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Abstract. This paper deals with topic of image encryp-
tion based on chaotic maps. A solution which has advantage
of robustness against chosen-plaintext attacks is proposed.
Permutations of image pixels are carried out in a way that
enables operations on grayscale images with arbitrary reso-
lution. All calculations done with user key and also all dif-
fusion processes employ the same chaotic map. This feature
enables usage of look-up tables which reduce computational
times. The paper includes several experiments which verify
achieved results and also briefly describes advantages and
drawbacks of proposed solution.
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1. Introduction
First application of chaos for purposes of encryption

was proposed by Matthews in late 1980s [1]. Since then
many chaotic encryption algorithms were described. One of
the first paperswhich dealt specificallywith image encryption
was published by Fridrich in 1998 [2].

Fridrich’s article provides scheme which was later used
in many other solutions [3–5]. This scheme employs two
operations with image pixels (they serve as plaintext). First
one – confusion shuffles image pixels in a way that minimizes
correlation between adjacent pixels. The other operation is
diffusion, which tries to establish dependence between am-
plitudes of all image pixels. If two plaintext images differ in
amplitude of only one pixel, good diffusion algorithm should
result in two entirely different encrypted images.

Encryption algorithms designed for images have some
advantages over conventional algorithms such as Advanced
Encryption Standard (AES) [6], [7]. One of the most notice-
able advantages is relatively small number and low difficulty
of operations performed during encryption or decryption.
This property is crucial for reaching fast computational times.
However, it also causes one drawback of chaotic image en-
cryption algorithms – it is quite easy to perform attacks,

which try to retrieve plaintext image from its encrypted ver-
sion. Brute-force attacks can be prevented by large key-space,
possibility of statistical and some of differential attacks can
be avoided by suitable diffusion algorithm. However, newer
types of attacks could cause problems.

Fridrich’s algorithm was broken in 2010 by an attack
introduced by Solak et al. [8]. This attack changes ampli-
tudes of plaintext image pixels and explores the dependen-
cies between them and amplitudes of encrypted image pixels.
Therefore, it could be classified as chosen-plaintext type of
attack. Mentioned attack and its generalized versions are for
purposes of this paper named simply as Solak’s attack.

The rest of article is organized as follows: Sec. 2 con-
tains brief survey of already published approaches. Sec. 3
describes all methods used by our proposal. Steps of en-
cryption and decryption algorithms are mentioned in Sec. 4.
Achieved results are discussed in Sec. 5. The paper ends with
Sec. 6 which provides a review of advantages and drawbacks
of proposed solution.

2. Related Work
Several ways for decreasing effects of Solak’s attack or

eliminating its possibility were proposed. The dependencies
between amplitudes of plaintext pixels and encrypted pixels
can be disturbed by modification of used key. Plaintext pixel
amplitudes are used as input for hash functions by Zhang
et al. in [9] and by Liu and Wang in [10]. Corresponding
outputs are used as a set of parameters for next steps. There-
fore, different images produce various encryption keys. Thus
it is not possible to establish a list of pixel dependencies by
testing of various images.

Another scheme consisting of two iterations of diffu-
sion and one iteration of confusion was presented by Zhang
in [11]. In this case, the relation between plaintext and key is
created during confusion. Fu et al. [12] uses circular shift of
key elements for producing different keys used by diffusion.
Amount of shifting done in each iteration depends on values
computed in previous iteration. Hence for first iteration, the
shifting depends just on plaintext pixel amplitudes.
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Proposal of Kanso and Ghebleh [13] adjusts number
of chaotic map iterations according to plaintext image am-
plitudes. Results of the iterating are then used in the diffu-
sion algorithm. Guanghui et al. uses multiple chaotic maps
in [14], where the output of chaotic maps is divided into sev-
eral parts. Each part is then employed for modification of
key used in current iteration of encryption.

