phase and
frequency offsets are known, which corresponds to a TDOA
estimation by a fully synchronized receiving system (a dis-
tributed receiving system calibrated by another transmitter
as in case 2 or a system with collocated receivers connected
via calibrated coaxial cables or Radio Frequency over Fiber
(RFoF) links to distributed antennas). For example, this
could be used to estimate the coefficients for a distributed
beamformer.

The contributions of the paper are as follows. We de-
rive the Fisher Information Matrix (FIM) in closed form for
case 1, and we derive CRB expressions in closed form for
cases 2 and 3. Two maximum likelihood-type (ML) estima-
tion algorithms are proposed, one for the unknown sequence
scenario and the other for the known sequence scenario. The
algorithms are statistically efficient and partially numerically
optimized. The CRBs and simulations show how using the
information embedded in the carrier phase influences the
accuracy of estimation for each case. The most important
result is that the accuracy of TDOA estimation in case 3 can
be dramatically improved, given that the correct lobe of the
criterion function is disambiguated from the other lobes. In
this case the RMS error is inversely proportional to the carrier
frequency.

The remainder of the paper is organized as follows: In
Sec. 2 our signal model is presented. Section 3 includes
a derivation of CRB expressions for the three cases. Two
ML-type estimation algorithms and the ambiguity problem
are described in Sec. 4. The performance of the algorithms
is evaluated in Sec. 5. The conclusions are given in Sec. 6.

In the rest of the paper, operators ()T, ()H, ()∗, ()′, Re,
and E will denote transpose, Hermitian, complex conjugate,
the first derivative, the real part and expectation, respectively.

2. Signal Model
A periodic pilot signal s̃(t) with period T , bandlim-

ited to [−B/2, B/2], B is in [Hz], is upconverted and trans-
mitted by a stationary transmitter at nominal carrier fre-
quency νc [Hz]. It is received at two time-synchronized
distributed stationary receivers, with independent local

Fig. 1. System and signal model.

Fig. 2. Temporal relationships between signals and Tx and Rx
axes.

oscillators, IQ demodulated and sampled at the Nyquist rate,
νs = B. Each Rx acquires N samples in a common observa-
tion interval of length T = N/νs whose beginning is chosen
independently from the start of the transmission.

The signal s̃(t) is formed in the Tx from a complex
known sequence q =

[
q0, q1, . . . , qN−1

]T in the following
way. Let the DFT of q be

S(m) =
N−1∑
k=0

qk exp(−j2πmk/N ), −
N
2
≤ m ≤

N
2
−1, (1)

then

s(θ) = 1/N
N/2−1∑

m=−N/2
S(m) exp(j2πmθ/N ), θ ∈ R, (2)

(θ is time normalized with 1/νs), then s̃(t) = s(tνs). Note
that s(θ) is continuous-time and bandlimited to [−0.5, 0.5].

Figure 1 shows the system model used in the paper. Af-
ter the Tx generates the RF signal, it propagates to Rxi with
attenuation ai (which is considered known) and propagation
time Dpi , where i ∈ {1, 2} is the channel index. The receivers
are connected to a fusion center via digital links. The Tx local
oscillator phase misalignment at the sample s̃(0) is ϕLOTX.
In Fig. 1 the signals at the receivers are written relative to
the Rx time axis. The local oscillator frequency offset in Rxi
relative toωc = 2πνc isωi in [rad/s]. Its phase misalignment
at the beginning of the (Rx) observation interval is ϕLOi . Al-
though in theory s̃(t) is periodic, in practice the Tx sends
only a finite number of periods, each corresponding to the
sequence q, in Fig. 2 denoted by −2,−1, 0, 1. The figure also
shows the propagation delays and the misalignment of the Tx
time axis relative to the Rx time axis, denoted D0 in seconds.
The Rx time axis origin is determined by the beginning of the
observation interval. The Rx system chooses the observation
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interval arbitrarily as long as the signal exists in both chan-
nels for the entire duration of the interval. Then, the origin
of the Rx time axis is at the beginning of that observation
interval, see Fig. 2. Therefore, the time shift of the signal
s̃(t) in Rxi relative to the Rx time axis is Di = D0 + Dpi .
We assume 0 ≤ Di < T since in practice D2 − D1 � T .
Throughout the rest of the paper, we will use time that is nor-
malized with the sampling interval, 1/νs, and the quantities
defined as ϕi = ϕLOTX + ϕLOi , Ωi = ωi/νs in [rad/sample],
and τi = Diνs in samples, for i ∈ {1, 2}. Then, the samples
that the receivers acquire in T , after scaling by 1/ai , are:

x1(k) = exp(jϕ1) exp(jΩ1k) exp(−jΩcτ1)s(k − τ1) + n1(k),
(3)

