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Abstract. Fractional delay is indispensable for many sorts 
of signal processing applications and fractional delay filter 
(FDF) is a straightforward method to delay discrete sig-
nals. FDF based on Hermite interpolation with an analog 
differentiator has a low time-domain error, but a more 
complicated sampling module than Shannon sampling 
scheme. A simplified scheme, which is based on Shannon 
sampling and utilizing Hermite interpolation with a digital 
differentiator, will lead to a much higher time-domain 
error when the signal frequency approaches the Nyquist 
rate. In this letter, we propose a novel fractional delayer 
utilizing Hermite interpolation and Carathéodory repre-
sentation. The samples of differential signal are obtained 
by Carathéodory representation from the samples of the 
original signal only. So only one sampler is required and 
the sampling module is simple. Simulation results for four 
types of signals demonstrate that the proposed method has 
significantly higher interpolation accuracy than Hermite 
interpolation with digital differentiator.  
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1. Introduction 
Fractional delayer could delay a discrete signal by 

a fraction of the sampling period and has taken a key role 
in many applications such as communications, array signal 
processing, sampling-rate conversion, speech coding and 
synthesis, etc. [1–5]. Fractional delay filter (FDF) is 
an intuitive and straightforward system to delay certain 
signals. Various design methods have been proposed and 
an excellent survey of FDF is presented in [6]. 

The frequency response error, i.e. the error of the fre-
quency response deviated from the ideal one, is the conven-
tional frequency-domain criterion to evaluate the perfor-
mance of FDFs. Up to now most of the studies is focused 
on optimizing the frequency response errors. However, it is 
noteworthy that the functionality of fractional delayer or 
FDFs is to predict the values which lie somewhere between 

two samples. Thus the time-domain error, i.e. error of the 
actual delayed signal deviated from the ideal delayed signal, 
should also be a very important evaluation criterion and 
should be given more attention [7]. 

From Parseval’s theorem, reducing the frequency re-
sponse error of FDF will reduce the time-domain error. 
However, the FDFs based on Shannon sampling scheme 
will lead to an irreducible error when the normalized radian 
frequency approaches π [8]. FDF utilizing Hermite interpo-
lation with an analog differentiator is an effective improve-
ment because it is based on multi-channel sampling scheme 
and nearly eliminates the frequency response error when 
the normalized radian frequency approaches π [9]. 

Although FDF based on Hermite interpolation with 
an analog differentiator achieves high interpolation accu-
racy in time-domain, it requires more samplers and more 
analog differentiators than Shannon sampling scheme. The 
synchronization of all the samplers and the design of ana-
log differentiator with high precision are intractable tasks 
when the sampling rate and the signal frequency are very 
high. Thus, a simplified scheme, which utilizes Hermite 
interpolation with a digital differentiator, has been pro-
posed in [9]. This simplified scheme is based on Shannon 
sampling scheme. However, the time-domain error greatly 
rises when the signal frequency approaches the Nyquist 
rate. This phenomenon appears because the frequency 
response of digital differentiator is undesirable. 

To realize a lower time-domain error while maintain-
ing a simple sampling module, in this letter we propose 
a novel fractional delayer utilizing Hermite interpolation 
with Carathéodory representation. The Carathéodory repre-
sentation asserts existence and uniqueness of the represen-
tation of a finite discrete signal in terms of exponential 
sums, and the samples of differential signal could be esti-
mated from the samples of original signal only [10]. After 
the samples of the original signal and differential signal 
have been obtained, Hermite interpolation is implemented. 
Simulation results for complex single-frequency signal, 
complex multi-frequency signal, complex ultra-wideband 
(UWB) linear frequency modulated (LFM) and UWB non-
linear frequency modulated (UWB NLFM) signal demon-
strate that the time-domain error of the proposed method is 
much lower than that of the existing Hermite interpolation 
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method with digital differentiator. Meanwhile, our method 
is based on Shannon sampling scheme and requires only 
one sampler. 

The rest of this paper is organized as follows. Sec-
tion 2 introduces the scheme of FDF utilizing Hermite 
interpolation. Section 3 presents the proposed modified 
fractional delayer. To demonstrate the superiority of the 
proposed method in terms of time-domain error, computer 
simulations are conducted utilizing three types of signals, 
and the results are given in Sec. 4. Finally, Section 5 offers 
some conclusions drawn on the basis of simulation results. 

2. Fractional Delayer Utilizing 
Hermite Interpolation  
For FDFs, minimizing the frequency response error 

deviated from the ideal one will reduce the time-domain 
error. The ideal frequency response of FDF is given in 
Laakso's tutorial paper [6], and is given below 

 j j
ID (e ) e DH    (1) 

where D denotes delay, a positive real number in the 
desired range. In case of FIR filters, D should be around L, 
where 2L is the order of FIR filter. ω is the normalized 
radian frequency. The subscript ID means ideal.  

