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Abstract. Template attacks (TA) and support vector ma-
chine (SVM) are two effective methods in side channel at-
tacks (SCAs). Almost all studies on SVM in SCAs assume the
required power traces are sufficient, which also implies the
number of profiling traces belonging to each class is equiv-
alent. Indeed, in the real attack scenario, there may not
be enough power traces due to various restrictions. More
specifically, the Hamming Weight of the S-Box output results
in 9 binomial distributed classes, which significantly reduces
the performance of SVM compared with the uniformly dis-
tributed classes. In this paper, the impact of the distribution
of profiling traces on the performance of SVM is first explored
in detail. And also, we conduct Synthetic Minority Oversam-
pling TEchnique (SMOTE) to solve the problem caused by
the binomial distributed classes. By using SMOTE, the suc-
cess rate of SVM is improved in the testing phase, and SVM
requires fewer power traces to recover the key. Besides, TA
is selected as a comparison. In contrast to what is perceived
as common knowledge in unrestricted scenarios, our results
indicate that SVM with proper parameters can significantly
outperform TA.
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1. Introduction

Kocher et al. [1] first brought forward power analysis
(PA) attacks in 1999. Since then, a variety of PA attacks
have emerged, such as differential power analysis (DPA) [1],
template attacks (TA) [2], correlation power analysis (CPA)
[3], stochastic model based power analysis (SMPA) [4] and
so on. The cryptographic device must maintain the secret
key regardless of whether the algorithm itself is public or
not. Thus, a crucial requirement is that the key-related infor-
mation of a cryptographic algorithm must not be disclosed
during execution. So far, none of the cryptographic devices
has been able to prevent this relevant information from being
leaked through various side channels. The book [5] compre-
hensively summarizes PA attacks and countermeasures.
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As early as the nineties of last century, Rivest [6] had
recognized the similarities between machine learning (ML)
and cryptography. In recent years, a large number of ML
algorithms have been applied to PA attacks, e.g. multi-
layer perceptron [7], [8], k-means clustering [9], k-nearest
neighbors [10], support vector machine (SVM) [11-16], etc.
Hospodar et al.[11] first applied SVM to PA attacks. Al-
though no real attack has been performed, it provides a novel
perspective on how SVM is used in PA attacks. The first
extension to 9 Hamming Weight (HW) classes for SVM was
given in [13]. Lerman et al. [15] suggested the attack based
on ML against a masked AES implementation. The authors
studied ML algorithms mostly using 9 or up to 16 classes. We
successfully recovered the secret key by using SVM in [16].
These related contributions suggest that some ML algorithms
are effective in PA attacks. Furthermore, the performance of
SVM is slightly superior to other ML algorithms. However,
almost all studies on SVM in PA attacks [12-16] assume
power traces are sufficient to reveal key-related leakage in-
formation and the number of profiling traces belonging to
each class is equal. Indeed, the number of profiling traces
may be different in the real attack scenario.

On the one hand, one can consider the S-Box output
value itself as a sensitive variable, resulting in 256 uniformly
distributed classes. On the other hand, the attack target can
be also the HW of an 8-bit intermediate value, resulting in
9 binomial distributed HW classes. Even more, consider-
ing 256 classes yields direct information about the secret
key because each class is only relevant to one guessing key.
However, each class is associated with multiple guessing keys
when using 9 HW classes. For instance, the HW class 4 needs
to handle the largest number of guessing keys, where there
are 70 possible values. However, the number of possible
value is 1 when the HW value is O or 8. This is called data
imbalance in the ML community.

The authors [17] have confirmed that the separating
hyperplane of SVM trained with data imbalanced will skew
towards the minority class, and this skewness reduces the per-
formance of SVM. It seems to be more advisable to use the
S-Box output directly as the label value of an SVM classifier.

SYSTEMS



290 S. HOU, Y. ZHOU, H. LIU, ET AL., EXPLOITING SUPPORT VECTOR MACHINE ALGORITHM TO BREAK THE SECRET KEY

However, with the increase in the number of classes,
the computational complexity of SVM also rises. This com-
plexity of multi-class SVM rises with O(|®|?) when the one-
against-one strategy [18] is used, where |@| is the number
of classes we need to classify. This will make the SVM al-
gorithm inefficient in the parameter tuning phase because of
the high computational burden. In light of this, the Ham-
ming Weight model, which assumes the intermediate power
consumption value of the S-Box output, is selected as the
hypothetical power leakage model in our paper. From our
point of view, the importance of the distribution of power
traces in PA attacks has not yet been investigated. Therefore,
the purpose of this article is to explore the impact of the
distribution of profiling traces belonging to each class on the
performance of SVM.

In this paper, we first calculated the label of each power
trace and then predicted the probability that all instances be-
long to each class. Finally, the correct key was obtained by
the maximum likelihood estimation. All experiments were
performed on the publicly available power traces. We used
Synthetic Minority Oversampling TEchnique (SMOTE) [19]
instead of Different Error Costs (DEC) [20] to compensate
for the distribution of HW classes. By using SMOTE, we
modified 9 binomial distributed HW classes to 7 uniformly
distributed HW classes, which could get more appropriate
SVM parameters in the parameter tuning phase. Our results
demonstrated that the success rate of 7 uniformly distributed
HW classes was higher than that of 9 binomial ones for SVM
in the testing phase. Moreover, SVM-RBF only required
about 4 power traces to recover the secret key when classify-
ing 7 classes. The remainder of this article is organized as
follows: Section 2 introduces the basic knowledge of profil-
ing attacks and SVM. Section 3 gives our methodologies used
in this article. Our experiments and results are presented in
Sec. 4. We conclude this article in Sec. 5.