3. Used Methods

3.1 Logistic Map

Logisticmap (LM)was introduced byMay in 1976 [15]. May
considered LM as a tool for modelling growths or decreases
of wildlife population. LM can be also presented as one di-
mensional chaotic map, which maps x(n) ∈ 〈0, 1〉 to x(n+1)
in the same range with respect to parameter r ∈ (0, 4〉 (1):

x(n + 1) = r · x(n) · (1 − x(n)) (1)

where n denotes iteration number.

Properties of LM depend on parameter r . Effects of
various r can be viewed on bifurcation diagram (see Fig. 1).
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Fig. 1. Bifurcation diagram of logistic map.

As it can be seen, first bifurcation occurs when r ∼ 3.
The chaotic behavior of LM starts at r ∼ 3.56995 which is
also known as ’onset of chaos’ [16]. However several islands
of stability are present also after this point. One example of
these islands is located at r ∼ 3.82843.

3.2 Arnold’s Cat Map

Arnold’s cat map (ACM) was described in 1968 by Arnold
and Avez [17] as an example of toral automorphism. Name
of this map was chosen by picture of cat head which was used
for experiments. ACM can be described as two dimensional
chaotic map which preserves measure – the range of outputs
stays the same as the range of inputs. Set of equations for
discretized version ACM is given as (2):

[
x(n + 1)
y(n + 1)

]
=

[
1 1
1 2

]
·

[
x(n)
y(n)

]
(mod N ) (2)

where x(n), y(n), x(n + 1) and y(n + 1) ∈ {0, 1, . . . , N − 1},
n denotes iteration number, N is the height and also width
of image. Modulus of N in both equations restrains usage of
ACM only to square images (resolution of N × N pixels).

As ACM maps each pair of coordinates x(n), y(n) to
unique pair x(n + 1), y(n + 1), it is possible to construct
inverse set of equations (3):[

x(n − 1)
y(n − 1)

]
=

[
2 −1
−1 1

]
·

[
x(n)
y(n)

]
(mod N ). (3)

One known drawback of ACM is existence of fixed
points. These are matrix elements which do not change their
coordinates in consecutive iterations of ACM. An example
of fixed point is shown on Fig. 2. The fixed point is indicated
by gray color.
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Fig. 2. Example of a fixed point.

In our solution, we tried to suppress occurence of fixed
points by shifting elements prior to each iteration of ACM.
The shift of element e with original coordinates l, k to new
coordinates l ′, k ′ can be given as (4) for direct version of
ACM and as (5) for inverse version of ACM:

(l ′, k ′) = (l + 1, k + 1) (mod N ), (4)
(l ′, k ′) = (l − 1, k − 1) (mod N ) (5)

where l, k, l ′ and k ′ ∈ {0, 1, ..., N − 1}, N is the height and
also width of matrix or image.

The shifting ensures that matrix element with coordi-
nates of a fixed point is changed before each iteration of
ACM. Therefore this element would move to location which
is not a fixed point and its coordinates would be changed in
following iterations of ACM.

3.3 Ciphertext Chaining

Chaining of ciphertext helps to introduce dependencies be-
tween adjacent pixels of encrypted images. Hence it is im-
portant for establishing robustness against statistical and dif-
ferential attacks. For spreading a change in amplitude of
arbitrary pixel into amplitudes of all other pixels, it is possi-
ble to employ two iterations of a simple feedback (6):

f i (n) =




f0(0), if n = 0, i = 1,
f1(n) + f1(numP − 1) (mod 2L ), if n = 0, i = 2,
f i−1(n) + f i (n − 1) (mod 2L ), if n , 0

(6)

where i ∈ {1, 2} denotes sequential number of iteration, f i is
vector after ith iteration of chaining, f0 is a vector of image
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pixel amplitudes prior to encryption, n denotes index of cur-
rently processed pixel, n ∈ {0, 1, ..., numP − 1}, numP is the
total number of image pixels, L is the color depth of image.

Operation inverse to chaining done by (6) can be given
as (7):

f i−1(n) =




f i (n) − f i (n − 1) (mod 2L ), if n , 0,
f2(n) − f1(numP − 1) (mod 2L ), if n = 0, i = 2,
f1(0), if n = 0, i = 1.