However, there is an irreducible error at ω = π for 
conventional designs based on the Shannon sampling 
scheme. Thus, FDF utilizing Hermite interpolation, which 
is based on multi-channel sampling technique, is a repre-
sentative improvement. 

Figure 1 shows the scheme of fractional delayer 
utilizing Hermite interpolation with analog differentiator. 
x[n] represent the samples of the original continuous-time 
signal x(t), and xʹ[n] denote the samples of xʹ(t), where xʹ(t) 
is the first-order derivative of x(t). H1(z) and H2(z) are two 
FIR digital filters. The coefficients of the two digital FIR 
filters are given in Tseng’s paper [9, equations (18) and 
(20)], and are expressed in (2a) and (2b)  
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and l = 0, 1, …, 2L. 2L is the order Hermite fractional delay 
filter set. The output of this scheme, i.e. the actual delayed 
signal, denoted by y[n], is  

 1 2[ ] [ ] [ ] [ ] [ ] [ ]y n x n D x n h n x n h n       (4) 

where   denotes the convolution operation.  

 
Fig. 1. The scheme of fractional delayer utilizing Hermite 

interpolation utilizing analog differentiator. 

 
Fig. 2. The simplified scheme of fractional delayer utilizing 

Hermite interpolation with digital differentiator.  

The frequency response of Hermite fractional delay 
filter with analog differentiator, which approximates the 
ideal frequency response of FDF, is given in (5)  
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i.e. the frequency response of h1[l] and h2[l] respectively.  

In Fig. 1, the derivative samples xʹ[n] are obtained by 
using an analog differentiator combining a sampler. How-
ever, an analog differentiator is difficult to implement with 
high precision, and this sampling scheme is more compli-
cated than Shannon sampling scheme. Thus, a simplified 
scheme, which utilizes Hermite interpolation with digital 
differentiator has been proposed in [9], and is shown in 
Fig. 2.  

The simplified scheme has only one sampler. The 
digital differentiator G(z) is designed to fit the ideal fre-
quency response of the first order differentiator and the 
derivative signal xʹ[n] is obtained from the discrete signal 
x[n] directly. The two FIR filters H1(z) and H2(z) are the 
same ones mentioned above. The output of this scheme, 
denoted by y[n], is given below 

  1 2[ ] [ ] [ ] [ ] [ ] [ ] [ ]y n x n D x n h n x n h n g n         (6) 

where g[n] denote the coefficients of G(z).  

The frequency response of the simplified Hermite 
fractional delay filter is given below 

 j j j j
1 2(e ) (e ) (e ) (e )H H G H       (7) 

where G(ejω) is the frequency response of digital 
differentiator. 
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For both the schemes, each interpolation point, y[n], is 
created from 2L + 1 samples of x[n] and 2L + 1 samples of 
xʹ[n].  

3. The New Fractional Delayer 

3.1 On Approximation of Derivative Samples 
by Carathéodory Representation  

The Carathéodory representation theorem asserts 
existence and uniqueness of the representation of a finite 
sequence in terms of exponential sums [10], and the num-
ber of terms could be significantly reduced by allowing 
exponents and coefficients to be complex-valued [11].  

We reformulate the Carathéodory representation as 
follows: 

Given one group containing 2L + 1 uniformly-spaced 
samples of a smooth function x(t) on the interval 
[n/fs, (n + 2L)/fs], and a target accuracy ε > 0, we can find 
the minimal number K of complex weights ωk and complex 
nodes τk such that 

 
1
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where x[l] are the samples of x(t), and x[l] = x(t)t = l/fs
. 

n = 0, 1, …, N – 1 – 2L, and N is the number of x[n]. K is 
a positive integer and is usually taken from 1 to L + 1. fs is 
the sampling rate. 

The algorithm to obtain the nodes and weights above 
is as follows 

1. Build a (L + 1)  (L + 1)  Hankel matrix Hk,l = xk + l 
where xm = x[m] [12, p. 204]. 

2. Find a vector uK = (u0 u1 … uL)T  satisfying 
HuK = σKu̅K. The “bar” notation denotes conjugate 
operation and σK is close to the target accuracy ε. To 
obtain σK and uK, we can apply singular value decom-
position (SVD) to H . Then we label the first K + 1 
singular values in decreasing order σ0  σ1  …  σK, 
where σK / σ0  ε, and the corresponding singular vec-
tor obtained is uK. 

3. Compute the roots of the polynomial 
0

( )
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where l = 1, 2, …, L. We denote these roots by γl and 
select all the K roots close to the unit circle, i.e. the γl 
satisfying γl – 1<  where  is a small constant 
much close to zero. Thus γl = exp(l). 

