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Abstract. The paper describes experiments with statistical 
approaches to automatic detection, localization, and clas-
sification of the basic types of artifacts in the synthetic 
speech produced by the Czech text-to-speech system using 
the unit selection method. The first experiment is aimed at 
artifact detection by the analysis of variances (ANOVA) 
and hypothesis testing. The second experiment is focused 
on localization of the detected artifacts by the Gaussian 
mixture models (GMM). Finally, the developed open-set 
artifact classifier is described. The influence of the feature 
vector length and structure on the resulting artifact detec-
tion accuracy is analyzed together with other factors af-
fecting the stability of the artifact detection process. Fur-
ther investigations have shown a relatively great influence 
of the number of mixtures and the type of a covariance 
matrix on the artifact classification error rate as well as on 
the computational complexity. The obtained experimental 
results confirm the functionality of the artifact detector 
based on the ANOVA and hypothesis tests, and the GMM-
based artifact localizer and classifier. The described sta-
tistical approaches represent the alternatives to the stand-
ard listening tests and the manual labeling of the artifacts. 

Keywords 
Quality of synthetic speech, analysis of variances 
(ANOVA), Gaussian mixture models (GMM) 
classification, text-to-speech (TTS) system 

1. Introduction 
The synthetic speech produced by text-to-speech 

(TTS) systems is increasingly used to make dialogue man-
agement in human-machine interaction more effective. 
People involved in such a dialogue usually demand high 
quality, naturalness, and intelligibility of the generated 
synthetic speech. Various speech synthesis techniques may 
be implemented in the TTS systems. The most widely used 
one is the corpus-based speech synthesis using the unit 
selection (USEL) [1], i.e. selection of the largest suitable 
segments from the natural speech according to various 

phonetic, prosodic, and positional criteria, commonly 
known as the target cost. These speech segments should be 
smoothly concatenated by minimizing the concatenation 
cost [2], [3]. However, any concatenation point may be-
come a source of an audible artifact in the finally generated 
speech [4]. Apart from the wrong description of the natural 
original speech (such as wrong annotation and/or segmen-
tation [5]), the most dominant causes of the artifacts are 
related mainly to discontinuities of the fundamental fre-
quency in the voiced speech [6]. From among the other 
reasons of serious artifacts, time inconsistencies or spectral 
mismatches at concatenation points can be mentioned [7]. 
In the process of the TTS system development, all these 
artifacts must be identified by evaluation methods working 
without any human interaction. In such an objective 
method, the automatic speech recognition system yields the 
final evaluation in the form of a recognition score. Here, 
the Gaussian mixture models (GMM) [8] are mostly used. 
In general, the automatic artifact detection, localization, 
and classification can help in the whole process of the TTS 
system creation. It holds especially for the artifacts caused 
by wrong annotation or those found in the already gener-
ated synthetic sentence. If their location is known, they can 
be eliminated in the post-processing or directly during the 
unit selection as a component part of the concatenation 
cost. 

This work was motivated mainly by the aim of find-
ing an alternative objective approach to the standard lis-
tening tests for detection and localization of the artifacts in 
the synthetic speech. It is important in the cases when the 
listening test is rather time consuming and relatively diffi-
cult due to small audible differences. In addition, the main 
disadvantage of the human evaluation lies in its subjectiv-
ity, lack of reproducibility (different obtained results for 
repeated tests even from the same subjects), and depend-
ence on ambient conditions. On the other hand, the main 
advantage of the automatic evaluation system is its func-
tion without human interaction and possibility of direct 
numerical matching of the obtained results using the ob-
jective comparison criterion. 

The paper describes three basic experiments with 
developed automatic speech artifact detector, localizer, and 
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classifier. The functionality of this system is verified and 
its optimal settings are found. The evaluated objective 
results are compared with those obtained by the listening 
test as a subjective rating method. 

2. Method 
Our previous experience with the TTS system based 

on the USEL synthesis method has shown appearance of 
six basic types of speech artifacts [9], [10]: 

1. local increase of the signal RMS (energy) - Artf1, 

2. local decrease of the signal RMS - Artf2, 

3. local increase of the fundamental frequency F0 - Artf3, 

4. local decrease of F0 - Artf4, 

5. superposition of the local energy and the F0 increase/ 
decrease - Artf5, 

6. incorrectly chosen or exchanged speech units - Artf6. 

Principally, the proposed artifact automatic detection, 
localization, and classification system consists of three 
parts: 

 artifact detection based on the analysis of variances 
(ANOVA) described in the previous paper [9], 

 artifact localization developed in concordance with its 
first stage dealt with in [10] where the position of the 
GMM score maximum coincides with the location of 
the artifact inside the tested sentence, 

 artifact type classification also based on the GMM 
approach.  