2. Background

In this section, we briefly introduce the basic informa-
tion of previous profiling attacks and the SVM algorithm
used in this paper.

2.1 Profiling Attacks

Profiling and non-profiling attacks are two main types
of PA attacks. Profiling attacks assume that an attacker
has an identical cryptographic device that is almost com-
pletely controlled by him. For this device, he is free to set the
key and plaintext and then calculate the intermediate value.
Thus, an attacker can guess the secret key according to an ap-
propriate power leakage model. Profiling attacks contain two
phases: a profiling (learning) phase and key recovery (attack-
ing) phase. In the profiling phase, the key-related leakage
information caused by intermediate values being processed
can be characterized by profiling traces. The attacker uses
these profiles (features, templates) to predict the correct se-
cret key in the attacking phase.

TA is a typical profiling attack based on multivariate
Gaussian distribution N (t; (m, C)), as described below.

¥ e exp (-3 -mTC (- m) (1)

where t represents a N-dimensional vector, m is the mean

vector, C is the covariance matrix, which is called templates.

For TA, the attacker builds different templates for different

classes, which corresponds to different intermediate values

in the learning phase. In the attacking phase, the attacker

uses the maximum likelihood estimation as a distinguisher.

The log likelihood of each possible key k is as follows [2]:
M, My

log L = log [ | P(t;|(m,C) = )" log P(t;|(m,C)  (2)
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where M is the number of power traces belonging to the

secret key k.

2.2 Understanding the SVM

Cortes and Vapnik [21] proposed the SVM algorithm
to address the linear binary classification with high gener-
alization. Let Dy, = {(X;, y;) |Xl- €RN,y; e {~1,+1},i =
1,2,..., M} represent a training set, where X; is a training
vector, and y; is the label of X;. The training vector X is
mapped into feature space by the nonlinear function ¢(-).
Consequently, the maximum margin of a binary-class SVM
classifier is a constrained optimization problem as follows:
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where w € RV, b € R, and C > 0 is the penalty parameter
which evaluates the trade-off between training error and mar-
gin size, and &; is the training error of X;. After the Lagrange
multiplier is introduced, the optimization problem in (3) is
simplified as follows:
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where «; are Lagrange multipliers, and the kernel function is
K(Xi, X)) = 6(X)"o(X;).
The kernel function maintains the reasonable compu-
tational complexity of SVM in feature space. The common
kernel functions are linear kernel (KM"2") and RBF kernel

(KRBE), :
KLIDCaI (XI,XJ) — X[Tx], (5)

KRB (X, X;) = exp (=[x - X, ) ©6)

where v is the hyperparameter in (6), and the notation ||-, -|
represents the L? norm (Euclidean length) between two vec-
tors [22].

For consideration of training time and accuracy (ACC,
the ratio of true positives and true negatives to the total num-
ber of all instances), the one-against-one strategy [18] can
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be used to train an SVM classifier for each pair of possible
classes. In order to use the maximum likelihood estimation
to recover the secret key, an attacker is more interested in
the probability of an instance X; belonging to the class c.
Accordingly, we give the posterior conditional probability
Psym (X;|c) of each instance [23].

3. Methodologies

In order to ensure the reproducibility of our results,
we used a publicly available dataset. The DPA Contest v4
(DPACV4) [24] provides 100,000 power traces of the masked
AES software implementation. Since the mask value is
known in [16], we can directly convert this dataset to an un-
protected scenario. We selected 4000 (DS0) and 8000 (DS1)
random power traces to make a fair comparison of all experi-
ments. And also, we only explored how to recover the secret
key more efficiently and ignored the mask recovery phase.

Our experimental methodology was as follows:
Given a dataset, a random two-thirds was used as the learning
set and the remaining one-third was reserved as the testing
set. The learning set was divided into training and validation
sets by using 10-fold cross validation. The validation sets
of all folds were used in the parameter tunning phase. The
best parameters (the one with the highest average accuracy
on all validation folds) were used for training the final SVM
model in the testing phase. Furthermore, the correct key was
obtained by the maximum likelihood estimation in the key
recovery phase.

Figure 1 illustrates the framework of our experimental
procedures and concepts involved in this article. SMOTE is
used to compensate for the binomial distributed HW classes
after the execution of feature selection. The parameter tuning
phase finds the best parameters for the training and testing
phases. Each experiment was repeated ten times in the loop
block. The testing results are given in a form of ACC/AveP/F-
measure. The guessing entropy is used to evaluate the number
of remaining keys.

Parameter Tuning

Optimize Parameters

256 classes

——>| Loop 10x

Best P

9 classes

10-fold Cross Validation
SVM-Linear
SVM-RBF

Training&& Testing

SMOTE

7 classes

Feature| Selection

PCA Loop 10x

ACC/AUC/F-measure

mRMR SVM-Linear

Pearson Correlation SVM-RBF

TA
Probabilistic | Output

Maximum Likelihood Estimation

Fig. 1. Block diagram of the framework of our experimental
procedures and concepts involved in this article.