x2(k) = exp(jϕ2) exp(jΩ2k) exp(−jΩcτ2)s(k − τ2) + n2(k)
(4)

where k ∈ {0, 1 . . . N − 1}; Ωc = ωc/B is the normalized cir-
cular carrier frequency; n1 and n2 are independent circular-
complex AWGN processes with variance σ2; for simplicity,
it is assumed that the channel SNRs are known and equal;
signal attenuations, ai , are real-valued and included in σ2;
ϕ = ϕ2 − ϕ1, Ω = Ω2 −Ω1, τ = τ2 − τ1 are the relative phase
offset, frequency offset and time delay (TDOA), respectively.
Note that the argument of s(·) need not be an integer. Given
the samples in (3)-(4), the goal is to estimate ϕ, Ω, and τ,
or a subset of them, depending on which of them are un-
known.

The discrete time matrix form of the signal model (3)-
(4), similar to [8], is:

x1 = exp(jϕ1)MΩ1F
HDτ1Fq + n1, (5)

x2 = exp(j(ϕ1 + ϕ))MΩ1+ΩF
HDτ1+τFq + n2 (6)

where

F = 1/
√

N exp(−j2π/N ·mkT), (7)
MΩ = Diag

{
exp (jΩk)

}
, (8)

Dτ = exp(−jΩcτ) Diag
{
exp

(
−j2π/N ·mτ

)}
, (9)

k =
[

0 1 . . . N − 1
]T
, (10)

m =
[
−N/2 −N/2 + 1 . . . N/2 − 1

]T
(11)

where exp is applied to a matrix element by element, and
Diag is the diagonal matrix with the elements of the vector
argument. Note that Dτ contains two terms, exp(−jΩcτ),
which models CPOA, and exp(−j2π/N ·mτ), which models
the complex envelope time shift. Even though CPOAs, i.e.
Ωcτ1 and Ωcτ2, are not elements of the unknown parame-
ter vector, they are analyzed implicitly through propagation
times, i.e. τ1 and τ2.

3. Cramer-Rao Bounds
Since the given signal model differs from the existing

ones, CRBs for estimation of unknown parameters are de-
rived in this section for the three previously defined cases.

In case 1, all six parameters are unknown and the vec-
tor containing them is α1 = (ϕ1, ϕ,Ω1,Ω, τ1, τ). The Fisher
Information Matrix (FIM), [15], which is symmetric, is

I1 =
[
Ii j

]
6×6

Ii j = −E
∂2G

∂α1(i)∂α1( j)
= Iji (12)

where the loglikelihood function, G, is

G = − 2N ln(πσ2)−

1
σ2

N−1∑
k=0

(
|s1(k) − x1(k) |2 + |s2(k) − x2(k) |2

) (13)

where
s1(k) = exp(j(ϕ1 +Ω1k −Ωcτ1))s(k − τ1), (14)
s2(k) = exp(j(ϕ1 + ϕ +Ω1k +Ωk −Ωcτ1 −Ωcτ))×

s(k − τ1 − τ). (15)

The expressions for the first and the second partial deriva-
tives of G are given in the appendix. Since all the terms in
the derivatives except x1(k) and x2(k) are deterministic, it
follows

I11 = 2I12 = 2I22 =
4
σ2

N−1∑
k=0
|s(k) |2 , (16)

I13 =
2
σ2

N−1∑
k=0

k
(
|s(k − τ1) |2 + |s(k − τ1 − τ) |2

)
, (17)

I14 = I23 = I24 =
2
σ2

N−1∑
k=0

k |s(k − τ1 − τ) |2 , (18)

I33 =
2
σ2

N−1∑
k=0

k2
(
|s(k − τ1) |2 + |s(k − τ1 − τ) |2

)
, (19)

I34 = I44 =
2
σ2

N−1∑
k=0

k2 |s(k − τ1 − τ) |2 , (20)

I15 = −
4
σ2 Re

N−1∑
k=0

(
Ωc |s(k) |2 − j s∗(k)s′(k)

)
, (21)

I16 = I25 = I26 =
I15
2
, (22)

I35 = −
2
σ2 Re

N−1∑
k=0

k
(
Ωc |s(k − τ1) |2 −

js∗(k − τ1)s′(k − τ1) +Ωc |s(k − τ1 − τ) |2 −

js∗(k − τ1 − τ)s′(k − τ1 − τ)
)
, (23)

I36 =I45 = I46 =

−
2
σ2 Re

N−1∑
k=0

k
(
Ωc |s(k − τ1 − τ) |2 −

js∗(k − τ1 − τ)s′(k − τ1 − τ)
)
, (24)

I55 =2I56 = 2I66 =
4
σ2 Re

N−1∑
k=0

(
Ω

2
c |s(k) |2 −

j2Ωcs∗(k)s′(k) + ��s′(k)��2
)
. (25)
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To calculate the CRBs for appropriate parameters, the
FIM, I1, needs to be inverted. Since the rows (and columns)
of I1 and I−1

1 correspond to the unknown parameters in the
order in which they appear in α1, the CRBs for ϕ, Ω and τ
are respectively

CRB1(ϕ) = [I−1
1 ]22, (26)

CRB1(Ω) = [I−1
1 ]44, (27)

CRB1(τ) = [I−1
1 ]66. (28)

The expressions (26)–(28) are evaluated numerically.