The function of the automatic system begins with the 
analysis of the tested input sentence. Then, the speech 
spectral and prosodic features are determined and subse-
quently applied in the ANOVA detector block making 
a decision whether a speech artifact is present or not. In 
this step, the database of the clean synthetic speech 
(DBCLEAN) and the database of the synthetic speech with 
artifacts (DBARTF) are used – see the block diagram in Fig. 1. 

AArrttff11  

AArrttff22  

AArrttff33  

  

AArrttffXX  

Artifact type

ANOVA artifact 
detector 

DBCLEAN 

DBARTF 

UUnniitteedd mmooddeellss ((ssttaarrtt,,  
bbooddyy,,  aanndd  eenndd  ppaarrttss))  

GMM artifact 
classifier 

Artifact 
position 

Speech 
features 

determination
GMM artifact 

localizer 

ROI 
selection 

Tested 
input 

sentence 

GMM models 
creation of 

artifact

Start 
Body 
End 

Of original 
clean speech

Of speech with
an artifact 

DBARTF 2

Databases of spectral and 
prosodic features for male/female

 
Fig. 1. Basic block diagram of the proposed artifact detection, 

localization, and classification system. 

If the sentence is marked as having an artifact, other types 
of spectral and prosodic parameters are used for artifact 
localization using the trained GMM models of the starting/ 
ending parts and the bodies of the artifacts (database 
DBARTF2). Once the artifact is localized, the nearest region 
of interest (ROI) is determined and the united GMM 
models of the starting, ending, and body parts are used for 
the final classification of the artifact type (see the example 
in Fig. 2). 

2.1 Determination of Speech Spectral 
Features and Prosodic Parameters 

The speech artifact detection method begins with 
listening of the speech signal and its evaluation using the 
standard audio software or the program system dedicated to 
speech processing, e.g. Praat [11]. After detection of 
an audible artifact by repeated listening, the next step is 
visual evaluation of the speech signal. In this way, the 
original speech material is selected and prepared for 
building of the basic speech feature databases DBCLEAN and 
DBARTF. 
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Fig. 2. Demonstration of differences in speech signals: the clean sentence “send04g” (a), the sentence with an artifact “send04b”and its ROI 
(b), detail of the clean signal in the ROI (c), detailed part in the artifact neighborhood with the determined start/end locations (d). 
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Spectral features like the mel-frequency cepstral coef-
ficients together with the energy and the prosodic parame-
ters are mostly used in the GMM-based speaker identifica-
tion or verification [12], [13]. Among the other spectral 
properties, e.g. the first five formants can be used in psy-
chological stress detection in speech [14]. In our experi-
ments the features differ for the ANOVA detection and the 
GMM localization/classification of the artifacts. In general, 
three types of speech features can be determined: 

1. supra-segmental parameters  speech signal energy 
calculated from the first cepstral coefficient c0 (Enc0) 
or by the autocorrelation coefficient r0 (Enr0), differ-
ential F0 microintonation (F0DIFF), jitter, shimmer, 
zero-crossing period (LZCR), and frequency (FZCR). 

2. basic spectral features  first two formants (F1, F2), 
their ratio (F1/F2), spectral tilt (Stilt), spectral centroid 
(Scentr), statistical measures describing the spectral 
shape: spectral spread (Sspread), skewness (Sskew), and 
kurtosis (Skurt). 

3. supplementary spectral features  harmonics-to-noise 
ratio (HNR), spectral flatness measure (SFM), Shan-
non spectral entropy (SHE), Rényi spectral entropy 
(RE), and Tsallis spectral entropy (TE). 

The determined speech features are structured as 
vectors with the length NSF and stored in the DBCLEAN and 
DBARTF databases separately for male and female voices. 
The DBARTF2 database comprises the separate speech fea-
tures determined from the start, end, and body parts of the 
artifacts for localization and classification. For the GMMs 
creation and training, the representative statistical values 
(mean, median, rel. maximum, rel. minimum, skewness, 
kurtosis, etc.) are calculated from the original speech 
features. 

To obtain the relevant speech features from DBCLEAN 
and DBARTF databases the criterion of mutual independence 
between the synthetic speech with and without artifacts is 
applied. The final value of the mutual independence for 
every feature and every category is evaluated using three 
parameters: 

1. relative RMS distance DRMSrel between the histograms 
of features extracted from the DBCLEAN and DBARTF, 

2. absolute distance between group means D12 after the 
multiple comparison of the group means applied to 
ANOVA statistical results, 

3. hypothesis probability resulting from the Wilcoxon 
test [15] or the Mann-Whitney U test [16] comparing 
whether two samples come from identical distribu-
tions with equal medians or they do not have equal 
medians. 