(7)

3.4 Key Diffusion

The output of diffusion algorithm should be sensitive to even
small differences between entered diffusion keys. Because
our proposal uses diffusion key consisting of 8 bytes, these
bytes need to be diffused prior to encryption or decryption.
The principle of direct key diffusion is illustrated on Fig. 3.

ACM ACM ACM ACM

B0(0) B0(1) B0(2) B0(3) B0(4) B0(5) B0(6) B0(7)

ACM ACM ACM ACM

B2(0) B2(1) B2(2) B2(3) B2(4) B2(5) B2(6) B2(7)

B1(0) B1(1) B1(2) B1(3) B1(4) B1(5) B1(6) B1(7)

ACM ACM ACM ACM

B3(0) B3(1) B3(2) B3(3) B3(4) B3(5) B3(6) B3(7)

Fig. 3. Direct key diffusion diagram.

Key diffusion consists of three iterations which are used
for creating dependencies between every possible pair of key
bytes B0(b), b ∈ {0, 1, . . . , 7}. Inverse key diffusion used
during decryption iterates in reverse order. In the case of
direct key diffusion, block denoted as ’ACM’ employs set of
equations (2), inverse key diffusion uses set (3).

3.5 Key Expansion

In our solution, the dependencies between key and image
pixels are introduced by using ACM, which takes one key
byte and current pixel amplitude as inputs x(n) and y(n).
Therefore one key byte is needed for each image pixel. Be-
cause keys of such length are not practical, we employ key
expansion which enlarges the key to desired length.

Key expansion is related to one of properties of our
algorithm – it uses different initial keys for encryption and
for decryption. Because encryption uses expanded key from

its start to its end, the decryption needs to start with end of
expanded key. Thus it is necessary to provide last elements of
expanded key to the decryption algorithm. Amount of these
key elements is in presented case fixed to 8 bytes.

4. Proposed Solution
In this paper, we would like to describe a reasonably

fast image encryption algorithm with results that are still suf-
ficient by means of resistance against known types of attacks.
The algorithm works with grayscale images with arbitrary
resolution (M × N pixels). Confusion step uses logistic map
for shuffling (permutation) of plaintext image pixels. Diffu-
sion operates with results of Arnold’s cat map.

4.1 Encryption

Encryption is done by following steps of Algorithms 1 and 2:

Algorithm 1: Confusion algorithm.
Input: grayscale plaintext image P, its height h and

width w, 8 byte encryption keys keyx , keyy
Output: grayscale image after confusion C

1. Keys keyx and keyy are mapped to values
r ′x , r ′y ∈ 〈0, 0.01).

2. Parameters of logistic maps (1) are set as
LMrows : y(0) = 0.5, ry = 3.99 + r ′y and
LMcols : x(0) = 0.5, rx = 3.99 + r ′x .

3. Map LMrows is iterated h + 10 times, map
LMcols is iterated w + 10 times.

4. Last h iterates of LMrows are mapped to
shrows ∈ {0, 1, . . . ,w − 1} and last w iterates of
LMcols are mapped to shcols ∈ {0, 1, . . . , h − 1}.

5. Each pixel with coordinates l, k in current
image row l is shifted to new coordinates l, k ′:
(l, k ′) = (l, k + shrows(k) (mod w)).

6. Each pixel with coordinates l, k ′ in current
image column k ′ is shifted to new coordinates
l ′, k ′: (l ′, k ′) = (l + shcols(l) (mod h), k ′).

As it can be seen, the logisitic maps are used for pro-
ducing h + 10 and w + 10 iterates, respectively. First ten
iterates are not used for pixel shifting but they help reaching
sufficient chaotic properties of generated sequences.