Guessing Entropy

3.1 Feature Selection

Our dataset is focused on all bytes (0 to 15) of the first
round key of AES. Although it is a software implementation,
the most leaking operation is not register reading or writing,
but the S-Box operation of the first round of AES. As shown in
Fig. 2, the HW model is used to characterize the hypothetical
power consumption of the S-Box output. The HW value of
the S-Box output, i.e., HW (Sbox [t; & k;]),i = 0, 1,..., 15,
is selected as the label of an SVM classifier. Here ¢; repre-
sents the ith byte of a random plaintext, k; denotes the ith
byte of the fixed secret key, and Sbox [-] is a substitution op-
eration. Consequently, the label value of an SVM classifier
corresponds to the HW value from O to 8. In this case, the
number of power traces belonging to each HW class obeys
the binomial distribution.

According to article [16], the interesting points were
extracted from 16 S-Boxes. We calculated Pearson correla-
tion coefficients between each sample instant of power traces
and the HW of the S-Box output to locate interesting points.
Moreover, the 32 highest correlated sample instants were se-
lected as interesting points. As we can see from Fig. 3, for
the eighth S-Box, most of the sample instants have no promi-
nent power leakage. We omit the details about the remaining
S-Boxes due to the lack of space.

Here we only used the Pearson correlation method
for feature selection. In addition, many signal prepro-
cessing techniques can also be used to choose interesting
points in PA attacks, e.g. minimum redundancy max-
imum relevance (mRMR) [25] and principal component
analysis (PCA) [26], etc.

Leakage Model

HW, HD Hypothetical
Power Consumption

Interesting Points

PlainText (Random)
E—

Secret Key (Fixed)

S-Box output

Side Channel

Real
Power Traces

Oscilloscope

Fig. 2. Block diagram of our feature selection.
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Fig. 3. Correlation between each sample instants and the HW of
the 8th S-Box output in the first round of AES.
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3.2 SMOTE

The strategy of SVM to solve the problem of data im-
balance is divided into algorithm level and data level methods
[27], [28]. Algorithm level methods focus on modifying ex-
isting algorithms to mitigate their bias towards the majority
class. The Different Error Costs (DEC) method is a typical
representative of this category proposed in [17] to overcome
the same cost C for both minority and majority misclassifi-
cation. As given in (7) below:

M M
2 &+CT X&),

min(%”w”z +C*
ily;=+1 ilyi=-1
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where C™ is the misclassification cost for the minority class,
while C~ is the misclassification cost for the majority class.
The DEC method improves SVM by allocating the minor-
ity class instances with a higher misclassification cost (i.e.,
C* > C7). The improved SVM algorithm would not tend
to skew the separating hyperplane towards the minority class
instances, which reduces the total misclassifications. Here
we simply set the C*/C~ equal to the ratio of the minority
examples to the majority examples [20].

At the data level, the implemented state-of-the-art meth-
ods can be categorized into over-sampling, under-sampling,
the combination of under and over-sampling, and ensem-
ble learning methods [29]. Compared with other sampling
techniques, SMOTE is the most powerful technique that has
been a great success in many applications [19]. SMOTE
creates synthetic data based on similarities among existing
minority examples in feature space. The minority class is
over-sampled by taking each minority class sample and in-
troducing synthetic examples along the line segments mix-
ing any of the k minority class nearest neighbors. Synthetic
examples are created in the following way: Calculate the
difference between the selected feature vector and its nearest
neighbors. Multiply this difference by a random number be-
tween O and 1, and add it to the selected feature vector. This
causes the selection of a random point on the line between
two particular features.

The HW of an 8-bit S-Box output has resulted in 9 bino-
mial distributed classes. Naturally, this distribution does not
provide an equal number of power traces for each HW class.
Moreover, in our datasets, the number of power traces belong-
ing to the HW class 0 and 8 accounts for about 0.8% (2 x 2;—6).
The synthetic power traces cannot represent the true distribu-
tion of the HW class O or 8. Hence, the HW class 0 and 8 in
our datasets are discarded directly, and then we set different
nearest neighbors for the remaining HW classes (1 to 7). We
can get 7 uniformly distributed HW classes by using SMOTE.
As a comparison, we will report the experimental results of
classifying 7, 9, and 256 classes in the next section.

4. Experiments and Results

LIBSVM (Library for Support Vector Machine) [30]
was used as the framework for conducting our attacks. All
experiments were performed on Asus laptop with 2.50 GHz
Intel Core (TM) i5-7200U, 16 GB 2133 MHz DDR4 (Win-
dows10 x64). The attack lasted about 12 weeks without
considering the time to create two datasets.

4.1 Parameter Tuning Phase

There is no an effective learning method to cover all
attack scenarios in the parameter tuning phase. According to
paper [31], we selected the penalty parameter C from 0.01
to 256 with a step of 2, epsilon (tolerance of termination
criterion) from 0.01 to 0.25 with a step of 0.05, the hyper-
parameter y in (6) from 0.001 to 32 with a step of 2. Here
we gave the parameter range but omitted tuning details. An
open-source python toolbox, namely imbalanced-learn [32],
was used to generate synthetic power traces.

