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Abstract. This paper presents a novel practical method for
evaluating the local sensing performance of the participat-
ing users in collaborative spectrum sensing in cognitive radio
networks. The proposed method considers data delivery as
a base to evaluate the local sensing performance of each
user. Moreover, the proposed method does not rely on any
prior information about users. The estimated local sensing
performance of all users is used further to evaluate the global
performance of the whole network. Mathematical analysis
and simulation results demonstrate the high accuracy of the
proposed method.
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1. Introduction
Cognitive Radio (CR) has been widely presented as

a promising solution for the spectrum scarcity problem [1].
CR allows unlicensed users, aka cognitive users (CU), to
share the spectrumwith the licensed users, aka primary users
(PUs) [2]. There are three different models that describe the
spectrum sharing between CUs and PUs, namely, underlay,
overlay and interweave [3]. In overlay and underlay models,
both PUs and CUs can simultaneously use the spectrum. In
underlay model, the interference generated by CUs must be
within an acceptable range for PUs, while, in overlay model,
a CU acts as relay for the PU signal and divides its resources
between its own transmission and the PU transmission. On
the other hand, interweave model allows CUs to access un-
used portions of the licensed spectrum. Thus, concurrent
transmission from the CU and the PU is forbidden. Inter-
weave model is the most popular in the literature and the is
adopted in this work.

A cognitive transmission should avoid any interference
with PUs in order to guarantee their quality of service. Thus,
spectrum should be priorly sensed to detect the activity of
licensed users and identify the unused portions. Such a pro-

cess is mostly accomplished through what is called Spectrum
Sensing (SS) [4], [5]. However, SS cannot provide reliable
results about the activity of the PU, which may cause a harm-
ful interference at the PUs. To this end, Collaborative Spec-
trum Sensing (CSS) has been proposed a solution aiming at
improving the reliability of the sensing results [6], [7]. In
CSS, each CU individually senses the spectrum and makes
a local decision regarding the spectrum status, either idle or
busy. Local decisions are then transmitted to a central entity,
called Fusion Center (FC), that is responsible for fusing the
received local decisions and making a global decision [8].

CCS has been widely investigated in the literature from
its different aspects. In [9], the different involved parameters
in CSS are optimized in order to improve the achievable reli-
ability. Enhancing the energy efficiency of CCS is addressed
in [10] by selecting a partial set of the CUs to participate in
the sensing process. In [11], the performance of CSS in pres-
ence of CUs equipped by multiple antennas is considered.
Other works have been dedicated for the security aspects
in CSS such as malicious detection [12], and authentication
protocols [13].

The reliability of the global decision can be highly im-
proved if the FC uses prior information about individual
sensing performance of the CUs [5]. Local performance
for a specific CU can be used as weight for its transmitted lo-
cal decision, where CUs with high local performance should
have higher weight and via versa [14]. Moreover, information
about local performance can be further exploited to identify
malicious CUs in order to ignore their local decisions at the
FC [15].

To the best of our knowledge, most of the literature as-
sumes that local performance of each CU is available at the
FC [16]. However, there are no previous works that discuss
the mechanism of making them available. In practical appli-
cations, even the CU itself is unaware of its actual sensing
performance. This is due to the fact that the actual spectrum
status is unknown.

This paper proposes a practical method to estimate the
local sensing performance of each CU. The proposed method
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does not require any extra information except than that of the
transmitted local decisions. Thus, it does not induce any
overhead or time-energy expenditure [17]. Moreover, the
proposed method does not introduce any transmission delay,
as the local performance of each CU is estimated seamlessly
while CSS is run. Simulation results demonstrate the ac-
curacy of the estimated local performance obtained by the
proposed method.

Section 2 deals with the system model and the neces-
sary mathematical formulations. Section 3 presents the novel
estimation method of the local and global performance of the
participating CUs. In Sec. 4, the accuracy of the proposed
method is analyzed mathematically, while simulation results
are shown in Sec. 5 in order to demonstrate the accuracy of
the proposed method. Section 6 concludes the paper.