For all the three parameters, the features are sorted, in 
such a way that the higher the index, the lower the mutual 
independence. The parameter quantifying the mutual inde-
pendence of the databases for every feature (MUTISF) is 
represented by the resulting mean position in the category 
calculated as 

 1 1 2 2 3 3
SF

SFC

1Mean   ,   ,   

0

hcw cr cw cr cw cr
MUTI

hN

  
  

(1) 

where NSFC is the number of features in the category, cr1 is 
a criterion by DRMSrel, cr2 by D12, cr3 by the hypothesis 
probability, and cw1-3 are individual weights depending on 
the importance of the criterion. If the null hypothesis can-
not be rejected for any feature, it is penalized by the high-
est index of the sorted vector NSFC. The features are se-
lected by two rules: exclusion of the features with very 
small null hypothesis probabilities, and elimination of 
those with small RMS distances between the speech with 
and without artifacts. This feature separation process is 
performed with the speech material comprising sentences 
spoken by all speakers. 

2.2 Artifact Detection Based on ANOVA 

The first step of our speech artifact identification ex-
periment based on ANOVA analysis is focused on testing 
whether there is a common mean of speech features from 
several groups. Besides the ANOVA F-test giving the ratio 
of variances between and within groups we use the Ansari-
Bradley probability test specifying whether two dis-
tributions are the same or they differ in their variances. For 
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Fig. 3. Block diagram of the developed classifier using 

comparison of group means and the hypothesis test 
from the ANOVA statistics. 
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Fig. 4. Multiple comparison of group means of ANOVA re-

sults for jitter. Distances: DT1 – tested and clean sen-
tences (0.06), DT2 – tested sentences and those with 
artifacts (0.02), D12 – sentences with and without arti-
facts (0.04); male sentence “send04b” with an artifact. 
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a chosen significance level the resulting logical value “0” 
denotes that the null hypothesis cannot be rejected and the 
value “1” indicates that it can be rejected. The overall 
structure of the method can be seen in Fig. 3. 

The speech spectral properties and prosodic parame-
ters obtained during analysis of the tested sentence are used 
to calculate the corresponding basic statistical parameters 
and the occurrence distributions of the feature values. Fur-
ther, they are processed by the one-way ANOVA analysis. 
The distances between the means of the groups are visual-
ized using the multiple comparisons of groups (see Fig. 4). 
The minimum absolute value of the group distance is found 
from among the distances between the group means: 

 DT1  the tested sentence and the clean sentence, 

 DT2  the tested sentence and the one with an artifact, 

 D12  the clean sentence and the one with an artifact. 

For each of NSF speech features these results yield the 
decision about the tested sentence (clean/artifact), and the 
Ansari-Bradley test between probability distributions gives 
the probability and the logical output value (0/1). 

2.3 GMM-based Artifact Localization 

The GMMs represent a linear combination of multiple 
Gaussian probability distribution functions of the input 
data vector. For their creation it is necessary to determine 
the covariance matrix, the vector of means, and the weights 
from the input training data. In general, spherical, diagonal, 
or full covariance matrices may be used. If the elements of 
the feature vectors are correlated, their number must be 
relatively high and satisfactory approximation can be 
achieved only with the full covariance matrix. However, in 
the speaker identification tasks, the diagonal covariance 
matrix is used due to its lower computational complexity. 
The maximum likelihood function of the GMM is found by 
the expectation-maximization iteration algorithm. It is 
controlled by the number of mixtures NMIX and the number 
of iterations. The classifier returns the probability that the 
tested utterance belongs to the GMM model. In the stand-
ard GMM classifier, the resulting class is given by the 
maximum overall probability of all the obtained scores 
corresponding to K output classes. Here, only one output 
class is defined and the GMM classifier processes N fea-
ture vectors corresponding to N frames of the tested 
sentence. 

The main idea of the proposed localization method is 
based on the assumption of correlation between the posi-
tion of the artifact and the score maximum from the vector 
of normalized scores obtained by comparison between the 
currently tested speech frame and the trained GMM model 
(see Fig. 5). Three types of the GMM models of the arti-
facts are created and trained for each voice: 

a) starting part – speech signal in the left margin frame 
of the artifact and ±i frames in its neighborhood, 

b) ending part – speech signal in the right margin frame 
of the artifact and ±i frames in its neighborhood, 
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Fig. 5. Demonstration of artifact localization using 3 GMM 

models for start, end, and body parts: sentence 
“sent04b” with a manually determined artifact (a), 
normalized GMM scores for 3 models (b). 
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Fig. 6. Block diagram of the GMM classifier for artifact 

localization. 

c) body of the artifact – speech signal spanning from the 
starting to the ending frame. 

