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Abstract. Adaptive filters are extensively used in the iden-
tification of an unknown system. Unlike several gradient-
search based adaptive filtering techniques, the Lyapunov 
Theory-based Adaptive Filter offers improved convergence 
and stability. When the system is described by a sparse 
model, the performance of Lyapunov Adaptive (LA) filter is 
degraded since it fails to exploit the system sparsity. In this 
paper, the Zero-Attracting Lyapunov Adaptation algorithm 
(ZA-LA), the Reweighted Zero-Attracting Lyapunov Adap-
tation algorithm (RZA-LA) and an affine combination 
scheme of the LA and proposed ZA-LA filters are pro-
posed. The ZA-LA algorithm is based on ℓ1-norm relaxa-
tion while the RZA-LA algorithm uses a log-sum penalty to 
accelerate convergence when identifying sparse systems. It 
is shown by simulations that the proposed algorithms can 
achieve better convergence than the existing LMS/LA filter 
for a sparse system, while the affine combination scheme is 
robust in identifying systems with variable sparsity.  

Keywords 
Sparse system identification, Lyapunov adaptive filter 
(LA), ℓ1-norm, Zero-Attracting LA (ZA-LA), 
Reweighted ZA-LA (RZA-LA), affine combination, 
convergence, mean square deviation, mean square 
error  

1. Introduction 
Adaptive filtering algorithms play a significant role in 

system identification applications, e.g., channel estimation 
and echo cancellation [1]. Ideally, the adaptive filter with 
high convergence rate, stability, good tracking capability 
and robustness to random noise is desirable for many ap-
plications. The widely used optimization technique for 
optimal filter design is the gradient descent method. Least 
Mean Square (LMS) algorithm developed by Widrow and 
Hoff [2] is the most widely used adaptive algorithm due to 
its computational simplicity and proven robustness. Lya-
punov Adaptive Filtering (LA) algorithms in the sense of 
the Lyapunov stability theory were proposed in [3–6] to 

overcome the problems faced by gradient descent-based 
techniques such as slow rate of convergence, sensitivity to 
variations in the eigenvalue spread and local minima prob-
lem. Moreover, the LA algorithm is independent of the 
stochastic properties of the input signal and additive noise. 
However, the LA algorithm suffers from poor convergence 
performance when the underlying system to be identified is 
sparse such as network and acoustic echo path [7], digital 
TV transmission channel [8], and underwater channel [9]. 
In general, the sparse FIR system is characterized by its 
impulse response which consists of very few active coeffi-
cients among many inactive ones [10–12].  

Conventional adaptive algorithms neglect the sparse 
information which is present in the system that leads to 
degrade their performance when estimating the sparse 
channels. Recent studies on system identification specify 
that by utilizing the a priori knowledge about the system 
sparsity, the estimation performance can be improved sub-
stantially. This motivated the researchers towards devel-
oping sparse adaptive filtering algorithms in the last few 
years. Inspired by the theory of Compressed Sensing (CS) 
[13], [14] and LASSO [15], ℓ1-norm relaxation is utilized 
to exploit system sparsity. In [16] sparse adaptive filtering 
approach based on LMS algorithm is developed by incor-
porating ℓ1-norm penalty into its cost function which is 
termed as Zero-Attracting LMS (ZA-LMS). This approach 
is easy to implement and performs well when the system is 
highly sparse, but it fails as the system sparsity decreases. 
Based on reweighted ℓ1-minimization sparse recovery 
algorithm [17], an improved version of ZA-LMS i.e. Re-
weighted ZA-LMS (RZA-LMS) is proposed in [16]. The 
RZA-LMS algorithm performs better in less sparse condi-
tions but at the cost of increased complexity. Following 
these ideas, in this paper, we propose two sparse Lyapunov 
Adaptation algorithms namely, Zero-Attracting Lyapunov 
Adaptation algorithm (ZA-LA) and Reweighted Zero-At-
tracting Lyapunov Adaptation algorithm (RZA-LA). 