2. System Model
The considered model consists of N CUs. All CUs

concurrently sense the spectrum and each CU issues a local
decision, denoted by dn. The local decision is a binary value,
i.e. either 0 or 1. A local decision of 1 means that the corre-
sponding CU decides that the spectrum is busy, while a local
decision of 0 refers to the case when the spectrum is decided
to be idle [18]

The local sensing performance of the nth CU is de-
scribed by the detection rate (Pdn) and the false alarm rate
(Pfn). The detection rate is defined as the ratio between the
number of times in which the corresponding CU correctly
identifies the busy spectrum to the number of times in which
the spectrum is actually busy. The false-alarm rate is defined
as the ratio between the number of times in which the corre-
sponding CU incorrectly identifies the idle spectrum to the
number of times in which the spectrum is actually idle. It is
worth noting that better local performance can be achieved
at high values of Pdn and low values of Pfn.

Local decisions will be transmitted to the FC which
applies a specific rule in order to obtain a global decision
regarding spectrum occupancy, denoted by D. Generally, the
FC counts the number of received 1’s and compares it to the
detection threshold K . If it exceeds K , the spectrum is glob-
ally declared as busy. Otherwise, the spectrum is globally
declared as an idle [9]. The global decision is expressed as
follows

D =
{

busy (1), if
∑N

n=1 un ≥ K,
idle (0), if

∑N
n=1 un < K .

(1)

where un is the local decision received by the nth CU.

The reliability of the global decision is evaluated by
the global detection rate (PD) and the global false-alarm rate
(PF). Both rates (PD and PF) are defined by a similar way to
Pdn and Pfn, respectively. Mathematically, the global detec-
tion and false-alarm rates are given as follows:

PD =

N∑
k=K

(N
k )∑
j=1

∏
n∈A(N ,k )

j

Pdn
∏

i<A(N ,k )
j

(
1 − Pdn

)
, (2)

PF =

N∑
k=K

(N
k )∑
j=1

∏
n∈A(N ,k )

j

Pfn
∏

i<A(N ,k )
j

(
1 − Pfn

)
(3)

where A(N,k)
1 , A(N,k)

2 , ..., A(N,k)
(N
k )

represent all the possible
combinations of k integers drawn from the interval [1, N],
and the number of these combinations is

(
N
k

)
.

There are two popular special cases of the general fu-
sion rule, namely AND rule and OR rule. In AND rule, the
value of the detection threshold K is equal to N , while, the
value of K is equal to 1 for OR rule. Accordingly, PD and PF
can be simplified for AND rule as follows [19]:

PD|AND =

N∏
n=1

Pdn, (4)

PF|AND =

N∏
n=1

Pfn. (5)

Similarly, considering OR rule, the two rates can be
expressed as follows [20]:

PD|OR = 1 −
N∏
n=1

1 − Pdn, (6)

PF|OR = 1 −
N∏
n=1

1 − Pfn. (7)

According to the global decision made by the FC, data
transmission can be commenced or not. In detail, if the spec-
trum has been decided as idle, the FC will schedule a CU to
use the spectrum for its own data transmission. Otherwise,
none of the CUs will use the spectrum and another sensing
round is initiated [21].

3. The Proposed Method
As the actual spectrum status is unknown, the FC cannot

distinguish if a local decision or the global decision is correct
or not. However, our proposed method exploits the delivery
of the transmitted data as an indicator of the actual spectrum
status. In detail, if the spectrum is declared as idle, one of
the CUs will start data transmission. Notice that if the spec-
trum is actually idle, the data will be successfully delivered.
On the other hand, if the data have not been successfully de-
livered, the FC can realize that the spectrum is actually busy.
As a result, the FC can realize the actual spectrum status, and
hence, global and local decision can be assessed.