256 classes 9 classes 7 classes
S-Box0 | 20.6128.0/0.0156 | 77-68.0/0.25 79.32.0/0.5
S-Box1 | 49.34 0/0.05 92.316.0/0.125 | 93-84.0/0.25
S-Box2 | 36.064.0/0.03125 | 93-94.0/0.25 96.216.0/0.25
S-Box3 | 39.8350/0.03125 | 93-34.0/0.25 94.04.0/0.125
S-Box4 | 33.664.0/0.03125 | 77-532.0/0.5 80.72.0/0.25
S-Box5 | 33.935.0/0.0625 | 91.94.0/0.25 93.02.0/0.25
S-Box6 46~78.0/0.125 90~78.0/0.25 92.22.0/0_25
S-Box7 | 32.0128.0/0.0156 | 94-34.0/0.25 95.716.0/0.125
S-Box8 | 24.416.0/0.125 69.532.0/0.5 74.88.0/0.5
S-Box9 | 45.23 0/0.125 92.0g.0/0.25 93.02.0/0.5
S-Box10 | 44.1g 0/0.125 95.716.0/0.25 | 96.732.0/0.125
S-Box11 40-916.0/0.0625 94.44_0/0_125 95.62.0/0_5
S-Box12 | 26.335.0/0.03125 | 73-04.0/0.125 | 75-38.0/0.125
S-Box13 | 42.935 0/0.03125 | 92-14.0/0.25 94.616.0/0.25
S-Box14 | 42.735 0/0.03125 | 90-42.0/0.25 92.14.0/0.125
S-Box15 | 45.364 0/0.03125 | 95-28.0/0.25 97.25 0/0.25

Tab. 1. Success rates of SVM-RBF in the parameter tuning

phase by using DSO0.
256 classes 9 classes 7 classes

S-Box0 | 29.735 0/0.125 | 79-14.0/0.25 | 80-816.0/0.125
S-Box1 61-38.0/0.5 93.84.0/0.25 94.72.0/0_5
S-Box2 45. 18.0/0.25 95.44_0/0_5 96.64_0/0_25
S-Box3 | 50.4g 0/0.125 93.98.0/0.25 | 94.72.0/0.5
S-Box4 46-78.0/0.03125 78.92_0/0_5 82.34_0/0_25
S-Box5 45-316.0/0.125 92-98.0/0.5 95.44.0/0_25
S-Box6 57.54_0/0_25 91'78.0/0.25 93'216.0/0.5
S-Box7 | 45.330.0/0.0625 | 95-14.070.125 | 97-04.0/0.125
S-Box8 | 33.164.0/0.0625 | 71.32.0/0.5 77.44.0/0.125
S-Box9 57-58.0/0.125 92.92.0/0.5 93.94.0/0_25
S-Box10 53.1 16.0/0.125 96.88_0/0_ 125 98. 12_0/0_25
S-Box11 | 52.4g 0/0.125 95.44.0/0.05 | 97-34.0/0.25
S-Box12 | 39.637 0/0.0625 | 74-12.0/0.5 76.5128.0/0.125
S-Box13 53. 132.0/0.0625 93.82.0/0.25 97.52_0/0_25
S-Box14 54'616.0/0.0625 91.04_0/0_25 94.42_0/0_25
S-Box15 | 56.1g 0/0.125 96.14.0/0.05 | 97-42.0/0.25

Tab. 2. Success rates of SVM-RBF in the parameter tuning

phase by using DS1.
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DSO DS1

SVM-Linear SVM-RBF TA SVM-Linear SVM-RBF TA
S-Box(0 13.60/0.09/0.13 | 16.07/0.12/0.15 | 13.50 | 20.97/0.17/0.18 | 24.78/0.21/0.22 | 16.01
S-Box1 41.62/0.32/0.40 | 43.49/0.39/0.41 | 36.75 | 51.77/0.48/0.51 | 56.46/0.55/0.56 | 41.33
S-Box2 26.55/0.20/0.24 | 29.89/0.23/0.27 | 26.90 | 34.10/0.30/0.33 | 36.83/0.35/0.36 | 30.67
S-Box3 28.02/0.23/0.27 | 30.07/0.24/0.27 | 26.45 | 43.96/0.43/0.42 | 45.45/0.43/0.44 | 31.26
S-Box4 28.30/0.24/0.27 | 29.07/0.24/0.27 | 26.55 | 34.13/0.27/0.33 | 40.09/0.37/0.39 | 29.70
S-Box5 28.37/0.23/0.25 | 30.36/0.25/0.27 | 26.70 | 37.32/0.34/0.36 | 38.46/0.36/0.38 | 31.60
S-Box6 33.88/0.27/0.32 | 41.96/0.39/0.40 | 36.00 | 46.41/0.44/0.46 | 49.99/0.51/0.49 | 39.78
S-Box7 24.33/0.18/0.22 | 26.55/0.19/0.23 | 22.75 | 37.18/0.31/0.36 | 39.12/0.35/0.38 | 26.65
S-Box8 15.82/0.11/0.14 | 17.58/0.12/0.16 | 14.65 | 23.59/0.16/0.22 | 25.34/0.20/0.24 | 20.47
S-Box9 37.28/0.31/0.35 | 38.15/0.33/0.36 | 34.50 | 50.37/0.48/0.50 | 52.55/0.57/0.52 | 42.14
S-Box10 | 34.47/0.28/0.32 | 35.76/0.30/0.33 | 33.45 | 43.48/0.41/0.43 | 47.96/0.45/0.47 | 38.13
S-Box11 | 30.66/0.24/0.29 | 34.29/0.29/0.32 | 27.05 | 44.89/0.41/0.44 | 46.47/0.44/0.46 | 32.14
S-Box12 | 19.05/0.13/0.17 | 20.63/0.14/0.18 | 20.20 | 31.32/0.26/0.30 | 33.09/0.32/0.30 | 22.56
S-Box13 | 33.41/0.27/0.31 | 35.29/0.29/0.32 | 34.40 | 46.44/0.43/0.45 | 47.44/0.47/0.46 | 37.23
S-Box14 | 33.88/0.27/0.31 | 34.41/0.28/0.32 | 31.05 | 45.68/0.43/0.45 | 47.85/0.46/0.47 | 34.20
S-Box15 | 36.75/0.27/0.34 | 37.75/0.31/0.35 | 33.40 | 47.41/0.45/0.47 | 50.69/0.48/0.50 | 36.25

Tab. 3. Testing results (ACC/AveP/F-measure) of SVM and TA for 256 classes using power traces of DSO and DS1.