In the classification phase, the input feature vectors 
are compared with these 3 trained GMM models to get 3 
output vectors of normalized scores. For final localization 
of the artifact position the first 3 maxima are evaluated by 
logical matching with the predefined rules (see Fig. 6) 
covering the situations when the localization algorithm 
might fail – the starting frame position must precede the 
ending one, the artifact body must lie between the start and 
the end, etc. If one of these conditions is not fulfilled, the 
position will be assigned to the 2nd or the 3rd determined 
score maximum. Only one artifact within the tested sen-
tence can be found by this approach and the artifact pres-
ence must be confirmed by another detection method, e.g. 
ANOVA-based approach. 

2.4 Classification of Artifact Types 

The artifact types 1-5 occur relatively often, so the 
corresponding changes of prosodic and spectral parameters 
may be defined appropriately and the classification can be 
carried out with a relatively high precision. In the last class, 
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Fig. 7. Block diagram of the GMM-based open-set classifier 

for artifact identification after its detection and 
localization. 

the amount of reference data is not sufficient for the GMM 
model creation and training due to a different context of 
an artifact each time it appears. Therefore, the GMM-based 
classifier must be created in the open set with the 6th class 
containing all artifacts that had not been classified as the 
types 1-5. 

The last part of our experiment begins with training of 
the united GMM models on speech signals of the start, 
body, and end of the artifact with ±i frames in the left/right 
vicinity of ROI. In the classification phase, the input fea-
ture vectors from the tested sentence are compared in par-
allel with 3 trained GMMs to obtain 3 output vectors of the 
normalized scores. These output scores are analyzed to 
determine the maximum overall probability in the dis-
criminator block performing basic classification to one of 
M output classes assigned to each of the processed speech 
feature vectors (see Fig. 7). Next, the class distribution 
based on histograms is constructed and the maximum oc-
currence is determined. The final classification block 
works with M+1 output classes – the virtual class is added 
to the basic closed set of M artifact types to create the 
open-set artifact identifier. The classification strategy is 
based on the consideration that when the class distribution 
has no dominant class, the whole tested sentence finally 
belongs to the 6th class. Practically, the maximum occur-
rence is compared with the threshold Tresh0 given as 
a ratio between the number of the currently processed 
frames and the number of the basic classes (M). 

3. Material, Experiments, and Results 
Three basic comparison experiments were performed 

within the research described in this paper: the first one is 
the verification of functionality of the ANOVA-based 
artifact detector using the synthetic speech produced by the 
Czech TTS system. The second experiment compares the 
automatically localized artifact position using the GMM-
based classifier. The third experiment consists in testing 

and verifying of the proposed automatic GMM-based arti-
fact type classifier. 

The correctness of selection of the ROI with the arti-
fact inside the tested sentence was checked for its influence 
on the accuracy and the stability of the classification re-
sults. In the auxiliary experiments we analyze the influence 
of different types of speech spectral features and supra-
segmental parameters on the resulting artifact detection 
accuracy. Next, the localization accuracy is analyzed using 
the artifact position relative error (APErel) and then com-
pared regarding the number of used GMM mixture compo-
nents. Furthermore, the dependence of the error rate of 
artifact classification (ERAC) on the number of GMM 
components and on the method of the covariance matrix 
calculation was analyzed. Finally, the computational com-
plexity (CPU processing time) was evaluated with the aim 
to find critical parts of the proposed algorithms and subse-
quently to make an optimization for real-time processing. 

3.1 Material and Processing Conditions 

The artifact detection, localization, and classification 
experiments use the synthetic speech produced by the 
Czech TTS system implementing the USEL synthesis 
method [17–19]. The main speech corpus was divided into 
two parallel groups of 40 declarative sentences of the 
male/female voices. The first group comprises the sen-
tences without any audible artifact designated as “clean”; 
the second group consists of the same sentences produced 
by the same male and female TTS voices with just one 
speech artifact in each sentence. All the sentences with 
duration 2.5 to 5 s were sampled at 16 kHz. The derived 
database of ROIs of the artifacts was used for training of 
the GMM models to classify the artifact types. Independ-
ence of the male/female voices during the training and the 
testing was achieved by the data k-fold cross-validation. 
The groups of sentences were divided by the ratio of 3:1 – 
three for the training and one for the testing/classification. 
Due to a limited number of sentences with “real” artifacts 
occurring during the TTS synthesis, the classical cross-
validation data selection could not be used in the GMM-
based artifact localization. Therefore, for the testing in the 
localization experiment, another 20 + 20 sentences with 
artifacts were derived by cutting or adding a sentence part, 
using a signal from another sentence, etc. to change the 
position of the artifact in the sentence. 