The proposed method implies defining four different
counters at the FC. Specifically, the counters are denoted by
αi , βi , γn,i and ζn,i and are zero-initialized and updated each
sensing round as follows:




αi = αi−1 + 1, if Di = 0 &Si = 1,
βi = βi−1 + 1, if Di = 0 &Si = 0,
γn,i = γn,i−1 + 1, if Di = 0 &Si = 0 & dn,i = 0,
ζn,i = ζn,i−1 + 1, if Di = 0 &Si = 1 & dn,i = 0

(8)

where Si is the actual spectrum status of the ith sensing round.
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At the ith sensing round, the counter αi is incremented
by one if the global decision is idle (Di = 0) and the actual
spectrum status is busy (Si = 1), and the counter βi is in-
cremented by one if the global decision is idle (Di = 0) and
the actual spectrum status is idle Si = 0. On the other hand,
for each CU, other two counters γn,i and ζn,i are incremented
as follows. If Di = 0, Si = 0 and the local decision of the
nth CU is idle (i.e. dn,i = 0), its corresponding counter γn,i
will be incremented by one. Similarly, if Di = 0, Si = 1 and
the local decision of the nth CU is idle (i.e. dn,i = 0), its
corresponding counter ζn,i will be incremented by one.

Notice that all counters are updated only if the global
decision is idle (Di = 0). This is because the proposed
method depends upon the delivery of the transmitted data,
which only occurs if the the global decision is idle.

Consequently, based on the definition of the local de-
tection rate mentioned earlier, the local detection rate of the
nth CU can be estimated as follows

P̂dn = 1 −
ζn,i

αi
. (9)

Similarly, the local false-alarm rate of the nth CU can
be estimated as follows

P̂fn = 1 −
γn,i

βi
. (10)

Notice that the estimated values P̂dn and P̂fn mainly
depend on the index of the sensing round i. Specifically, i
should be large enough to provide accurate estimated values
of the local sensing performance. Also, it is worth high-
lighting that the counter ζn,i cannot exceed the value of the
counter αi (i.e, ζn,i ≤ αi), and the counter γn,i cannot exceed
the value of the counter βi (i.e, γn,i ≤ βi).

As the local performance of each CU is available at the
FC, the global performance in terms of PD and PF can be
seamlessly estimated using (2) and (3), respectively.

4. Mathematical Analysis
The performance of the proposed estimation method is

mathematically analyzed in this section. Moreover, the effect
of the number of available CUs N and the detection threshold
K on the accuracy of the estimated values are investigated.

The probability that the counters α, β, γ and ζ are
incremented at a specific sensing round can be modeled as
aBernoulli randomvariablewith probabilities Pα, Pβ , Pγ and
Pζ , respectively. Based on (8), these values can be expressed
as follows:




Pα = Prob.{Di = 0 ∩ Si = 1},
Pβ = Prob.{Di = 0 ∩ Si = 0},
Pγn = Prob.{Di = 0 ∩ Si = 0 ∩ dn,i = 0},
Pζn = Prob.{Di = 0 ∩ Si = 1 ∩ dn,i = 0}.

(11)

Likewise, the actual value of any of the counters at
the ith sensing round can be modeled as a binomial random
variables, where their averages can be computed as follows




αi = i · Pα,
βi = i · Pβ,
γn,i = i · Pγn,
ζn,i = i · Pζn .

(12)

Accordingly, the average value of the estimated value
P̂dn can be expressed using (12) as follows

P̂dn = 1 −
ζn,i

αi
= 1 −

Pζn
Pα

. (13)

Now, by substituting the values of Pα and Pζn from
(11):

P̂dn = 1 −
Prob.{Di = 0 ∩ Si = 1 ∩ dn,i = 0}

Prob.{Di = 0 ∩ Si = 1}
, (14)

which can be rewritten using probability theory as follows

P̂dn = 1 −
P1(1 − Pdn)Prob.{Di = 0/Si = 1 ∩ dn,i = 0}

P1Prob.{Di = 0/Si = 1}
(15)

where P1 = Prob.{Si = 1} and is canceled to simplify (15)
as follows

P̂dn = 1 −
(1 − Pdn)Prob.{Di = 0/Si = 1 ∩ dn,i = 0}

Prob.{Di = 0/Si = 1}
. (16)