The number of iterations of ACM is set as 11 for the
same reason as for the LM – the map needs to produce re-
sults with chaotic behavior. Usage of N = 256 is caused
by number of grayscale image pixel amplitudes and number
of possible binary representations of one key byte. As these
parameters of ACM are fixed, the computation speed could
be improved through usage of look-up tables. These tables
provide values of x ′, y′ for all possible initial pairs of x, y.
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Algorithm 2: Diffusion algorithm.
Input: grayscale image after confusion C, its height

h and width w, 8 byte encryption key keyz
Output: grayscale encrypted image E, 8 byte

decryption key keyd
1. Look-up tables for matrix of all possible inputs
x, y ∈ {0, 1, . . . , 255} are created. These tables
contain new coordinates of matrix elements after
11 iterations of Arnold’s cat map (2).

2. Image after confusion C is reshaped to vector
Cvec with 1 row and h · w columns.

3. Key keyz undergoes key diffusion (see Fig. 3).
Then it is copied into first 8 elements of vector
with extended key key′z .

4. First iteration of diffusion. Each pixel from
Cvec(n) undergoes chaining by (6), resulting value
overwrites its input. Then look-up tables are used
for acquisition of pair x ′(n), y′(n). Initial values
are set as x(n) = key′z (n), y(n) = Cvec(n).

5. Resulting x ′(n) are used as next bytes of exten-
ded key – they are copied into key′z (n + 8). Com-
puted y′(n) are used as amplitudes of image pixels
after first iteration of diffusion Dvec(n).

6. Second iteration of diffusion. Each pixel from
Dvec(n) undergoes chaining by (6), resulting value
overwrites its input. Then look-up tables are used
for acquisition of pair x ′(n), y′(n). Initial values
are set as x(n) = key′z (n + h · w), y(n) = Dvec(n).

7. Resulting x ′(n) are used as next bytes of exten-
ded key – they are copied into key′z (n + h · w + 8).
Computed y′(n) are used as amplitudes of encryp-
ted image pixels Evec(n).

8. Vector Evec is reshaped to matrix E with h rows
and w columns.

9. Last 8 bytes of extended key key′z are copied
into vector keyd . Then this decryption key under-
goes key diffusion (see Fig. 3).

4.2 Decryption

Decryption is in case of the proposed algorithm analogous
to encryption. The only differences are present in the used
key, equations and therefore also look-up tables. Because
decryption algorithm needs to start with decryption of pixel
amplitudeswhichwere encrypted as last, it uses last 8 bytes of
extended key which was produced during encryption. These
bytes are then used as input for inverse key diffusion.

The key is then extended ’backwards’ by look-up ta-
bles produced by inverse ACM (3). The tables are also used

for computing pixel amplitudes after first round of diffusion.
Then the effect of chaining is eliminated by (7). This pro-
cess is repeated also for removing first iteraton of diffusion.
Finally, decrypted image is achieved by performing inverse
shifts of pixels in image rows and columns.

The safety of proposed solution is based on fact that
potential attackers do not have access to decryption key. If
key values would become compromised, the attackers should
be able to use look-up tables and find pixel amplitudes which
correspond to encrypted pixel amplitudes.

5. Experimental Results
Following experiments used three plaintext images.

These images and their versions encrypted with key K1 are
shown on Fig. 4. Their resolution was 512 × 512 pixels in
case of lena, 512× 256 pixels for black and 256× 256 pixels
for image f16. The color depth of all images was 8 bits.

lena black

images encrypted with key K1

plaintext images

f16

Fig. 4. Set of plaintext images and their encrypted versions.