In case 2, time shifts τ1 and τ are known. The unknown
parameter vector is α2 = (ϕ1, ϕ,Ω1,Ω), so the last two rows
and columns of I1 are removed to obtain I2. If we assume the
energy of s(k) is roughly equally distributed in time domain,
the approximate CRBs are then

CRB2(ϕ) = [I−1
2 ]22 =

2(2N − 1)
N (N + 1)SNR

, (29)

CRB2(Ω) = [I−1
2 ]44 =

12
N

(
N2 − 1

)
SNR

(30)

where SNR =
∑N−1

k=0 |s(k) |2 /(Nσ2) is the signal-to-noise
ratio. These CRBs do not depend on Ωc, and are twice the
CRBs in [15] (eq. 15.72), for a cisoid in a single complex-
AWGN channel.

In case 3, phase and frequency offsets ϕ1, ϕ, Ω1
and Ω are known. The unknown parameter vector is
α3 = (τ1, τ). If the DFT spectrum of s(k) is S(p) =∑N−1

k=0 s(k) exp(−j2πpk/N ), then the CRB for TDOA is

CRB3(τ) = [I−1
3 ]22 = 2/I56, (31)

I56 =
2

Nσ2

N/2−1∑
p=−N/2

(
Ω

2
c +

4πΩcp
N

−
4π2p2

N2

)
|S(p) |2 . (32)

If Ωc is large enough and |S(p) | = const, then
CRB3(τ) ≈ 1/(NΩ2

cSNR). This last result agrees with
the bound in [12] for high SNRs.

4. Estimation Algorithms
This section introduces two algorithms, A and

B, where A does not rely on knowing the sequence
q, and B does. Let us define block matrices
X =

[
xT

1, x
T
2

]T
∈ C2N×1, N =

[
nT

1, n
T
2

]T
, Q =

[
QT

1,Q
T
2

]T
∈ C2N×N , Q1 = exp(jϕ1)MΩ1F

HDτ1F, Q2 =

exp(j(ϕ1 + ϕ))MΩ1+ΩF
HDτ1+τF, so the model is X = Qq +

N. Then the ML criterion reduces to finding the minimum of
‖X−Qq‖2, where ‖·‖ is the Frobenius norm. If the sequence
q is considered unknown, the estimate of q that minimizes
the norm is q̂ = Q†X, whereQ† =

(
QHQ

)−1
QH is the pseu-

doinverse of Q. Using the properties M−1
Ω
= MH

Ω
= M−Ω,

D−1
τ = DH

τ = D−τ , F−1 = FH, and the fact that multiplying

a signal with Q1 or Q2 does not change its energy, the ML
reduces to (

ϕ̂, Ω̂1, Ω̂, τ̂
)
= argmax

ϕ,Ω1,Ω,τ
J1, (33)

J1 = Re
(
xH

1 exp(−jϕ)x̃2
)

(34)

where x̃2 = MΩ1F
HD−τFM−(Ω1+Ω)x2. Note that J1 resem-

bles cross-correlation, and that the criterion (33) resembles
maximizing the energy at the output of a two-channel beam-
former [16]. Also note that J1 does not depend on ϕ1 or
τ1, but depends on Ω1. Recall that we are only interested in
estimating relative parameters, ϕ,Ω, τ. By further numerical
optimization, by eliminating the search over ϕ, but only if ϕ
is unknown, we get(

Ω̂1, Ω̂, τ̂
)
= argmax
Ω1,Ω,τ

���x
H
1 x̃2

��� , (35)

ϕ̂ = arg
(
xH

1 x̃2
) ���Ω1=Ω̂1,Ω=Ω̂,τ=τ̂

. (36)

If some of the parameters are known, their true values are
input into either (34) (if ϕ is known) or (35)–(36) (if ϕ is
unknown) and they are not searched for. This concludes the
derivation of Algorithm A. The advantages of this algorithm
are: that it can be applied to a non-cooperative transmitter
(receivers do not need to know the transmitted sequence),
and the local oscillator and D/A converter in it need not be
aligned to each other (which is the case with the majority of
commercial transmitters). However, this algorithm has to be
executed in the fusion center. An algorithm does not have to
use all of the available information in the model for which the
CRB is derived. This is why we compare the performance of
Algorithm A to the previous CRB (for known signals).