For determination of the MUTISF values 25 different 
types of speech features were tested: 10 prosodic parame-
ters, 10 basic spectral features, and 5 supplementary spec-
tral features (see the detailed results for the prosodic fea-
tures in Fig. 8a, the basic spectral features in Fig. 8b, the 
values for the supplementary spectral ones in Tab. 1). Due 
to statistical similarity between the “clean” and “artifact” 
groups, 10 features with the lowest mutual independence 
were omitted, so 15 speech features were used for ANOVA 
-based detection. In accordance with the previous research 
[10] the basic classification of artifacts in the speech uti-
lizes 6 feature sets of 9 items (Tab. 2). 
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Fig. 8. Feature positions in sorted vectors evaluated by 

DRMSrel, D12, and the probability of rejection of the null 
hypothesis for prosodic (a) and basic spectral features 
(b); for all voices, features with the zero hypothesis 
test value were further automatically omitted; the 
threshold was equal to 5. 

 

Feature 
 cr1 

order  
cr2 

order 
 cr3 

order 
MUTISF [-]

* Hypothesis** 

HNR 1 2 1 1.22 1 
SHE 2 1 2 1.43 1 
SFM 3 3 3 2.65 1 
RE 5 5 5 NSFC 0 
TE 5 5 5 NSFC 0 

* NSFC = 5; cw1 = 0.75, cw2 = 1, cw3 = 0.9. 
** For 5 % significance level, features with h = 0 were finally omitted, the 
threshold was equal to 3. 

Tab. 1. Detailed results of the mutual independence and the 
hypothesis values for the supplementary spectral 
category for all voices. 

 

 P0 P1 P2 P3 P4 P5 

SF1 Enr0 Enr0 Enr0 Enr0 Enr0 Enr0 
SF2 Enc0 Enc0 Enc0 Enc0 Scentr Scentr 
SF3 HNR Sspread F1/F2 HNR SFM HNR 
SF4 Scentr Stilt HNR Scentr SHE SHE 
SF5 SFM SFM FZRC SFM FZCR SFM 
SF6 SHE SHE LZCR SHE LZCR Sspread 
SF7 F0DIFF F0DIFF F0DIFF Sskew F0DIFF Sskew 
SF8 Jabs Jabs Jabs F1/F2 Jabs Skurt 
SF9 APrel APrel APrel APrel APrel Stilt 

Tab. 2. Internal structure of the tested speech feature sets  
P0-P5. Only features with MUTISF < NSFC and h = 1 
were used. 

Influence of different number of features with high 
mutual independence between the synthetic speech with 
and without artifacts was analyzed for three feature vector 
lengths: 5, 9, 15 (PN5, PN9, PN15). The shortest one PN5 
consists of the features with the first five smallest MUTISF: 
Enr0, HNR, F0DIFF, jitter, shimmer. The second one PN9 
includes also the features with the MUTISF value below the 
threshold containing the features of the set P3 for the male 
voice and P4 for the female voice. The extended vector 
PN15 consists of the features with MUTISF < NSFC and 
h = 1: Enc0, Enr0, HNR, Scentr, Sspread, Sskew, Stilt, SFM, SHE, 
F0DIFF, LZCR, FZCR, F1/F2, Jabs, APrel. According to the re-

sults published in [10], [20], the length of the input data 
vector for GMM training and testing was set to 16. 

The objective ANOVA-based evaluation was per-
formed separately for each gender. The resulting artifact 
detection accuracy was calculated from the number Xa of 
correctly identified artifact/clean sentences and the total 
number Nu of sentences as (Xa /Nu)  100 [%]. The artifact 
neighborhood before its beginning and after its end was set 
to ±11 frames in correlation with [10]. The artifact position 
relative error APErel in frames was calculated as the aver-
age of the absolute position error of the starting and the 
ending parts APEABSstart, APEABSend in every sentence as 

  ABSstart ABSend
rel O frames ,

2

APE APE
APE w


   (2) 

where wO is the frame shift for analysis chosen as one 
fourth of the frame in samples. To determine the dominant 
class inside the open-set classification the threshold was set 
experimentally to 1.2  Tresh0 (i.e. adding 20 % to the 
basic level given by the calculated P/M ratio). In all cases, 
the ROI was selected manually for further comparison and 
evaluation of the ERAC calculated from the number XC of 
the sentences with the correctly determined artifact class 
and the total number NT of the tested sentences as  

  C

T

1 100 % .
X

ERAC
N

 
   
 

 (3) 

The described speech signal processing was realized 
in the Matlab environment (ver. 2012a) and the basic func-
tions of the Nabney “Netlab” pattern analysis toolbox [21] 
were used in the GMM classifier. The computational com-
plexity was determined using the UltraBook with the fol-
lowing configuration: processor Intel(R) Intel i5-4200U at 
2.30 GHz, 8 GB RAM, and Windows 10 (64-bit) OS. 