Experiments used two kinds of keys: encryption keys
K1, K2 which consisted of three parts keyx , keyy and keyz
and decryption keys K ′1, K ′2 with their parts keyx , keyy and
keyd . Differences between keys are indicated by bold char-
acters, their values were set as:

• K1 = (keyx , keyy , keyz) = (0xA0B32465,
0xFD326667, 0x9745BC3470CD64EE),

• K2 = (keyx , keyy , keyz) = (0xA0B32465,
0xFD326668, 0x9745BC3470CD64EE),

• K ′1 = (keyx , keyy , keyd) = (0xA0B32465,
0xFD326667, 0x6E960C921BCC1FCD),

• K ′2 = (keyx , keyy , keyd) = (0xA0B32465,
0xFD326668, 0x6E960B921BCC1FCD).
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5.1 Size of Key Space and Key Sensitivity

Key space is a set of all keys which could be used for en-
cryption. In case of our algorithm the confusion keys keyx
and keyy do not depend on diffusion key keyz and vice
versa. This means that the key space includes all pos-
sible combinations of confusion and diffusion keys. As
keyx and keyy are both represented by 4 bytes and keyz
is given as 8 bytes, the size of keyspace can be computed as
numk = 2564 · 2564 · 2568 = 232+32+64 = 2128.

If we would estimate the time necessary for decryp-
tion of image with resolution of 512 × 512 pixels as 100ms,
the brute-force attack would take approx. 1.079× 1030 years.
Thus this type of attack can be considered as not feasible.

Key sensitivity of our algorithms is shown on Fig. 5.

difference between images 
encrypted with keys K1 and K2

plaintext image lena image lena encrypted with key K1

image lena encrypted with key K2

image encrypted with key K1
and decrypted with K’1

image encrypted with key K1
and decrypted with K’2

Fig. 5. Illustration of key sensitivity.

5.2 Statistical Attacks

These attacks compare properties of images before and after
encryption. Ideally, an encrypted image should not provide
any information about plaintext image. Level of robustness
against statistical attacks could be evaluated by histograms,
correlation diagrams and coefficients or by values of entropy.

Histograms of plaintext image lena and its version en-
crypted with key K1 are shown on Fig. 6. The peaks present
in first histogram are suppressed by encryption. This results
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Fig. 7. Example of correlation diagrams.

in relatively uniform distribution of pixel amplitudes. Hence
it can be concluded that statistical attacks are hardly possi-
ble.

Correlation diagrams display amplitudes of pairs of
two adjacent image pixels on their axes. The adjacency is
horizontal, vertical or diagonal. In an ideal case, the points
should be located on the diagram with uniform distribution.
The diagrams showing correlation of 1000 randomly cho-
sen pairs of diagonally adjacent pixels for plaintext image
lena and its version encrypted with key K1 are displayed on
Fig. 7.

Correlation coefficients ρ could be calculated
by (8–10):

ρ =
cov(P, E)√
σ2

P · σ
2
E

, (8)

cov(P, E) =
h−1∑
l=0

w−1∑
k=0

(P(l, k) − P̄) · (E(l, k) − Ē), (9)
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σ2
Im =

h−1∑
l=0

w−1∑
k=0

(Im(l, k) − ¯Im)2 (10)

where P and E denote plaintext and encrypted images,
cov(P, E) is their covariance, σ2

Im is dispersion of image Im,
¯Im denotes its arithmetic mean, l and k are row and column
indices, h is height and w is width of image in pixels.

Entropy can be viewed as a measure of randomness of
an information flow. Maximal possible value of entropy is
determined by amount of bits which represent one element
of the flow. Hence for grayscale image the maximal entropy
is set as 8 bits/pixel. Entropy H is calculated by using (11):

H = −
2L−1∑
a=0

p(a) · log2 (p(a)) [bits/pixel] (11)

where L is color depth of image, p(a) denotes probability of
occurence of image pixel with amplitude a.

Calculated values of correlation coefficients ρ and en-
tropy H are included in Tab. 1. Subscripts h, v and d denote
horizontal, vertical or diagonal adjacency of pixels in 1000
randomly chosen pixel pairs. All presented values except
for entropy are arithmetic means of 100 repeated measure-
ments.

image key ρh ρv ρd
H

[bits/pixel]
Plaintext images

lena 0.9680 0.9761 0.9548 7.2344
black inf (division by zero) 0.0000
f16 0.9555 0.9056 0.9005 6.7105

Encrypted images

lena K1 0.0042 0.0022 −0.0045 7.9992
K2 0.0045 −0.0026 0.0052 7.9992

black K1 0.0076 −0.0065 0.0072 7.9570
K2 0.0088 −0.0068 0.0069 7.9570

f16 K1 −0.0061 0.0054 0.0059 7.9972
K2 0.0048 0.0065 0.0058 7.9971

Tab. 1. Values of correlation coefficients and entropy.