The algorithm is implemented as follows. It performs
a 3D search over a grid defined as the Cartesian product of
the elements of column vectors Ω1, Ω and τ. The vectors
contain NΩ1 , NΩ and Nτ values of interest of Ω1, Ω and τ,
respectively. The inputs are x1, x2, N , Ωc, and the search
grid. The steps of the algorithm are:
1. for j = 1 to NΩ1 do
2. for k = 1 to NΩ do
3. x2F =M−(Ω1 ( j)+Ω(k))x2
4. for l = 1 to Nτ do
5. x2FT = FHD−τ (l)Fx2F
6. x2FTF =M(Ω1 ( j))x2FT
7. sp = xH

1 x2FTF

8. f( j, k, l) = ���sp
���

9. Φ̂( j, k, l) = arg(sp)
10. end for
11. end for
12. end for
13. ( j0, k0, l0) = argmax f

14.
(
Ω̂1, Ω̂, τ̂, ϕ̂

)
=

(
Ω1 ( j0) ,Ω (k0) , τ(l0), Φ̂( j0, k0, l0)

)
15. return

(
Ω̂1, Ω̂, τ̂, ϕ̂

)
Starting with the ML criterion, but for a known se-

quence q, we derive Algorithm B. Algorithm B is similar
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to A, except it is calculated for each pair (xi, q), i ∈ {1, 2},
and, instead of compensating for offsets in xi , the offsets are
induced into q (mind the order of the operations). Finally, the
difference of the estimates is calculated. More formally:

(
ϕ̂i, Ω̂i, τ̂i

)
= argmax

ϕi,Ωi,τi

Re
(
xH
i exp(jϕi)MΩiF

HDτiFq
)
,

(37)(
ϕ̂, Ω̂, τ̂

)
=

(
ϕ̂2, Ω̂2, τ̂2

)
−

(
ϕ̂1, Ω̂1, τ̂1

)
. (38)

It can be shown that this is equivalent to the joint ML search
for (ϕ1,Ω1, τ1, ϕ,Ω, τ). A numerical optimization similar to
the one applied to (34) can be applied to (37) as well. One
advantage ofAlgorithmB is that signal processing can be dis-
tributed among the receiving channels, whereas Algorithm
A is centralized. However, for AlgorithmB towork correctly,
the carrier has to have an integer number of cycles during one
sequence period, i.e. νcT has to be an integer.

The algorithm performs a 2D search over a grid defined
as the Cartesian product of the elements of column vectors
Ωi and τi , which have NΩ and Nτ elements, respectively. In
addition to the input arguments of Algorithm A, q is an input
for B as well. The steps of the algorithm are:
1. for i = 1 to 2 do
2. for j = 1 to Nτ do
3. qT = FHDτ i ( j)Fq
4. for k = 1 to NΩ do
5. qTF =M(Ωi (k))qT
6. sp = xH

i qTF
7. f( j, k) = ���sp

���
8. Φ̂i ( j, k) = − arg(sp)
9. end for
10. end for
11. ( j0, k0) = argmax f

12.
(
Ω̂i, τ̂i, ϕ̂i

)
=

(
Ωi ( j0) , τi (k0), Φ̂i ( j0, k0)

)
13. end for
14.

(
Ω̂, τ̂, ϕ̂

)
=

(
Ω̂2 − Ω̂1, τ̂2 − τ̂1, ϕ̂2 − ϕ̂1

)
15. return

(
Ω̂, τ̂, ϕ̂

)
Let us discuss the ambiguity problemwhich arises from

using CPOAs for estimation. Figure 3 a) shows a 3D slice
representation of the criterion function J1 for the true value
of Ω1. Here the ambiguity manifests itself as multiple lobes
along the τ-axis. Figures 3 b), c) and d) show the criterion
function for estimating τ in case 3, for two different carriers
and the sum of their criterion functions as a way to sup-
press ambiguity. The cross-correlation of a bandpass signal
in [12] has a similar shape to b) and c). Our simulation
results, not shown here, feature an SNR threshold for mean-
square error (MSE) when the ambiguity becomes dominant.
All the results shown in the next section are obtained under
the assumption that the ambiguity is resolved. Development
of an ambiguity-robust algorithm will be a part of future
work.

Fig. 3. Criterion functions showing the ambiguity problem and
a possible solution.