In Tabs. 1 and 2, the success rates of SVM-RBF for all
S-Boxes are given in ACCc¢/, form. All values of ACC are
given in percentages, and we provide the parameter combi-
nations penalty parameter C and hyperparameter y) reaching
those values. The success rate of 7 uniformly distributed
classes is significantly higher than that of 9 binomial ones
for SVM-RBF. This proves that the distribution of profil-
ing traces affects the performance of SVM-RBF. When the
dataset size is expanded from DSO to DS1, the success rate of
9 binomial distributed classes is improved by less than 1.5%.
Excitingly, the success rate of 7 HW classes using DSO is
basically equivalent to that of 9 binomial ones using DS1. In
other words, our method improves the performance of SVM-
RBF without increasing the number of profiling traces, which
is an interesting aspect of PA attacks.

For SVM-RBF, the success rate of 256 classes is sig-
nificantly lower than that of 7 and 9 classes. This can be
explained by the fact that the number of profiling traces is
not enough to train good parameters to classify 256 classes.
However, when considering random classification, there is
1/9 chance of a successful guess for 9 classes, while there
is 1/256 chance for a random hit in the 256 classes sce-
nario. Obviously, the success rate of 256 classes is higher
than a random guess. The results may even be further im-
proved through a more exhaustive parameter tuning phase,
which requires more profiling traces and longer tuning time.
Nevertheless, the complexity of parameter tuning makes it
difficult to give some theoretical explanations for the per-
formance of SVM. Furthermore, the high complexity of the
attack method makes the investigated algorithm unattractive
for some security evaluation scenarios.

We also used the SVM-RBF with DEC to solve the
problem caused by data imbalance. Figure 4 gives the suc-
cess rate of SVM-RBF with DEC when using DS1 to classify
9 binomial distributed HW classes. Compared to using the
same cost, the performance of SVM-RBF with DEC has

100 ™= SVM-RBF without DEC
BN SVM-RBF with DEC

95

904

85

80 1

754

704

The success rate of SVM-RBF (%)

65 1

60 -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The order of 16 S-Boxes

Fig. 4. Comparison of the success rate of SVM-RBF when using
DS1 to classify 9 HW classes.

hardly been improved, and even worse for some S-Boxes.The
reason may be that the strategy we described in Sec. 3.2 for
setting penalty parameters is inappropriate. However, the
penalty parameter requires to be calculated iteratively, which
is difficult to set in the real problem. Hence, in all subsequent
experiments, we did not report the results of SVM using the
DEC method.

4.2 Testing Results

In this section, we only reported the results of
SVM-Linear, SVM-RBF with the best parameter combi-
nations, and TA when using DSO and DS1. Our experi-
ments were executed on the independent testing set to verify
the performances of SVM and TA for classifying 7, 9, and
256 classes. Note that for SVM and TA, we used the same
datasets and the same interesting points. In order to make our
experimental results accurate, each experiment was repeated
ten times and then their average score was regarded as the
final result.