Following the same procedure in (13)-(16), the aver-
age value of the estimated false-alarm probability P̂fn can be
expressed as follows

P̂fn = 1 −
(1 − Pfn)Prob.{Di = 0/Si = 0 ∩ dn,i = 0}

Prob.{Di = 0/Si = 0}
. (17)

Regarding the influence of the number of available CUs
N , it is clear that as N increases the accuracy of the esti-
mation method increases as well and the estimated values
of P̂dn and P̂fn approach the actual values Pdn and Pfn, re-
spectively. This is because for a large number of CUs the
following approximations can be hold:

Prob.{Di = 0/Si = 1 ∩ dn,i = 0} ≈ Prob.{Di = 0/Si = 1},
(18)

Prob.{Di = 0/Si = 0 ∩ dn,i = 0} ≈ Prob.{Di = 0/Si = 0},
(19)

which can be justified because the effect of a single CU is
small when the number of CUs is large. Therefore, substi-
tuting these approximations in (16) and (17), the estimated
values P̂dn and P̂fn for a large number of CUs can be approx-
imated as follows

P̂dn ≈ Pdn, P̂fn ≈ Pfn. (20)
The same effect can be noticed as the detection thresh-

old K increases, where the effect of a single CU on the final
decision is small if the value of K is high. Thus, the estimated
values will approach the actual values as K increases. Ac-
cordingly, applying the proposed estimation method on the
AND rule is expected to have better performance than OR
rule as K is higher in AND rule, as it will be demonstrated
in the next section.
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Fig. 1. The estimated local detection rate versus the sensing round for all CUs (K = 5).
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Fig. 2. The estimated local false-alarm rate versus the sensing round for all CUs (K = 5).
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Fig. 3. The global detection rate versus the sensing round (K = 5).
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Fig. 4. The global false-alarm rate versus the sensing round (K = 5).
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5. Simulation Results and Evaluation
In this section, we evaluate the accuracy of the proposed

method using Monte Carlo simulations. A network of 5 CUs
is considered. The local detection rates of the CUs are 1, 0.9,
0.8, 0.7 and 0.6, while the local false-alarm rates are 0.05,
0.1, 0.2, 0.3 and 0.4, respectively.

Figure 1 shows the estimated local detection rate for all
CUs versus the index of the sensing round i. Clearly, the es-
timated values approach the actual values as i increases until
they exactly match them for all CUs. This demonstrates the
high accuracy of the proposed estimation method. Figure 2
plots the estimated false-alarm rate for all CUs versus the
index of the sensing round i. similar to Fig. 1, the estimated
values are almost equal to the actual values especially for
i > 1000 where the difference can be neglected.

Regarding the global performance, the global detection
and false-alarm rates are plotted in Fig. 3 and Fig. 4, re-
spectively, versus the sensing round. The estimated values
for the global performance are computed using the estimated
local performance rates along with the usage of (2) and (3)
for K = 5. The actual rates are added for comparison pur-
pose. Results show a small gap between the estimated and
the actual rates, which diminishes as i increases. Thus, the
proposed method provide a high accuracy without a need for
any further information to be reported by CUs.

6. Conclusions
A novel practical method, for estimating the local sens-

ing performance of cognitive users that participate in a col-
laborative spectrum sensing is presented. The core idea of
the method is to evaluate the local performance based on
the data delivery once occurs. The proposed method shows
a high accuracy for estimating the local and global perfor-
mance in collaborative spectrum sensing as demonstrated by
simulations.

References

[1] MITOLA, J. Cognitive Radio: An Integrated Agent Architecture for
SoftwareDefined Radio. PhDDissertation, KTH, Sweden, Dec. 2000.