5. Numerical Results
In order to examine the effects of taking into account

CPOA on the estimation with actual algorithms, we per-
formed extensiveMonteCarlo simulations. We used an adap-
tive grid to speed up the execution of the algorithms. In all
search dimensions, the grid was narrowed so that it spanned
only five points in each dimension in any given iteration. If
the argument of the maximum of the criterion function was
at an edge of the grid, calculation was repeated after shifting
the grid by three points in the direction of that edge. This
was repeated until the argument of the maximum was not
at any edge of the grid, which ended the current estimation.
The number of simulation runs at each SNR value was 8192.
The spacings in the grid were determined by observing the
convergence of results with their change. The grid spanned
a narrow interval around expected parameter values, in order
to achieve a satisfactory precision at a moderate computation
complexity. As a consequence, we included only one crite-
rion function lobe into the grid, so the ambiguity problem
due to using CPOAs did not influence the results. All of the
results shown in figures in this section were generated using
the first of the modulatable orthogonal sequences proposed
in [17] of different lengths N . It is chirp-like so the parameter
estimation errors are correlated, see [8].

Figures 4 and 5 present MSE curves for algorithms
A and B versus SNR for frequency offset Ω and relative time
delay τ estimation, respectively. All 3 parameters ϕ, Ω and
τ are considered unknown (case 1). If not otherwise stated,
we consider that ϕ and ϕ1 are both either known or unknown,
and similarly for pairs (Ω,Ω1) and (τ, τ1). The normalized

Fig. 4. CRB and MSE for frequency offset estimation when all
the parameters are unknown.
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Fig. 5. CRB andMSE for TDOA estimation when all the param-
eters are unknown.

Fig. 6. a) Dependence of phase offset CRB and MSE on carrier
frequency. b) Dependence of TDOA CRB and MSE on
carrier frequency.

circular carrier frequency, Ωc, was set to 2π100, whereas
N ∈ {256, 1024, 4096}. Appropriate CRB curves are dis-
played as well. Algorithm B closely follows the CRB over
the entire range of observed SNRs and it outperforms Algo-
rithm A at lower SNRs, which deviates in this region due
to not relying on knowledge of the transmitted signal. The
results do not depend on Ωc (based on numerical results).
The information embedded in CPOA is lost because the ini-
tial phases are unknown, so there are no estimation accuracy
gains in this case. As expected, the MSEs decrease with the
increase of N and SNR.

Figure 6 a) shows the dependance of ϕ MSE on Ωc,
in case 1 (in which τ is unknown) for N = 4096, and
Ωc/(2π) ∈ {10, 100, 1000}. These values forΩc roughly cor-
respond to UWB, LTE and GSM cases, respectively. Note
that, since CRBs do not take into account that ϕ ∈ [−π, π),
CRB curves surpass the correspondingMSE curves. A small
error in TDOA estimation can produce a large error in the ini-
tial phase estimate due to the exp(−jΩcτ) phase term and this
error increases linearly with Ωc. For comparison, the MSE
curves for case 2 (time delays are known) are displayed as

well. We show results only for Ωc = 2π100 as these curves
are not dependent on Ωc, see (29) (in this case the term
exp(−jΩcτ) induces no errors). This implies that knowing
the time delays as accurately as possible is crucial for phase
offset estimation.

Figure 6 b) shows τ MSE for case 3, for N = 4096,
and Ωc/(2π) ∈ {10, 100, 1000}. It can be seen that the MSE
decreases withΩc. For comparison, we also present theMSE
curves for case 1, for Ωc = 2π100, as these curves do not de-
pend on carrier frequency. The results for case 3 show that τ
RMS error is by 1 to 3 orders of magnitude lower than 1/Ωc,
which presents a significant reduction of TDOA RMS error
compared to the estimation techniques not using the carrier
phase, which have an RMS error 1 to 3 orders of magnitude
lower than 1/B, similar to our methods in case 1 (see Fig. 5).
The main reason for this accuracy gain is the correlation be-
tween τ and ϕ due to the exp(−jΩcτ) term, so this benefit
from taking into account carrier phase information is only
available when ϕ is known.

Let the carrier frequency be νc = 2 GHz, the signal
bandwidth B = 5 MHz, the signal-to-noise ratio 15 dB, and
N = 1024. This implies that Ωc = 2π400. In case 3 Al-
gorithm A then gives τ RMS error of 2.18 × 10−6 samples
(therefore it implicitly shows the dependence on B), which is
4× 10−13 s, which in propagation distance equals to 120 µm.
This is 0.0008λc, where λc is the carrier wavelength.

Instead of a chirp-like sequence, realizations of Gaus-
sian random processes have also been tested. On average,
the results were only slightly better. Based on the esti-
mated mean-to-standard-deviation ratios from simulations
(not shown here), the estimators are unbiased.