Over the past decade or so, a combination of adaptive 
filters has proven to be an efficient way to handle systems 
with variable sparsity. In [18], [19], an adaptive convex 
combination of two LMS filters with different parameter 
setting is proposed to alleviate the speed of convergence vs 
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the residual error trade-off. In [20], a mixture approach of 
adaptively combining LMS and ZA-LMS algorithm using 
a convex combination has been proposed to achieve ro-
bustness against time-varying system sparsity. This ap-
proach is extended [21] to colored (correlated) input signal 
using a convex combination of the Affine Projection Algo-
rithm (APA) and Zero Attracting Affine Projection Algo-
rithm (ZA-APA), and in [22] steady state mean square 
analysis of convex combination in the context of acoustic 
echo cancellation is performed. In [23], a convex combina-
tion approach using another variant of sparse adaptive 
filtering, i.e. Improved Proportionate Normalized LMS 
(IPNLMS) algorithm is proposed. In all these papers, the 
authors have used the convex combination to combine 
effectively the outputs of the individual adaptive filters. 
The affine combination as a generalization of the convex 
combination is studied in [24], and in [25] affine combina-
tion analysis was extended for colored inputs and nonsta-
tionary environments. In [26], transient analysis for the 
affine combination of two NLMS adaptive filters is 
studied. In [27], [28], it is demonstrated that affine combi-
nation results in faster convergence than the convex com-
bination of two adaptive filters. So, in this paper, we use 
affine combination scheme to combine LA and ZA-LA 
filters to handle systems with variable sparsity. To the best 
of our knowledge, no paper has reported on system identi-
fication using Lyapunov adaptive filter algorithm with 
sparsity constraints to identify an unknown sparse system. 

The rest of the paper is organized as follows. Sec-
tion 2 describes the system model and reviews the LA 
algorithms. In Sec. 3, we propose two adaptive sparse LA 
algorithms. In Sec. 4 we compare the algorithms in terms 
of computational complexity. Section 5 highlights the af-
fine combination scheme and its stability is analyzed in 
Sec. 6. Simulation results of the proposed LA algorithms 
are presented in Sec. 7. Finally, we conclude the paper in 
Sec. 8. 

2. Review of LA Algorithms 
The basic idea of sparse system identification is to 

improve the filtering/estimation performance by utilizing 
the inherent sparse structure information. The block dia-
gram of the sparse system identification is shown in Fig. 1. 
We consider an N length FIR filter coefficient vector 
w0 = [w0, w1, …, wN – 1]

T and the input signal vector x̅(n) = 
[x(n), x(n – 1), …, x(n – N + 1)]T. The input x̅(n) is applied 
to both the adaptive filter and the unknown sparse system. 
The desired signal d(n) that is generally corrupted by the 
observation noise v(n) is given by d(n) = w0

T x̅(n) + v(n). 
The output estimate y(n) of the adaptive filter W̅(n) is sub-
tracted from the reference signal d(n) to produce an error 
signal e(n) [29]. The error signal e(n) is then used by the 
adaptive algorithm iteratively to manipulate the filter 
coefficients such that the error is minimized. 

The cost function V(n) of the LA filter is defined as 
the square of error between the desired reference input and 

 
Fig. 1. Block diagram of sparse system identification. 

filtered output which is considered as the Lyapunov 
function [3], [4], 

 )()( 2 nenV     (1) 

where 

 )()()( nyndne  .  (2) 

The Lyapunov adaptive filter weight update law is 
properly chosen such that ΔV(k) = V(k) – V(k – 1) is nega-
tive definite at each iteration. According to Lyapunov sta-
bility theory [30], when ΔV(k) < 0, the output of the adap-
tive filter can asymptotically converge to the desired signal 
which means that the error e(n)0. 

For the given desired signal d(n) and filter output 
y(n) = W̅ T(n) x̅(n) the LA weight update rule is as follows: 

 )()()1()( nngnWnW   (3) 

and 

 




















)(

)1(
1

)(

)(
)(

2
2

1
n

ne

nx

nx
ng





   (4) 

where g(n) is the adaptation gain and α(n) is a priori esti-
mation error defined as 

 )()1()()( nxnWndn T  ,  (5) 

0  < 1 and 1, 2 are small positive constants to prevent 
the singularities in the adaptation gain. The parameter  
controls the convergence rate of the algorithm. 

To improve the LA filter tracking performance and 
robustness, the Lyapunov function is redefined as V(n) = 
 ne2(n) and the adaptation gain g(n) of the Lyapunov 
adaptive algorithm is modified [5], [6] as 
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 (6) 

where  > 1 is a constant parameter. 

To achieve faster convergence rate and lower steady 
state error performance in the case of noisy environments, 
a step size parameter, μ is included in the adaptation gain 
which is given by [31] 
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The adaptation gain g(n) for the Lyapunov adaptive 
algorithm can also be defined as 
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where the adaptive adaptation gain rate is adjustable in 
order to improve the tracking capability of the algorithm 
[32–34] 
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3. Proposed Sparse LA Algorithms 

3.1 Zero-Attracting Lyapunov Adaptation 
Algorithm (ZA-LA) 

The cost function V1(n) of ZA-LA is defined by com-
bining the Lyapunov function of LA filter with the ℓ1-norm 
penalty of the weight vector 
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where γZA > 0 denotes a regularization parameter which 
balances the error term and system sparsity. 