The testing results are given in a form of ACC/AveP/F-
measure for SVM-Linear and SVM-RBF while for TA we
only give the success rate. Here, F-measure (F1-score) is
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DSO DS1
SVM-Linear SVM-RBF TA SVM-Linear SVM-RBF TA
S-Box(0 70.22/0.71/0.60 | 73.09/0.78/0.70 | 63.80 | 71.79/0.74/0.61 | 75.19/0.81/0.71 | 65.02
S-Box1 88.37/0.90/0.85 | 90.40/0.92/0.90 | 78.55 | 86.12/0.89/0.83 | 91.72/0.93/0.88 | 80.09
S-Box2 88.99/0.92/0.88 | 91.57/0.94/0.89 | 83.45 | 91.29/0.93/0.90 | 93.19/0.95/0.93 | 84.85
S-Box3 90.89/0.93/0.90 | 91.97/0.93/0.90 | 85.10 | 89.48/0.93/0.89 | 92.23/0.94/0.91 | 85.60
S-Box4 72.99/0.76/0.55 | 74.74/0.81/0.65 | 56.90 | 73.93/0.77/0.72 | 76.15/0.82/0.69 | 58.79
S-Box5 83.19/0.83/0.82 | 85.32/0.86/0.84 | 77.20 | 86.24/0.88/0.86 | 88.27/0.90/0.88 | 78.69
S-Box6 85.95/0.90/0.84 | 87.32/0.89/0.88 | 81.75 | 86.90/0.91/0.86 | 90.28/0.94/0.90 | 81.29
S-Box7 91.97/0.93/0.90 | 93.99/0.95/0.89 | 84.90 | 92.15/0.94/0.91 | 94.64/0.95/0.94 | 85.86
S-Box8 66.84/0.68/0.52 | 68.09/0.71/0.58 | 59.05 | 68.69/0.71/0.61 | 69.28/0.73/0.64 | 60.33
S-Box9 87.17/0.93/0.83 | 88.22/0.92/0.85 | 80.45 | 88.33/0.94/0.81 | 89.12/0.94/0.89 | 80.94
S-Box10 | 92.87/0.92/0.88 | 94.12/0.94/0.92 | 81.05 | 94.45/0.93/0.94 | 95.11/0.95/0.94 | 82.14
S-Box11 | 90.09/0.93/0.90 | 92.82/0.93/0.92 | 84.35 | 91.08/0.92/0.88 | 92.77/0.95/0.92 | 86.69
S-Box12 | 67.97/0.68/0.51 | 70.52/0.71/0.51 | 58.45 | 69.69/0.72/0.67 | 71.90/0.75/0.66 | 58.27
S-Box13 | 90.15/0.92/0.88 | 91.77/0.94/0.90 | 80.60 | 91.07/0.92/0.89 | 92.46/0.93/0.91 | 81.31
S-Box14 | 84.77/0.91/0.77 | 85.22/0.90/0.79 | 78.40 | 86.42/0.92/0.87 | 88.60/0.94/0.88 | 80.65
S-Box15 | 91.60/0.92/0.88 | 94.27/0.94/0.94 | 84.55 | 93.39/0.93/0.93 | 95.51/0.95/0.95 | 83.23
Tab. 4. Testing results (ACC/AveP/F-measure) of SVM and TA for 9 classes using power traces of DSO and DS1.
DSO DS1
SVM-Linear SVM-RBF TA SVM-Linear SVM-RBF TA
S-Box0 | 73.63/0.79/0.73 | 76.53/0.83/0.75 | 67.57 | 77.96/0.86/0.76 | 79.69/0.86/0.79 | 69.20
S-Box1 90.75/0.96/0.90 | 92.35/0.98/0.92 | 82.43 | 91.05/0.96/0.91 | 93.34/0.98/0.93 | 83.68
S-Box2 92.39/0.97/0.92 | 95.07/0.98/0.95 | 87.14 | 94.75/0.98/0.94 | 97.32/0.99/0.97 | 88.54
S-Box3 91.75/0.96/0.91 | 93.03/0.97/0.93 | 85.92 | 91.80/0.97/0.91 | 93.89/0.98/0.93 | 86.73
S-Box4 74.38/0.81/0.74 | 76.46/0.83/0.75 | 62.93 | 76.90/0.83/0.76 | 80.33/0.87/0.80 | 64.51
S-Box5 86.57/0.88/0.86 | 89.21/0.91/0.88 | 78.92 | 90.25/0.93/0.90 | 93.99/0.98/0.93 | 84.63
S-Box6 88.32/0.94/0.88 | 90.71/0.95/0.90 | 83.43 | 89.60/0.94/0.89 | 92.18/0.97/0.92 | 83.82
S-Box7 92.82/0.97/0.92 | 94.75/0.98/0.95 | 87.00 | 95.07/0.98/0.95 | 95.69/0.99/0.96 | 88.02
S-Box8 70.56/0.77/0.70 | 72.56/0.77/0.72 | 62.43 | 72.99/0.79/0.72 | 75.04/0.82/0.75 | 64.36
S-Box9 88.57/0.94/0.88 | 90.25/0.97/0.89 | 82.93 | 89.16/0.95/0.90 | 91.98/0.98/0.92 | 83.66
S-Box10 | 94.89/0.98/0.93 | 96.03/0.99/0.96 | 83.79 | 95.87/0.99/0.95 | 96.69/0.99/0.97 | 84.31
S-Box11 | 93.46/0.98/0.93 | 95.18/0.99/0.95 | 87.71 | 94.27/0.98/0.94 | 96.03/0.99/0.96 | 88.90
S-Box12 | 70.35/0.76/0.70 | 72.13/0.78/0.72 | 61.21 | 71.92/0.77/0.71 | 74.38/0.81/0.74 | 63.86
S-Box13 | 91.43/0.96/0.91 | 93.57/0.97/0.93 | 83.57 | 93.14/0.98/0.93 | 95.07/0.98/0.95 | 84.84
S-Box14 | 89.89/0.96/0.90 | 90.89/0.96/0.90 | 82.97 | 91.07/0.96/0.90 | 92.12/0.97/0.92 | 84.57
S-Box15 | 93.64/0.98/0.93 | 95.99/0.99/0.95 | 87.72 | 95.98/0.99/0.95 | 96.32/0.99/0.96 | 88.38

Tab. 5. Testing results (ACC/AveP/F-measure) of SVM and TA for 7 classes using power traces of DSO and DS1.

the harmonic mean of the precision and recall, where preci-
sion is the ratio of true positives to predicted positives, while
recall is the ratio of true positives to actual positives [33].
The receiver operating characteristic curve is usually used to
present the results of binary classification problems with the
uniformly distributed classes. However, when dealing with
highly skewed datasets, the precision-recall curve provides
more information about the performance of a learning algo-
rithm [34]. The average precision (AveP) is defined as the
area under the precision-recall curve. In Tabs. 3, 4, and 5,
all values of ACC are given in percentages, while AveP and
F-measure are in the range [0, 1]. The higher the value, the
better the result.