6. Conclusion
In this paperwe have analyzed the impacts of taking into

account CPOA on the time, phase, and frequency shifts es-
timation accuracy in a distributed frequency-unlocked time-
synchronized 2-channel receiving system. CRBs and numer-
ical results were used to determine under which conditions
gains were achievable and to quantify them. If all three types
of parameters are unknown, CPOA creates no gains in the ac-
curacy. On the contrary, the initial phase error is increased.
In the case of unknown phase and frequency offsets, taking
into account CPOA does not influence the estimation accu-
racy. In the case of unknown TDOA only, CPOA drastically
improves the accuracy, so that an RMS error 1 to 3 orders of
magnitude lower than the inverse of the carrier frequency can
be achieved, if the ambiguity problem is solved. If CPOA
were not used in this case, the achievable error would be 1 to
3 orders ofmagnitude lower than the inverse of the bandwidth
at best. The proposed algorithms have MSEs that approach
the CRBs. We believe that this analysis shows how far the
estimation accuracies can be pushed by exploiting CPOA,
and which conditions have to be met to have TDOA esti-
mation accuracy good enough to be used, for example, for
beamforming by a distributed antenna array.



RADIOENGINEERING, VOL. 26, NO. 4, DECEMBER 2017 1149

Acknowledgments
This work was supported by national project TR32028

“Advanced Techniques for Efficient Use of Spectrum inWire-
less Systems.”

References

[1] ROGALIN, R., BURSALIOGLU, O., PAPADOPOULOS, H.,
et al. Scalable synchronization and reciprocity calibration for
distributed multiuser MIMO. IEEE Transactions on Wireless
Communications, Apr. 2014, vol. 13, no. 4, p. 1815–1831.
DOI: 10.1109/TWC.2014.030314.130474

[2] RAHMAN, M. M., BAIDOO-WILLIAMS, H. E., MUDUMBAI,
R., et al. Fully wireless implementation of distributed beam-
forming on a software-defined radio platform. In Proceedings of
the 11th International Conference Information Processing in Sen-
sor Networks (IPSN). Beijing (China), Apr. 2012, p. 305–316.
DOI: 10.1109/IPSN.2012.6920945

[3] BALAN, H. V., ROGALIN, R., MICHALOLIAKOS, A. et al.
AirSync: Enabling distributed multiuser MIMO with wull spatial
multiplexing. IEEE/ACM Transactions on Networking, Jan. 2013,
vol. 21, no. 6, p. 1681–1695. DOI: 10.1109/TNET.2012.2230449

[4] RAHUL, H. S., KUMAR, S., KATABI, D. JMB: scaling wire-
less capacity with user demands. In Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architec-
tures, and protocols for computer communication. Helsinki (Finland),
Aug. 2012, p. 235–246. DOI: 10.1145/2342356.2342401

[5] MUDUMBAI, R., BROWN III, D. R., MADHOW, U. et al. Dis-
tributed transmit beamforming: Challenges and recent progress.
IEEE Communications Magazine, Feb. 2009, vol. 47, no. 2,
p. 102–110. DOI: 10.1109/MCOM.2009.4785387

[6] YEREDOR, A. On passive TDOA and FDOA localization using
two sensors with no time or frequency synchronization. In Proceed-
ings of the IEEE International Conference on Acoustics, Speech and
Signal Processing. Vancouver (Canada), May 2013, p. 4066–4070.
DOI: 10.1109/ICASSP.2013.6638423

[7] WAX, M. The joint estimation of differential delay, Doppler, and
phase. IEEE Transactions on Information Theory, Sep. 1982, vol. 28,
no. 5, p. 817–820. DOI: 10.1109/TIT.1982.1056563

[8] YEREDOR, A., ANGEL, E. Joint TDOA and FDOA estimation:
A conditional bound and its use for optimally weighted localization.
IEEE Transactions on Signal Processing, Apr. 2011, vol. 59, no. 4,
p. 1612–1623. DOI: 10.1109/TSP.2010.2103069

[9] FRIEDLANDER, B. On the Cramer-Rao bound for time delay and
Doppler estimation. IEEE Transactions on Information Theory, May
1984, vol. 30, no. 3, p. 575–580. DOI: 10.1109/TIT.1984.1056901

[10] STEIN, S. Differential delay/Doppler ML estimation with unknown
signals. IEEE Transactions on Signal Processing, Aug. 1993, vol. 41,
no. 8, p. 2717–2719. DOI: 10.1109/78.229901

[11] KNAPP, C. H., CARTER, G. C. The generalized correlation method
for estimation of time delay. IEEE Transactions on Acoustics, Speech,
and Signal Processing, Aug. 1976, vol. 24, no. 4, p. 320–327.
DOI: 10.1109/TASSP.1976.1162830

[12] WEISS, A.,WEINSTEIN, E. Fundamental limitations in passive time
delay estimation – Part I: Narrow-band systems. IEEE Transactions
on Acoustics, Speech, and Signal Processing, Apr. 1983, vol. 31,
no. 2, p. 472–486. DOI: 10.1109/TASSP.1983.1164061