[2] HAYKIN, S. Cognitive radio: Brain-empowered wireless communi-
cations. IEEE Journal of Selected Areas on Communications, 2005,
vol. 23, no. 2, p. 201–220. DOI: 10.1109/JSAC.2004.839380

[3] GOLDSMITH, A. et al. Breaking spectrum gridlock with cog-
nitive radios: An information theoretic perspective. In Pro-
ceedings of the IEEE. 2009. vol. 97, no. 5, p. 894–914.
DOI: 10.1109/JPROC.2009.2015717

[4] YUCEK, T., ARSLAN, H. A survey of spectrum sensing al-
gorithms for cognitive radio applications. IEEE communica-
tions surveys and tutorials, 2009, vol. 11, no. 1, p. 116–130.
DOI: 10.1109/SURV.2009.090109

[5] AXELL, E., et al. Spectrum sensing for cognitive radio: State-of-the-
art and recent advances. IEEE Signal Processing Magazine, 2012,
vol. 29, no. 3, p. 101–116. DOI: 10.1109/MSP.2012.2183771

[6] AKYILDIZ, I. F., et al. Cooperative spectrum sensing in cognitive
radio networks: A survey. Physical Communication (Elsevier), 2011,
vol. 4, no. 1, p. 40–62. DOI: 10.1016/j.phycom.2010.12.003

[7] DI BENEDETTO, M.-G., et al. Cognitive Radio and Networking
for Heterogeneous Wireless Networks. 1st ed. Springer International
Publishing, 2015. (YILMAZ, H., BIRKAN, S. E., TUGCU, T. Co-
operative Spectrum Sensing.) DOI: 10.1007/978-3-319-01718-1_3

[8] WANG, J., et al. Cooperative Spectrum Sensing. INTECH Open Ac-
cess Publisher, 2009. DOI: 10.5772/7839

[9] ZHANG, W., et al. Optimization of cooperative spectrum sensing
with energy detection in cognitive radio networks. IEEE Transactions
on Wireless Communications, 2009, vol. 8, no. 12, p. 5761–5766.
DOI: 10.1109/TWC.2009.12.081710

[10] DENG, R., et al. Energy-efficient cooperative spectrum sensing by
optimal scheduling in sensor-aided cognitive radio networks. IEEE
Transactions on Vehicular Technology, 2012, vol. 61, no. 2, p. 716–
725. DOI: 10.1109/TVT.2011.2179323

[11] SINGH, A., BHATNAGAR, M. R., MALLIK, R. K. Co-
operative spectrum sensing in multiple antenna based cogni-
tive radio network using an improved energy detector. IEEE
Communications Letters, 2011, vol. 16, no. 1, p. 64–67.
DOI: 10.1109/LCOMM.2011.103111.111884

[12] ZENG, K., PAWELCZAK, P., CABRIC, D. Reputation-based co-
operative spectrum sensing with trusted nodes assistance. IEEE
Communications Letters, 2010, vol. 14, no. 3, p. 226–228.
DOI: 10.1109/LCOMM.2010.03.092240

[13] ALTHUNIBAT, S., et al. On the trade-off between security and en-
ergy efficiency in cooperative spectrum sensing for cognitive radio.
IEEE communications letters, 2013, vol. 17, no. 8, p. 1564–1567.
DOI: 10.1109/LCOMM.2013.062113.130759

[14] GHASEMI, A., SOUSA, E. S. Collaborative spectrum sensing for op-
portunistic access in fading environments. In Proceedings of the First
IEEE International Symposium on New Frontiers in Dynamic Spec-
trum Access Networks. 2005. DOI: 10.1109/DYSPAN.2005.1542627

[15] MIN, A.W., et al. Secure cooperative sensing in IEEE 802.22
WRANs using shadow fading correlation. IEEE Transactions
on Mobile Computing, 2011, vol. 10, no. 10, p. 1434–1447.
DOI: 10.1109/TMC.2010.252