As expected, the success rate of SVM-RBF in the
parameter tuning phase is higher than the results in the
testing phase because of the generalization of SVM. For
256 classes, success rates of SVM-RBF are generally reduced

by 3% to 10%, in the worst case, the success rate drops from
39.8% to 30.07% (see S-Box3, DSO0, Tab. 3). We can see that
for 16 S-Boxes, success rates of SVM are obviously different
because of the difference of their power consumption leakage
information. When the dataset size is expanded from DSO to
DS1, the success rate of SVM increases by more than 10%
for most S-Boxes. That is, the larger dataset size, the higher
the success rate. The reason is that the performance of SVM
is determined by its parameters, and the dataset size is crit-
ical to parameter optimization. Moreover, the success rate
of SVM-RBF is 1% ~ 6% higher than that of SVM-Linear
when using DS1 in Tab. 3.

From Tabs. 4 and 5, we can see that the testing results of
7 uniformly distributed classes are much better than those of
9 binomial ones. In particular, success rates of 7 uniformly
distributed classes are at least 3% higher than those of 9 bino-
mial ones for S-Box0, 2, 5, 8, 11, and 14. For SVM and TA,
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the success rate of 7 uniformly distributed classes using DSO
is higher than that of 9 binomial ones using DS1, which
is a surprising result. Generally, with the increase of the num-
ber of profiling traces, the performance of SVM is improved.
In this case, SMOTE is used to compensate for the distribu-
tion of existing learning set. However, the success rate of
SVM is higher than that of using more profiling traces in the
training phase owing to the use of synthetic power traces for
the minority classes. This indicates the performance of SVM
is dependent on the distribution of the number of profiling
traces belonging to each class. Additionally, kernel func-
tions play an important role in improving the performance of
SVM. SVM-RBF has a higher success rate than SVM-Linear
when classifying 7 and 9 classes. Even more, the success rate
of SVM-RBF with using DSO is higher than that of SVM-
Linear with using DS1. The hyperparameter y in (6) provides
greater flexibility for SVM-RBF. Inevitably, SVM-RBF also
takes more time to find the optimal separating hyperplane in
the parameter tuning phase.

Although the success rate gives the impression that
SMOTE improves the performance of SVM, AveP and
F-measure can analyze the testing results from a novel point
of view. The AveP of 9 HW classes is scattered between
0.68 and 0.95, while that of 7 classes is between 0.76 and
0.99. By looking at the confusion matrix (matrix where each
row represents the instances in an actual class while each
column represents the instances in one predicted class), we
find that an SVM classifier handles all instances as the class
with more profiling traces when distinguishing between the
HW class O (or 8) and another class. Naturally, classifying
all instances into a single class will not be a successful attack,
because this doesn’t reveal any information about the secret
key. The AveP values of 256 uniformly distributed classes are
between 0.09 and 0.57 in Tab. 3, which are significantly lower
than those of 7 and 9 classes in Tabs. 4 and 5. This is because
the number of profiling traces is not sufficient to train high-
precision classifiers when classifying 256 classes. In general,
the higher the ACC value, the higher the F-measure value.
Besides, F-measure is slightly lower than ACC. Thus, we do
not discuss F-measure in detail due to the lack of space.

We also used the standard TA approach to compare the
success rates available in the same attack scenario. TA is con-
sidered to be the most powerful attack technique from an in-
formation theoretic point of view, which assumes that sample
points of each trace follow the multivariate Gaussian distri-
bution. As shown in Tabs. 3, 4, and 5, the success rate of TA
is obviously lower than that of SVM when using DSO and
DS1 to classify 7, 9, and 256 classes. Compared with SVM,
the numerical instability of TA is highlighted when the pro-
filing traces are not enough to reveal the key-related leakage
information. In addition, with the increase of the number
of profiling traces, the success rate of TA has not increased
significantly. However, the success rate of 7 uniformly dis-
tributed classes for TA is higher than that of 9 binomial
ones. Briefly, our testing results demonstrate that the using
SMOTE to compensate for the distribution of HW classes is

also effective for TA. Furthermore, SVM (especially SVM-
RBF) can significantly outperform the classical TA when
properly used.

In order to make our experiments more convincing,
our attacks were executed hundreds of times, and then we
gave the statistical results of the success rate. Figures 5
and 6 present some box plots that summarize the success
rates of SVM and TA when using DS1 to classify 7 and 9
classes. In each box plot, the central bar corresponds to the
median (the second quartile), and the green triangle repre-
sents the mean. The bottom and top of the box are always
the first and third quartiles, and the whisker is the maxi-
mum/minimum value excluding outliers. The value is con-
sidered as an outlier when it is greater than % times of up-
per/lower quartile. Consistent with our hypothesis, SMOTE
can effectively solve the problems caused by data imbalance,
which improves the performance of SVM and TA. Besides,
the success rate of SVM (especially SVM-RBF) is higher and
more concentrated than TA.

TA >k

SVM-Linear

SVM-RBF

50 60 70 80 90 100
ACC (%)

Fig. 5. Box plot of SVM and TA for 9 classes by using DS1.

TA &—J A ]—l
SVM-Linear *k

SVM-RBF xR

50 60 70 80 90 100
ACC (%)

Fig. 6. Box plot of SVM and TA for 7 classes by using DS1.