[13] SCHERHÄUFL, M., PICHLER,M., SCHIMBÄCK, E., et al. In-
door localization of passive UHF RFID tags based on phase-
of-arrival evaluation. IEEE Transactions on Microwave Theory
and Techniques, Dec. 2013, vol. 61, no. 12, p. 4724–4729.
DOI: 10.1109/TMTT.2013.2287183

[14] KASTELLA, K., MUDUMBAI, R., STEVENS, T. Frequency es-
timation in the presence of cycle slips: Filter banks and error
bounds for phase unwrapping. 2012 IEEE Statistical Signal Pro-
cessing Workshop (SSP). Ann Arbor (USA), Aug. 2012, p. 277–280.
DOI: 10.1109/SSP.2012.6319681

[15] KAY, S. M. Fundamentals of Statistical Signal Processing: Esti-
mation Theory. Upper Saddle River (USA): Prentice Hall, 1993.
ISBN: 978-0133457117

[16] VAN TREES, H. L. Detection, Estimation, and Modulation Theory,
Optimum Array Processing (Part IV). New York (USA): Wiley, 2002.
ISBN: 9780471093909

[17] SUEHIRO N., HATORY, M. Modulatable orthogonal sequences
and their application to SSMA systems. IEEE Transactions on
Information Theory, Jan. 1988, vol. 34, no. 1, p. 93–100.
DOI: 10.1109/18.2605

About the Authors . . .

Miloš JANJIĆ received B.S. and M.Sc. degrees in Electri-
cal Engineering from the School of Electrical Engineering,
University of Belgrade, in 2009 and 2011, respectively. His
research interests include array processing, cognitive radio,
distributed MIMO, localization. He is currently working
towards the Ph.D. degree.

Nenad VUKMIROVIĆ graduated from The Mathematical
High School in Belgrade in 2007. He received awards in
competitions in mathematics and physics for primary and
secondary schools. He received B.S. and M.Sc. degrees at
the School of Electrical Engineering, University of Belgrade,
in 2011 and 2013, respectively. He is currently working to-
wards the Ph.D. degree in digital signal processing.

Miljko ERIĆ was engaged in research and development in
the field of radio-frequency spectrum monitoring for almost
30 years. Now he is with the School of Electrical Engineer-
ing, University of Belgrade where he teaches Antenna ar-
rays in telecommunication systems (master studies), Spatio-
temporal signal processing, and Processing of signals from
microphone arrays (Ph.D. studies). His current research in-
terests include digital signal and array processing of radio
and acoustic signals, direct localization, direction finding,
cognitive radio, spectrum sensing, UWB, OFDM.



1150 M. JANJIC, ET AL., TDOA, FREQUENCY AND PHASE OFFSETS ESTIMATION TAKING INTO ACCOUNT CPOA

Appendix
The first and the second partial derivatives of the log-

likelihood function

G = const +
1
σ2

N−1∑
k=0

(
|s1(k) − x1(k) |2 + |s2(k) − x2(k) |2

)
of the signal model in this paper with respect to ϕ1, ϕ, Ω1,
Ω, τ1, and τ are given in the following text. Substitutions

s1(k) = exp(j(ϕ1 +Ω1k −Ωcτ1))s(k − τ1),
s2(k) = exp(j(ϕ1 + ϕ +Ω1k +Ωk −Ωcτ1 −Ωcτ))×

s(k − τ1 − τ),
sp1(k) = exp(j(ϕ1 +Ω1k −Ωcτ1))s′(k − τ1),
sp2(k) = exp(j(ϕ1 + ϕ +Ω1k +Ωk −Ωcτ1 −Ωcτ))×

s′(k − τ1 − τ),
ss1(k) = exp(j(ϕ1 +Ω1k −Ωcτ1))s′′(k − τ1),
ss2(k) = exp(j(ϕ1 + ϕ +Ω1k +Ωk −Ωcτ1 −Ωcτ))×

s′′(k − τ1 − τ)

and equalities

∂

∂α
|z |2 = 2 Re

(
z∗
∂z
∂α

)
,
∂s1(k)
∂τ1

= −jΩcs1(k) − sp1(k),

∂s1(k)
∂τ

= 0;
∂s2(k)
∂τ1

=
∂s2(k)
∂τ

= −jΩcs2(k) − sp2(k),

∂sp1(k)
∂τ1

= −jΩcsp1(k) − ss1(k),
∂sp1(k)
∂τ

= 0,

∂sp2(k)
∂τ1

=
∂sp2(k)
∂τ

= −jΩcsp2(k) − ss2(k)

are used in the derivation. Since the only terms in G that
depend on (ϕ1, ϕ,Ω1,Ω, τ1, τ) are s1(k) and s2(k), the first
derivatives are