We then have  

1 1 1( ) ( ) ( 1)V n V n V n     
2 1 2

ZA 1 1
( ) ( 1) ( ( ) ( 1) )n ne n e n W n W n         

T 2 1 2

ZA 1 1

[ ( ) ( ) ( )] ( 1)

( ( ) ( 1) )

n nd n W n x n e n

W n W n

 



    

 
 

T T 2 1 2

ZA 1 1

[ ( ) ( ( 1) ( ) ( )) ( )] ( 1)

( ( ) ( 1) )

n nd n W n g n n x n e n

W n W n

  



      

 
 

T 2 1 2

ZA 1 1

[ ( ) ( ) ( ) ( )] ( 1)

( ( ) ( 1) ).

n nn n g n x n e n

W n W n

   



    

 
 (11) 

Using the adaptation gain g(n) given in (6), we obtain 

1 2
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  (12) 
The ZA-LA filter update rule is given by 
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where sgn(·) is the sign function. The ZA-LA algorithm 
complexity is slightly higher than that of LA algorithm due 
to the third term of (13). 

3.2 Reweighted Zero-Attracting Lyapunov 
Adaptation Algorithm (RZA-LA) 

The RZA-LA cost function is represented by 
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where γRZA > 0 is a regularization parameter which 
balances the estimation error term and sparsity of W̅(n).  

According to the log–det heuristic approach used in 
[35], [36], the zero attractor term in (14) yields to a convex 
optimization problem. To establish this connection, con-
sider the problem 

 minimize  
i

iw )1log(   
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Iterative linearization of this objective function gives 
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If wi(n) is small, its weighting factor in the next 
minimization step, (1 + ε│wi(n)│)–1, is large. So the small 
entries in W̅(n) are pushed towards zero. Thus, the log-sum 
penalty function has the potential to be much more sparsity 
encouraging than the ℓ1-norm. 

The RZA-LA filter update is defined as 

RZA
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W n W n g n n

W n
 


   


.(17) 

The RZA-LA algorithm complexity is slightly higher 
than that of LA algorithm due to the third term of (17). 

4. Computational Complexity 
The numerical complexity in terms of additions, mul-

tiplications, and divisions of the proposed sparse adaptive 
algorithms and those of the LMS algorithm and its sparse 
variants are shown in Tab. 1.  
 
 

Algorithms Addition Multiplication Division 
LMS 2N 2N + 1 - 

ZA-LMS 3N 3N + 1 - 
RZA-LMS 3N + 1 3N + 2 N 

LA 3N + 5 3N + 3 N + 1 
ZA-LA 4N + 5 4N + 3 N + 1 

RZA-LA 4N + 6 4N + 4 2N + 1 

Tab. 1. Comparison of computational complexity of the 
investigated algorithms. 

It can be seen from Tab. 1, that the proposed sparse 
algorithms have a moderate computational complexity 
increase when compared with the original algorithms. 



RADIOENGINEERING, VOL. 27, NO. 1, APRIL 2018 273 

 

5. Affine Combination of LA and ZA-
LA Algorithms 
In order to handle the system with varying level of 

sparseness, we have proposed to combine LA and ZA-LA 
algorithm using an affine combination approach. The con-
figuration of the proposed affine combination scheme is 
shown in Fig. 2 in which Filter 1 is updated using LA algo-
rithm (3), and Filter 2 is updated using ZA-LA algorithm 
as given in (13), respectively. We will hereafter call this 
filter as the Affine Combined Lyapunov Adaptation 
(ACLA) filter. 

The output signal of ACLA filter is given by 

  )()](1[)()()(
21

nynnynny     (18) 

where (n) is the mixing parameter and can be any real 
number, and y1 (n) and y2 (n) denotes the output of the 
individual filters, i.e. yi (n) = W̅i

T (n – 1) x̅(n), i = 1,2. The 
a priori error signal ea(n) is obtained by subtracting the 
output signal of ACLA filter from the output signal of the 
unknown system, 
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where 
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To find the mixing parameter λ(n), the derivative of 
mean square of the a priori error with respect to λ(n) is 
evaluated and equated to zero. 
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where the unknown system output, y0(n), is replaced by 
d(n), which is a valid assumption. 

The mathematical expectation in the numerator and 
the denominator of (22) are replaced by exponential 
averaging  

 )()1()1()( 2 nunpnp uu     (23) 

where pu(n) is the averaged quantity, u(n) is the signal to 
be averaged, and  γ = 0.01.  These  results obtained for both 

 
Fig. 2. Affine combination of two adaptive filters with mixing 

parameter λ(n). 

the numerator and denominator are substituted in (22) to 
obtain λ(n). 