5.3 Differential Attacks

Differential attacks investigate changes in encrypted images
caused by modifications of corresponding plaintext images.
Thus encryption algorithm should be sensitive even to small
perturbations done in plaintext images.

Robustness against differential attacks can be evaluated
by two measures. First one is called Number of Pixel Change
Rate (NPCR). Its calculation requires two plaintext images
P1 and P2, second one is a copy of first one with change of
amplitude of one pixel. The size of this modification is min-
imal (one amplitude level). Then these images are encrypted
as E1 and E2 and the value of NPCR is computed by (12):

NPCR =
100
h · w

h−1∑
l=0

w−1∑
k=0

Diff(l, k) [%],

Diff(l, k) =



0, if E1(l, k) = E2(l, k),
1, if E1(l, k) , E2(l, k)

(12)

where l and k are row and column indices, h is height and
w is width of image in pixels.

Second measure is known asUnified Average Changing
Intensity (UACI). UACI also uses two encrypted images E1
and E2 whichwere created by the sameway as forNPCR (13):

UACI =
100
h · w

h−1∑
l=0

w−1∑
k=0

|E1(l, k) − E2(l, k) |
2L − 1

[%] (13)

where l and k are row and column indices, h is height and
w is width of image in pixels and L is its color depth.

The difference between NPCR and UACI is hidden in
the way of evaluating difference of encrypted images. While
NPCR reflects only the amount of pixels with different ampli-
tude, values ofUACI are affected also by the size of amplitude
change. Computed values of NPCR and UACI are shown in
Tab. 2. These values were acquired from set of 100 repeated
measurements. The coordinates of pixel with modified am-
plitude were chosen randomly in each measurement.

image key minimal arithm. mean maximal
NPCR [%]

lena K1 99.0063 99.1802 99.3469
K2 99.0250 99.1881 99.3443

black K1 99.0074 99.1727 99.3225
K2 99.0089 99.1730 99.3233

f16 K1 99.0051 99.2060 99.4339
K2 99.0067 99.2185 99.4431

UACI [%]

lena K1 33.0925 33.3483 33.5842
K2 33.1701 33.3818 33.5923

black K1 33.0690 33.2994 33.4963
K2 33.1369 33.3065 33.4601

f16 K1 33.1132 33.3499 33.6126
K2 33.0741 33.3462 33.5756

Tab. 2. Calculated values of NPCR and UACI.

5.4 Relation Between Key and Plaintext

Previous paragraph contained an example of chosen-plaintext
attack. Robustness against whole class of these attacks can
be ensured by establishing a relation between used key and
plaintext in form of pixel amplitudes.

Diffusion algorithm of our solution is based on usage
of ACM, which takes parameters x(n), y(n) as its input. The
output also consists of two parameters – x(n+1) and y(n+1).
As the inputs are current byte of extended key x(n) and value
of processed pixel amplitude after chaining y(n), the outputs
of ACM also relate to them. First output, x(n + 1) is used
for extending the key and second output, y(n + 1) represents
amplitude of image pixel after diffusion.
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Fig. 8. Cross-correlation of parts of two extended keys.

These relations produce various extended keys for sets
of images with minimal differences. Therefore it is not fea-
sible to assume steps of encryption algorithm from testing of
multiple plaintext images, because these images would result
in different keys. Also the effects of key diffusion which is
applied prior to encryption have to be taken into account.