∂G
∂ϕ1
=

2
σ2 Re

N−1∑
k=0

j
(
x∗1(k)s1(k) − |s(k − τ1) |2+

x∗2(k)s2(k) − |s(k − τ1 − τ) |2
)
,

∂G
∂ϕ
=

2
σ2 Re

N−1∑
k=0

j
(
x∗2(k)s2(k) − |s(k − τ1 − τ) |2

)
,

∂G
∂Ω1

=
2
σ2 Re

N−1∑
k=0

j k
(
x∗1(k)s1(k) − |s(k − τ1) |2+

x∗2(k)s2(k) − |s(k − τ1 − τ) |2
)
,

∂G
∂Ω
=

2
σ2 Re

N−1∑
k=0

j k
(
x∗2(k)s2(k) − |s(k − τ1 − τ) |2

)
,

∂G
∂τ1
=

2
σ2 Re

N−1∑
k=0

(
jΩc

(
|s(k − τ1) |2−

x∗1(k)s1(k)
)
+ (s1(k) − x1(k))∗ sp1(k)+

jΩc
(
|s(k − τ1 − τ) |2 − x∗2(k)s2(k)

)
+

(s2(k) − x2(k))∗ sp2(k)
)
,

∂G
∂τ
=

2
σ2 Re

N−1∑
k=0

(
jΩc

(
|s(k − τ1 − τ) |2−

x∗2(k)s2(k)
)
+ (s2(k) − x2(k))∗ sp2(k)

)
.

The second derivatives are

∂2G
∂ϕ2

1
= −

2
σ2 Re

N−1∑
k=0

(
x∗1(k)s1(k) + x∗2(k)s2(k)

)
,

∂2G
∂ϕ1∂ϕ

=
∂2G
∂ϕ2 = −

2
σ2 Re

N−1∑
k=0

x∗2(k)s2(k),

∂2G
∂ϕ1∂Ω1

= −
2
σ2 Re

N−1∑
k=0

k
(
x∗1(k)s1(k) + x∗2(k)s2(k)

)
,

∂2G
∂ϕ1∂Ω

=
∂2G
∂ϕ∂Ω1

=
∂2G
∂ϕ∂Ω

= −
2
σ2 Re

N−1∑
k=0

k x∗2(k)s2(k),

∂2G
∂Ω2

1
= −

2
σ2 Re

N−1∑
k=0

k2
(
x∗1(k)s1(k) + x∗2(k)s2(k)

)
,

∂2G
∂Ω1∂Ω

=
∂2G
∂Ω2 = −

2
σ2 Re

N−1∑
k=0

k2x∗2(k)s2(k),

∂2G
∂ϕ1∂τ1

=
2
σ2 Re

N−1∑
k=0

(
Ωcx∗1(k)s1(k) − j x∗1(k)sp1(k)+

Ωcx∗2(k)s2(k) − j x∗2(k)sp2(k)
)
,

∂2G
∂ϕ1∂τ

=
∂2G
∂ϕ∂τ1

=
∂2G
∂ϕ∂τ

=

2
σ2 Re

N−1∑
k=0

(
Ωcx∗2(k)s2(k) − j x∗2(k)sp2(k)

)
,

∂2G
∂Ω1∂τ1

=
2
σ2 Re

N−1∑
k=0

(
kΩcx∗1(k)s1(k) − j k x∗1(k)sp1(k)+

kΩcx∗2(k)s2(k) − j k x∗2(k)sp2(k)
)
,

∂2G
∂Ω1∂τ

=
∂2G
∂Ω∂τ1

=
∂2G
∂Ω∂τ

=

2
σ2 Re

N−1∑
k=0

(
kΩcx∗2(k)s2(k) − j k x∗2(k)sp2(k)

)
,

∂2G
∂τ2

1
=

2
σ2 Re

N−1∑
k=0

(
−Ω2

c x∗1(k)s1(k)+

jΩc
(
x∗1(k) + s∗1(k)

)
sp1(k) − ���sp1(k)���

2
−

Ω
2
c x∗2(k)s2(k) + jΩc

(
x∗2(k) + s∗2(k)

)
sp2(k)−

���sp2(k)���
2
− (s1(k) − x1(k))∗

(
jΩcsp1(k) + ss1(k)

)
−

(s2(k) − x2(k))∗
(
jΩcsp2(k) + ss2(k)

) )
,

∂2G
∂τ1∂τ

=
∂2G
∂τ2 =

2
σ2 Re

N−1∑
k=0

(
−Ω2

c x∗2(k)s2(k)+

jΩc
(
x∗2(k) + s∗2(k)

)
sp2(k) − ���sp2(k)���

2
−

(s2(k) − x2(k))∗
(
jΩcsp2(k) − ss2(k)

) )
.