6. Stability Analysis 
Let us first provide the convergence analysis of LA 

filter. When the adaptive filter coefficient vector W̅(n) is 
updated by (3) and (5), the Lyapunov function is chosen as 

 )()( 2 nenV n .   (24) 

According to Lyapunov stability theory [30], the 
tracking error e(n) will asymptotically converge to zero. 
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Therefore, the tracking error e(n) converges to zero 
exponentially according to 

 ( 1) /4( ) (0) .n ne n e       (27) 

Now, consider the output of the individual filters of 
ACLA filter which is expressed as  

 T( ) ( 1) ( ), 1, 2,
i i

y n W n x n i      (28) 

and the overall system error is given by 

 )()()( nyndne     (29) 

where 
 T

0( ) ( ) ( )d n w x n v n    (30) 

and y(n) is the ACLA filter output as given in (18).  

Equation (18) can be written as 
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where 
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The equivalent weight vector W̅c of the combined 
filter can be expressed as 
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Using (30) and (31) in (29), we get 
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where 
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The Mean Square Deviation (MSD) of the ACLA 
filter at time n is 
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Substituting (22) in (36) yields 
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The first term of (37) corresponds to the MSD of the 
second adaptive filter, MSD2(n) and since the MSD is 
a positive quantity, it indicates that MSDc(n) is smaller than 
MSD2(n). 

Equation (33) can also be expressed as 
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Now by inserting (38) in the first line of (36), it can 
be shown that 
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where 

  
01 0 1( ) ( ).W n w W n     (40) 

The first term of (39) corresponds to the MSD of the 
first adaptive filter, MSD1(n) and since the MSD is a posi-
tive quantity, it indicates that MSDc(n) is smaller than 
MSD1(n). Thus, the combined filter performs at least as 
well as the best component filter or better than any of them, 
for every n and the stability is guaranteed. 

7. Simulation Results 
This section shows the simulations that are carried out 

to evaluate the performance of our proposed sparse algo-
rithms. The length of unknown system w0 is set to N = 16, 
and its impulse response is assumed to have only one non-
zero value at the tap index 5 and zeroes elsewhere making 
the system highly sparse as shown in Fig. 3. 

The input signal x̅(n) is considered in two ways:  

Case 1: Gaussian random signal with zero mean and 
unit variance, N(0,1) and  

Case 2: Correlated/Colored signal generated by pass-
ing a white Gaussian, u(n) through a first-order autoregres-
sive process, AR(1) with a pole 0.8 that is represented as 
x(n) = 0.8 x(n − 1) + u(n). 
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Fig. 3. Impulse response of a sparse system. 
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The output of the system is corrupted by an independ-
ent white Gaussian noise with variance 0.001.  

The performance metrics used to evaluate the pro-
posed algorithms are Mean Square Deviation (MSD), 
which is defined as  

    0
2

( ) ( )
2

MSD W n E w W n    (41) 

where E{•} denotes expectation operator, and w̅0 and W̅(n) 
are the true FIR filter vector and its adaptive estimator, 
respectively, and the Mean Square Error (MSE) which is 
given as 

  2( ) ( ) .MSE n E e n   (42) 

The average of 200 trials is used in evaluating the 
results. 

From the simulation results shown in Fig. 4(a), for the 
Gaussian input and when the system is highly sparse, it is 
observed that our proposed Sparse LA filters (ZA-LA & 
RZA-LA) converge faster than the existing LMS and LA 
algorithms which cannot exploit the sparseness information 
present in the system. In Fig. 4(b), for the case of colored 
input, it is observed that the proposed LA algorithms have 
converged while the LMS algorithms fail to converge. 

The mean square error (MSE) performance of the 
proposed LA algorithms is depicted in Fig. 5. It is observed 
that the MSE of proposed LA algorithms is lower than the 
LMS algorithm and their sparse counterpart. 
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(b) 

Fig. 4. MSD comparison of the proposed sparse LA algorithms with existing adaptive algorithms for highly sparse system with  
(a) white input, (b) colored input.  
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Fig. 5. MSE comparison of the proposed sparse LA algorithms with existing adaptive algorithms for highly sparse system.  
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Fig. 6. Impulse response of a non-sparse system. 

Next, we have considered that the unknown system 
has all its tap coefficients set to non-zero values, i.e. a non-
sparse system. Figure 6 shows the impulse response of the 
used non-sparse system. 