3.2 ANOVA-Based Artifact Detection 

For verification of functionality of the ANOVA-based 
artifact detector the subjective artifact determination was 
performed using the conventional listening test “Synthetic 
speech quality evaluation – male / female voice” by the 
automated internet application located on the web page 
http://www.lef.um.savba.sk/scripts/itstposl2.dll. It had been 
accessible from June 15 to 30, 2014 and then the results 
were processed. Twenty one listeners (5 women, 16 men) 
took part in this subjective evaluation consisting of 42 
listening tests (21 male, 21 female voices). This internet 
application in the form of MS ISAPI/NSAPI DLL script 
runs on the server PC and communicates with the user 
within the framework of the HTTP protocol by means of 
HTML pages. The complete test consists of 10 evaluation 
sets with random selection of sentences. For each sentence 
there is a choice from three possibilities: “clean - without 
artifact”, “with an artifact”, or “other - cannot be recog-
nized”. The resulting confusion matrix of the results for the 
male/female voices is shown in Tab. 3, comparison of the 
artifact detection accuracy based on ANOVA and the lis-
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tening test can be seen in Fig. 9. The results obtained from 
the performed listening tests show principally high suc-
cessfulness in the subjective evaluation of the synthetic 
speech artifacts. Particularly, the best results are achieved 
in the case of the male voice (approx. 95%) in comparison 
with the accuracy of 89% for the female voice.  
 

Male Clean Artifact Other 
Clean 94.28  2.86 2.86 
Artifact 3.81 95.24 0.95 

 

Female Clean Artifact Other 
Clean 79.05 12.38 8.57 
Artifact 1.91 97.14 0.95 

Tab. 3. Confusion matrices of evaluation of the listening test 
results of clean/artifact sentences for the male and 
female voices separately. 

 
Fig. 9. Bar-graph comparison of the mean clean/artifact 

recognition accuracy based on ANOVA and the 
listening test (b) for the male (M) and the female (F) 
voice gender. 
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Fig. 10. Summary results of the clean/artifact speech detection 

accuracy for different feature sets: results for male (a), 
and female (b) voices. 

 

Feature 
vector type 

Mean artifact detection accuracy [%] 

Cleanmale/female Artfmale/female Summale/female 

PN5 
76.0 / 70.0 

(27.4 / 28.3) 
74.7 / 68.0 

(32.8 / 30.3) 
75.3/69.0 

PN9 
95.6 / 85.6 

(13.3 / 18.2) 
94.4 / 84.4 

(16.7 / 21.4) 
95.0/85.0 

PN15 
80.0 / 72.0 

(26.9 / 27.8) 
76.0 / 70.7 

(28.5 / 29.1) 
78.0/71.3 

Tab. 4. The mean artifact detection accuracy (its standard 
deviation in parentheses) for different number of used 
speech features; results determined for male/female 
voices. 

In this part of the experiment, the following two 
auxiliary investigations were performed: 

1. effect of the feature vector composition (sets P0-P5) 
on the clean/artifact detection accuracy (Fig. 10), 

2. effect of the number of used features on the mean 
clean/artifact speech detection accuracy (Tab. 4). 

Figure 10 shows that, for the male voice, the highest 
accuracy (94%) was achieved for the set P3 consisting of 
all three feature categories. The best accuracy (84%) for 
the female voice corresponds to a different mix of these 
three feature categories (set P4) being contrariwise almost 
the worst for the males. Generally, the artifact detection in 
the sentences was more successful for the male voice than 
for the female one. 

It might be caused by not finding the proper features 
for classification (in principle, for the female voice there is 
higher variability on the supra-segmental as well as on the 
spectral level). The second auxiliary ANOVA-based ex-
periment documents that the accuracy is greatly affected by 
limitation of the speech feature vector length NSF. Higher 
error rates were produced for the numbers of features 
lower than 9, however, for 15 features there is not adequate 
impact on the artifact detection accuracy as documented in 
Tab. 4. 