[16] CABRIC,D., MISHRA, S.M., BRODERSEN,R.W. Implementation
issues in spectrum sensing for cognitive radios. In Proceedings of the
thirty-eighth Asilomar conference on Signals, systems and computers.
2004. DOI: 10.1109/ACSSC.2004.1399240

[17] MALEKI, S., CHEPURI, S. P., LEUS, G. Energy and through-
put efficient strategies for cooperative spectrum sensing in cogni-
tive radios. In Proceedings of the IEEE 12th International Workshop
on Signal Processing Advances in Wireless Communications. 2011.
DOI: 10.1109/SPAWC.2011.5990482

[18] GHASEMI, A., SOUSA, E. S. Optimization of spectrum sensing for
opportunistic spectrum access in cognitive radio networks. In Pro-
ceedings of the 4th IEEEConsumer Communications and Networking
Conference. 2007. DOI: 10.1109/CCNC.2007.206

[19] ATAPATTU, S., et al. Energy detection based cooperative spec-
trum sensing in cognitive radio networks. IEEE Transactions on
Wireless Communications, 2011, vol. 10, no. 4, p. 1232–1241.
DOI: 10.1109/TWC.2011.012411.100611

[20] MALEKI, S., CHEPURI, S. P., LEUS, G. Optimization of hard
fusion based spectrum sensing for energy-constrained cognitive ra-
dio networks. Physical Communication, 2016, vol. 9, p. 193–198.
DOI: 10.1016/j.phycom.2012.07.003



312 W. ABU SHEHAB, ET AL., A PRACTICAL METHOD FOR PERFORMANCE ESTIMATION FOR COLLABORATIVE SENSING . . .

[21] ALTHUNIBAT, S., RENZO, M. D., GRANELLI, F. Cooperative
spectrum sensing for cognitive radio networks under limited time
constraints. Computer Communications, 2014, vol. 43, p. 55–63.
DOI: 10.1016/j.comcom.2014.02.001

[22] AHSANT, B., VISWANATHAN, R. A review of cooperative spec-
trum sensing in cognitive radios.Advancement in Sensing Technology,
2013, p. 69–80. DOI: 10.1007/978-3-642-32180-1_4

About the Authors . . .

Wael ABU SHEHAB received his M.Sc. and Ph.D. degrees
in Electronics and Telecommunication from VSB-Technical
University of Ostrava, Czech Republic,in 1997 and 2001,
respectively. He is currently an associate Professor in the
Department of Electrical Engineering at Al-Hussein Bin Ta-
lal University, Jordan. His research interest spans a wide
range of topics including wireless communication, informa-
tion theory and control systems.

Saud ALTHUNIBAT (Corresponding author) received the
Ph.D. degree in Telecommunications from the University of
Trento (Italy) in 2014. Currently, he is a faculty member at
Al-Hussein Bin Talal University (Jordan). He has authored

more than 50 scientific papers. He has received the best
paper award in IEEE CAMAD 2012, and was selected as
an Exemplary Reviewer for IEEE Communications Letters
in 2013. His research interests include cognitive radio net-
works, MIMO systems, wireless sensors networks, physical-
layer security and resource allocation.

Ghazi AL SUKKAR received a B.S. degree in Electrical
Engineering/Telecommunications from Jordan University of
Science and Technology (JUST), Irbid, Jordan, in 2000, and
an M.S. degree in Telecommunications Engineering from
The University of Jordan (UJ), Amman, Jordan, in 2003. In
2008, he received PhDdegree in Electrical andComputer En-
gineering/Wireless Communication Networks from Telecom
Sudparis previously known as Institut National des Telecom-
munications, Paris, France. He joined the Department of
Electrical Engineering at the University of Jordan (UJ) as
an associate professor in 2017. He is currently the IEEE
Jordan section communication chapter chair. His current
research focuses on various aspects of wireless communi-
cation networks including Wireless sensor, Mesh, Vehicular
and P2P networks, with emphasis on system architecture and
communication protocol design. Other interests include dig-
ital signal processing, and image processing.