With the Gaussian input, the proposed ZA-LA algo-
rithm converges faster than ZA-LMS algorithm, but it 
exhibits high steady state error when the system is non-
sparse as shown in Fig. 7(a). The convergence of RZA-LA 
algorithm is the same as that of the LA algorithm and much 
better than the LMS algorithm. In the case of colored input, 
we observe from Fig. 7(b) that the performance of our 
proposed algorithms is superior to that of LMS algorithm 
and their sparse counterpart. 

The mean square error (MSE) of proposed LA 
algorithms is shown in Fig. 8. The RZA-LA algorithm 
achieves lower MSE value than that of the ZA-LA 
algorithm which is lower than that of the LMS algorithm 
and its sparse counterpart. 

The performance of the ACLA filter is analyzed for 
identifying the system of length N = 16 with variable spar-
sity. Initially, the system is assumed to be a highly sparse 
system with impulse response as shown in Fig. 3. At the 
600th sample, the system is abruptly changed to a non-
sparse system with impulse response as shown in Fig. 6. 
The learning curves of ACLA filter are shown in Fig. 9 and 
Fig. 10 for white and colored input cases, respectively.  

From Fig. 9, it can be seen clearly that for white input 
case, the ACLA filter achieves faster convergence and 
better steady state behavior. When the system is highly 
sparse (before the 600th sample), the ACLA filter attains 
the lower steady state value of ZA-LA filter, and when the 
system is changed to a non-sparse system (at the 600th 
sample), it achieves the steady state value of LA filter. 
When the input is considered as colored input, the steady 
state value of the ACLA filter is slightly better than that of 
the independent filters for a highly sparse system and when 
the system is changed to a non-sparse system, the ACLA 
filter behaves like LA filter that achieves the lower steady 
state value as shown in Fig. 10. Thus, the proposed ACLA 
filter is robust in identifying the systems with variable 
sparsity. Figure 11 shows the evolution of mixing parame-
ter, λ(n) for the ACLA filter. 

The behavior of the proposed algorithms with input as 
a real speech signal sampled at 8 kHz is evaluated in the 
next simulation. The system is considered to have a vary-
ing degree of sparsity. Initially, the system is assumed to be 
sparse with impulse response shown in Fig. 3, and at time 
t = 1.75 sec, it is changed to the non-sparse system as 
shown in Fig. 6. The simulations are averaged over 100 
trials. The Echo Return Loss Enhancement (ERLE) is used 
as the performance metric and is defined as [23], [37] 
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It is observed from Fig. 12 that the proposed RZA-LA 
filter achieves higher ERLE values and the ERLE of ZA-
LA filter is better than that of the LA filter when the sys-

tem is sparse. At t = 1.75 sec, when the system impulse 
response is switched to non-sparse, the ERLE performance 
of ZA-LA is reduced while the RZA-LA filter still attains 
the higher ERLE value closer to the LA filter which per-
forms well under non-sparse conditions. Hence, the ro-
bustness of the proposed algorithms is verified. 
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Fig. 7. MSD comparison of the proposed sparse LA algorithms with existing adaptive algorithms for non-sparse system with (a) white input, 
(b) colored input. 
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Fig. 8. MSE comparison of the proposed sparse LA algorithms with existing adaptive algorithms for non-sparse system. 
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Fig. 9. Tracking and steady-state performance of ACLA filter 

for white input. 
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Fig. 10. Tracking and steady-state performance of ACLA filter 

for colored input. 
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Fig. 11.  Evolution of mixing parameter λ(n) for the proposed 

affine combination. 
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Fig. 12.  ERLE performance plot. The input signal, x(n) is a real 

speech signal sampled at 8 kHz (top). At t = 1.75 sec 
the system impulse response changes from sparse to 
non-sparse. The ERLE comparison of the proposed 
filters (bottom). 
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8. Conclusion 
The standard Lyapunov Adaptation algorithm does 

not exploit sparsity present in an unknown sparse system. 
In this paper, we proposed two novel algorithms, namely, 
Zero-Attracting Lyapunov Adaptation algorithm (ZA-LA) 
and Reweighted Zero-Attracting Lyapunov Adaptation 
algorithm (RZA-LA) to improve adaptive sparse system 
identification performance. From the simulation results, the 
effectiveness of the proposed algorithms is verified for 
both white input and colored input case in terms of MSD 
and MSE.  

Also, an Affine Combined Lyapunov Adaptation 
(ACLA) filter is presented to identify the systems with 
variable sparsity. The proposed combination filter exhibits 
robustness and achieves lower steady state value irrespec-
tive of the level of sparseness for the unknown system. The 
added complexity of the proposed algorithms is worth 
considering due to the increased performance. 
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