Differences between various extended keys can be ex-
amined by their cross-correlation. Resulting function for first
100 elements of extended keys produced by second iteration
of diffusion is illustrated on Fig. 8. Encryption with key K1
was done on image lena (see Fig. 4), and its copy where
amplitude of one pixel was changed by one level. Values
of extended key elements were mapped to range 〈−0.5, 0.5〉
before computation of cross-correlation.

5.5 Computational Difficulty

Speed tests of proposed algorithm were conducted in MAT-
LAB R2015a on PC with 2.5GHz CPU, 12GB of RAM
and Windows 10 operating system. The values presented in
Tab. 3 were achieved by 100 repeated measurements.

Computational difficulty of algorithms can be compared
by values of processing speed vproc. This measure expresses
amount of data which is encrypted during one second (14):

vproc =
h · w · L
t · 8 · 106 [MB/s] (14)

where h is height and w is width of image, L is its color depth
and t is time required for one encryption given in seconds.
The values of vproc presented in Tab. 3 are calculated from
arithemetic means of measured durations.

5.6 Comparison with Other Approaches

The comparison of results is quite a hard task due tomany dif-
ferences between experiments in other papers. For instance,
color versions of lena were used in [10], [13], while [9], [12]
tested effects of their proposals on various other grayscale
images. Also some of processing speed measurements were
conducted on considerably slower machines [9], [11], [13].
Therefore only some parameters could be compared.

Results from Tab. 4 and Tab. 5 show that our solution
achieves better values of processing speed vproc, correlation

image key minimal arithm. maximal vproc
mean [MB/s]

Encryption times [ms]

lena K1 81.5346 83.5082 91.7072 3.1391
K2 81.2470 83.3793 92.3348 3.1440

black K1 40.3856 42.0839 44.0148 3.0537
K2 40.3354 42.0500 44.1147 3.0158

f16 K1 20.1917 21.4615 23.1964 3.1145
K2 20.1617 21.7306 23.5878 3.1171

Decryption times [ms]

lena K1 104.3669 107.1934 111.1227 2.4455
K2 104.2005 107.3807 111.4821 2.4413

black K1 49.8841 51.6152 54.8236 2.5394
K2 50.0018 51.4642 54.8711 2.5469

f16 K1 24.0211 25.0554 26.1471 2.6156
K2 24.3192 25.2162 36.3075 2.5990

Tab. 3. Measured durations of encryption and decryption.

approach proposed Ref. [11] Ref. [14]
corr. coeff. horizontal 0.0042 −0.0046 −0.0278
ρ – pixel vertical 0.0022 −0.0511 −0.0065
adjacency diagonal −0.0045 −0.0065 −0.0074
entropy H [bits/pixel] 7.9992 7.9993 7.9895

NPCR [%] 99.3469 99.6108 99.6600
UACI [%] 33.5923 33.4679 33.5700

Tab. 4. Comparison of achieved numerical results.

approach proposed Ref. [9] Ref. [11] Ref. [13]
vproc [MB/s] 3.1440 0.3703 0.3223 1.9300

Tab. 5. Comparison of processing speed.

coefficients ρ and UACI. However, its performance is not
as good in case of entropy and NPCR. These drawbacks are
possible topics for our future work.

6. Conclusion
This paper proposed an image encryption algorithm

based on chaotic maps. Properties of Arnold’s cat map
were employed for creating relation between used key and
plaintext in form of image pixel amplitudes. This correspon-
dence seems crucial for establishing certain level of robust-
ness against class of chosen-plaintext attacks which could
create a list of dependencies between encrypted and plain-
text image. Effects of presented algorithms were verified by
series of experiments. Their numeric results were compared
with values yielded by approacheswhich used the same plain-
text image. Processing speeds were calculated for algorithms
which provided sufficient information about used images.

Main advantage of our proposal is its simplicity which
enables fast processing speed. Also the correlation coeffi-
cients of adjacent encrypted pixels are in case of presented
image better than those achieved by other algorithms. How-
ever, these solutions provided higher values of NPCR. Fu-
ture work can be done on the key diffusion algorithm, which
currently restrains the length of entered diffusion key to 8
bytes.
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