3.3 GMM-Based Artifact Localization 

The second basic experiment compares automatically 
localized artifact positions using the GMM-based classi-
fier. The positions determined manually by the Praat pro-
gram and by the listening were used to calculate APErel. In 
addition, two auxiliary experiments were realized with the 
aim to cover: 

1. effect of the number of mixtures NMIX = {16, 32, 48, 
64, 128} during GMM training on APEREL (Fig. 11), 

2. the computational complexity: CPU times of the 
GMM training and classification phases for different 
number of mixtures (Fig. 12). 
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Fig. 11. Final comparison of the APEREL values depending on 
the used number of GMM mixtures for male (a) and 
female (b) voices. 
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Fig. 12. Comparison of the computational complexity (CPU 

time in [s]) for different number of used GMMs in the 
artifact localization experiment; GCMtype= Full. 

The obtained results in this part of the experiment 
document proper functioning of the developed GMM-
based artifact localizer. The analysis has shown principal 
impact of different number of mixtures on the localization 
precision (see the bar-graph comparison in Fig. 11). For 
this reason, a suboptimum of 32/48 mixtures was finally 
applied. The complexity of computation depends on the 
number of applied mixtures only in the creation and train-
ing of the GMMs, not in the localization/classification. The 
bar-graph in Fig. 12 shows that the computation time is 10 
times higher for 128 mixtures than for 16 mixtures, how-
ever, unexpectedly, according to Fig. 11 the accuracy of 
fixing the artifact position decreases for more than 32/48 
mixtures in the case of the male/female voice. 

3.4 GMM-Based Artifact Classification 

The third experiment consists in testing and verifying 
whether the proposed automatic GMM-based classifier of 
artifacts is principally correct and produces sufficiently low 
ERAC – see the best results in the form of the confusion 
matrices in Tab. 5, 6 for the male/female voices. Then the 
influence of selection of ROI with an artifact in the tested 
sentence was compared (see the results in Tab. 7). Three 
auxiliary experiments were realized to analyze: 

1. influence of the number of mixtures NMIX = {4, 8, 
16, 32} on ERAC – see Tab. 8, 

2. the method of covariance matrix calculation during 
GMM training: GCMtype={’Spherical’, ‘Diagonal’, 
’Full’} – compare ERAC values in Tab. 9, 

3. the computational complexity: CPU times for the 
GMM training and classification using different types 
of covariance matrices for all voices (Tab. 10). 

The obtained results show that, if the ROI is not set 
and the whole sentence is analyzed, the error rate will be 
unacceptable especially for the virtual 6th class – compare 
 

 ArtfC1 ArtfC2 ArtfC3 ArtfC4 ArtfC5 ArtfC6 

ArtfC1 100 0 0 0 0 0 

ArtfC2 0 100 0 0 0 0 

ArtfC3 0 0 100 0  0 

ArtfC4 0 0 0 100 0 0 

ArtfC5 0 0 0 0 100 0 

ArtfC6 0 20 0 20 0 60 

Tab. 5. Confusion matrix of the artifact type GMM-based 
evaluation in [%]; male voice, NMIX = 16, GCMtype= Full. 

 

 ArtfC1 ArtfC2 ArtfC3 ArtfC4 ArtfC5 ArtfC6 

ArtfC1 100 0 0 0 0 0 

ArtfC2 0 100 0 0 0 0 

ArtfC3 0 0 100 0 0 0 

ArtfC4 0 0 0 100 0 0 

ArtfC5 0 50 0 0 50 0 

ArtfC6 0 0 0 0 0 100 

Tab. 6. Confusion matrix of the artifact type GMM-based 
evaluation in [%]; female voice, NMIX = 16, 
GCMtype = Full. 

 

Selection / 

ERAC [%] Artf1 Artf2 Artf3 Artf4 Artf5 Artf6 Mean

ROIs – correct 0 0 0 0 25 20 7.5 

Full sentences 62 51 57 48 72 85 62.5 

ROIs- incorrect 100 50 100 100 80 50 80 

Tab. 7. Dependence of mean ERAC on correctness of ROI 
selection in the tested sentence; for all voices, 
NMIX = 16, GCMtype = Full. 

 

Voice / 
ERAC [%] 

NMIX (GCMtype = Full) 

4 8 16 32 

Male 20.4 (24.7) 8.1 (13.3) 6.7 (16.3) 6.7 (16.3) 

Female 21.6 (34.8) 16.7 (25.8) 8.3 (20.4) 11.7 (20.4) 

Summary 21 12.4 7.5 9.2 

Tab. 8. Comparison of the mean ERAC and its standard 
deviation (in parentheses) depending on the number of 
GMM mixtures. 