4.3 Key Recovery Phase

The maximum likelihood estimation assumes that mul-
tiple power traces can be used to recover the secret key, thus
the success rate is not suited as a measure. The guessing
entropy [35] could be used to evaluate the number of remain-
ing keys. The guessing entropy is defined as follows: let
g include the descending probability ranking of all possible
keys and i represent the position of the correct key in g. After
performing s experiments, one gets a matrix [g1, g2, - - -, &s]
and a corresponding vector [i1, i3, . . ., is]. Namely, the guess-
ing entropy represents the average amount of traces required
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DSO DS1
9 classes | 256 classes | 7 classes | 9 classes | 256 classes | 7 classes
TA 21.89 18.97 13.34 18.14 14.36 10.12
SVM-Linear 13.42 12.24 9.45 11.33 9.88 5.23
SVM-RBF 11.29 9.51 5.46 9.75 7.36 3.97

Tab. 6. The number of power traces required by using SVM and TA when the guessing entropy is set to one (GE").

to recover the correct key. Hence, the guessing entropy is
selected as a metric in the key recovery phase.

In this section, SVM and TA were used to recover the
secret key when classifying 7, 9, and 256 classes. Instead
of predicting the class ¢ of each trace, we gave the posterior
conditional probability Psym (X;|c). The key that maximizes
the log likelihood probability in (2) is selected as the correct
key. As described in Sec. 3.1, for all possible subkeys k;*
(0x00 to 0xff) and the ith byte of a random plaintext #;, the
value of HW(Sbox [#; @ k;*]) might be 0 or 8. Since the
plaintext is subject to uniform distribution, the probability of
the HW class 0 and 8 is about 0.8% in our datasets. Note
that for 7 HW classes, we only gave the probability of each
instance belonging to the HW classes 1 to 7 in the testing
phase. To solve the problem, the probability belonging to
the HW class 0 or 8 was considered to be one-tenth of the
minimum value of these probabilities in terms of efficiency
and effectiveness.

Figures 7, 8 and 9 report the guessing entropy of SVM-
Linear, SVM-RBF, and TA as a function of the number of
power traces used for respectively using DS1 to classify 7,
9, and 256 classes. The gray curves are used to describe the
guessing entropy of 16 S-Boxes and their average is selected
as the target results. In Tab. 6, we give the number of traces
required by SVM and TA when the guessing entropy is set to
1 (GE'). SVM-RBEF requires a minimum number of power
traces to recover the key when using DS1 to classify 7 classes,
which only requires 3.97 traces in average. Due to the differ-
ence in power consumption between 16 S-Boxes, the number
of traces required to recover the secret key varies greatly.
Even more, for some S-Boxes, SVM-RBF only needs one
trace to recover the key when classifying 7 or 256 classes.
However, SVM and TA require more than one trace when
classifying 9 binomial distributed HW classes.

Figure 10 illustrates the overall time required to per-
form an attack when using DS1 to classify 7, 9, and
256 classes. As the number of classes that we need to distin-
guish is reduced, the overall time of SVM and TA is greatly
decreased. Compared with TA, SVM has a much lower com-
putational burden. We can see that TA spends the most time
and SVM-Linear needs the least time when classifying 7, 9,
and 256 classes. In addition, the overall time required to clas-
sify 7 HW classes is much lower than that of 9 HW classes
when using SVM. As described in the previous section, SVM
(especially SVM-RBF) has a higher success rate and requires
less number of power traces to recover the key when classi-
fying 7 HW classes. In general, there is a trade-off to be
made between accuracy and efficiency. In fact, this article is

no exception. Since SMOTE is used to compensate for the
distribution of HW classes, we need more time to obtain 7
uniformly distributed classes. However, SMOTE is executed
before the parameter tuning phase, which can be independent
of our attack phase. Therefore, the time required by SMOTE
is not included in Fig. 10. From what has been discussed
above, we firmly believe that SMOTE can solve the problem
caused by data imbalance efficiently.

—4& 7 classes
—a— 9 classes
—»— 256 classes

Guessing entropy

123456 7 8 910111213 14 15 16 17 18 19 20
Number of power traces

Fig. 7. The guessing entropy of SVM-Linear by using DS1.

256
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—a— 9 classes
—»— 256 classes
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-
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Guessing entropy

8 9 10 11 12 13 14 15 16 17 18 19 20
Number of power traces

Fig. 8. The guessing entropy of SVM-RBF by using DSI.
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—a— 9 classes
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Fig. 9. The guessing entropy of TA by using DS1.
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Fig. 10. The overall time required to perform a complete attack
based on DS1 when using SVM and TA.

5. Conclusions

As described in the above section, PA attacks are con-
sidered to be the classification problem in the ML commu-
nity. SVM and TA create features (templates) to characterize
power traces of the training set and then calculate the sim-
ilarity between these features and new traces of the testing
set. Ultimately, the results are provided with a certain prob-
ability. Generally, TA assumes that sample points of power
traces are approximated by a set of finite normal distribu-
tions. However, ML algorithms assume that sample points
are subject to independent and identically distributed, but
not limited to a certain distribution. Consequently, SVM can
extract more information about the secret key than TA by
analyzing the same interesting points.

This paper discusses the effect of the distribution of
profiling traces belonging to each class on the performance
of SVM in PA attacks. The SVM algorithm optimizes the
overall accuracy without considering the distribution of pro-
filing traces, which tends to perform poorly on highly skewed
datasets. SMOTE is used to compensate for this deficiency
when classifying the binomial distributed HW classes. The
results demonstrate the success rate of 7 uniformly dis-
tributed classes is higher than that of 9 binomial ones for
SVM and TA in the testing phase. Additionally, the perfor-
mance of SVM with proper parameters is superior to that
of TA. SVM-RBF requires an average of less than 4 power
traces to recover the secret key when using DS1 to classify
7 classes. Further analysis indicates that SMOTE signifi-
cantly improves the performance of SVM in terms of attack
effectiveness and efficiency.
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