 

Voice / 
ERAC [%] 

GCMtype (NMIX = 16) 

Spherical Diagonal Full 

Male 63.3 (29.4)) 11.7 (28.5) 6.7 (16.3) 

Female 76.7 (21.6) 16.7 (25.8) 8.3 (20.4) 

Summary 70 14.2 7.5 

Tab. 9. Comparison of the mean ERAC and its standard 
deviation (in parentheses) depending on the type of 
covariance matrix. 

 

Phase / CPU 
time [s] 

Covariance matrix type  

Spherical Diagonal Full 

 GMM Training 1.9 2.1 2.8 

 Classification 1.1 1.3 2.2 

Total time 3 4.1 4.3 

Tab. 10. Comparison of the computational complexity for 
different types of covariance matrices in the artifact 
classification experiment; NMIX = 16. 

the ERAC values in Tab. 7. Therefore, a detailed analysis is 
necessary for correct threshold setting for determination of 
the 6th class. Contrary to general expectations, the 
achieved mean ERAC values do not fall for NMIX > 16  
– they may even rise as documented in Tab. 8. Considering 
the fact that the ‘Spherical’ covariance matrix yields prac-
tically even 100% error rate in the majority of the tested 
artifact classes (over 70% in total), it is not suitable for this 
classification task – see the values in Tab. 9. The full co-
variance matrix and 16 mixtures were finally applied in our 
experiments to obtain an acceptable computational com-
plexity and good results of the ERAC parameter for both 
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male and female voices. As regards the influence of the 
type of the covariance matrix on the overall CPU time 
consumption, the maximum value was measured for the 
‘Full’ type and the minimum one for the ‘Spherical’ one – 
compare the numerical results in Tab. 10. 

4. Conclusions 
From the main point of view, the task of finding the 

alternative to the standard listening tests was fulfilled. The 
proposed and tested artifact detection, localization, and 
classification methods are functional and produce the re-
sults comparable with those obtained manually. The deter-
mined time durations of the performed tests and the listen-
ers’ feed-back information document differences between 
male and female listeners and their different approach in 
execution of the evaluation task: the female evaluators try 
to do it more carefully than the male ones resulting in 
a paradox – their results are practically worse than those of 
the male evaluators. At this point the “subjectivity” of the 
used method is well-founded and it also supports our aim 
to find objective evaluation methods. 

At present, only one male and one female voice are 
implemented in the tested Czech TTS system working with 
the USEL-based synthesis method [2, 6, 7]. Therefore, the 
speech features determined from the synthetized sentences 
are not actually gender-dependent (male/female voice), but 
speaker-dependent (according to the voices used for 
building of the TTS inventory). Collecting of the databases 
of speech features from the synthetized sentences with and 
without artifacts was very difficult and time consuming. 
Therefore, at present only a small number of sentences 
were processed for usage in the ANOVA artifact automatic 
detection experiment. The proper choice of the used speech 
features in the input feature vector is very important. How-
ever, the choice of the optimal feature set for the artifact 
detection is not universal – different feature sets had to be 
used for the male and female voices. Generally, the detec-
tion accuracy depends, first of all, on elimination of statis-
tical “similarities” between clean/artifact groups and 
a group of features from the tested sentence. In the case of 
the developed GMM-based artifact localizer, the realized 
auxiliary analysis has shown a considerable impact of dif-
ferent number of mixtures on the localization precision. 
Next, the existence of a principal influence of the accurate 
setting of the ROI on the precision of the artifact type clas-
sification was covered. If the ROI with the artifact is set 
incorrectly, the output error rate will rapidly increase up to 
100% making the whole artifact detection, localization, and 
classification system useless. The presented artifact detec-
tion system processes only one artifact in an analyzed sen-
tence. Two or more artifacts in one sentence could be 
found by dividing the speech signal into two parts and 
independent artifact detection and localization in each part. 
This step could be repeated several times, however, limited 
by the minimum time duration of the processed speech 
signal necessary for proper ANOVA analysis [9]. 

There are two imperfections which should be reme-
died in the near future to increase performance and accu-
racy of the whole developed artifact detection, localization, 
and classification system. The first drawback lies in the 
fact that mistakes caused by inappropriate segment dura-
tion are not treated as a special group of artifacts although 
they represent a considerable part of errors. At present, 
they are included in the 6th group but it could be worth 
distinguishing between the wrong segment length and the 
incorrect element. The second drawback stems from 
a relatively limited speech corpus of 40 sentences. A larger 
database with a sufficient number of sentences must be 
built to integrate all recognized speech artifacts produced 
by the TTS system based on the USEL synthesis. Finally, 
the results of the computation complexity in Matlab envi-
ronment indicate the need for some optimization and im-
plementation in a higher programing language for the real-
time processing. 
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