4. Obtain the K weights by solving the overdetermined 
Vandermonde system below 
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Fig. 3. The modified scheme of fractional delayer.  

The algorithm of Carathéodory representation re-
quires O((2L + 1)(log(2L + 1))2) operations that can be 
seen in [10], [11].  

With the complex weights ωk and complex nodes τk in 
hand, the derivative samples of x(t) on the interval 
[n, (n + 2L)/fs], denoted by xʹ[l], can be approximated 
below 
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Thus, obtaining the derivative samples requires neither an 
analog differentiator nor a sampler. 

3.2 The Modified Scheme  

Based on the analysis above, we propose a modified 
fractional delayer. Figure 3 shows the modified scheme. 
H1(z) and H2(z) are two FIR filters mentioned in Sec. 2. 
2L + 1 is the length of both these filters. Having being 
reformulated each group containing 2L + 1 samples of x[n] 
by Carathéodory representation, the corresponding 2L + 1 
samples of xʹ[n] are approximated by (9). Then a fractional 
delayer based on Hermite interpolation could be imple-
mented, and the output of this system is given in (4).  

The Hermite interpolation requires O(2L + 1) 
operations and the total computational complexity of the 
proposed method is O(2L + 1)  + O((2L + 1)(log(2L + 1))2). 

4. Simulations 
In this section, we devise four simulations to verify 

the validity and superiority of the proposed method. The 
first simulation addresses a complex single-frequency sig-
nal while the second simulation discusses a complex multi-
frequency signal. In the third case, we use a UWB LFM 
signal, while in the fourth case, we use a UWB nonlinear 
LFM (NLFM) signal. Minimizing the time-domain error is 
our objective. In each simulation, we compare the interpo-
lation error for Hermite interpolation method with digital 
differentiator in [9], Hermite interpolation method with 
analog differentiator in [9] and the proposed method.  

The time-domain error, or say interpolation error, can 
be expressed below 

 10 IFD( ) 20 log [ ] [ ]e n y n y n   (11) 
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where y[n] is the actual delayed signal and yIFD[n] is the 
ideal delayed signal. L = 8, so the order of Hermite 
interpolation filter set is 16. 

4.1 Complex Single-Frequency Signal  

The discrete complex single-frequency signal x[n] and 
the ideal delayed signal yIFD[n]

 
 are given below  

 0[ ] exp j2 ,
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where f0 = 2.19 GHz, n = 0, 1, …, N – 1 and N = 1000. The 
accuracy ε is 10–3 and K = 2. Figure 4 shows the time-do-
main errors for the three methods mentioned above when 
D = 8.1. Table 1 shows the maximum interpolation error 
using the three methods mentioned for D = 
8.1, 8.2, …, 8.8, 8.9. The results indicate that the proposed 
method has achieved a much lower interpolation error than 
Hermite interpolation method with digital differentiator 
when the signal frequency approaches the Nyquist rate. 

 
Fig. 4. The interpolation errors of the three methods tested by 

complex single-frequency signal when D = 8.1. Dot-
ted, solid, dashed lines represent the Hermite interpola-
tion method with digital differentiator, the modified 
method and the Hermite interpolation method with 
analog differentiator, respectively.  

4.2 Complex Multi-Frequency Signal  

The discrete complex multi-frequency signal x[n] and 
the ideal delayed signal yIFD[n]

 
 are given below  
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where M is the number of frequencies and M = 6. f1 = 
0.365 GHz, f2 = 0.73 GHz, f3 = 1.095 GHz, f4 = 1.46 GHz, 
f5 = 1.825 GHz, f6 = 2.19 GHz, n = 0, 1, …, N – 1 and 
N = 1000. The accuracy ε is 10–3 and K = 7. Figure 5 shows 
the interpolation error for three methods mentioned above 
when D = 8.1. Table 2 shows the maximum interpolation 
errors using three methods mentioned when D = 
8.1, 8.2, …, 8.8, 8.9. The results show the performance of 
our method has much higher interpolation accuracy than 
the Hermite interpolation method with digital differentiator. 
The time-domain error tested by complex multi-frequency 
signal is also lower than one tested by complex single-fre-
quency signal. 

 
Fig. 5. The interpolation errors of the three methods tested by 

complex multi-frequency signal when D = 8.1. Dotted, 
solid, dashed lines represent the Hermite interpolation 
method with digital differentiator, the modified 
method and the Hermite interpolation method with 
analog differentiator, respectively.  

 

 Maximum interpolation error(dB) 

D 
Fractional delayer based on 

Hermite interpolation method 
with digital differentiator 

The proposed  
fractional delayer 

Fractional delayer based on 
Hermite interpolation method 

with analog differentiator 
8.1 –11.7 –43.6 –132.4 
8.2 –6.1 –38.0 –122.0 
8.3 –3.3 –35.2 –115.5 
8.4 –1.9 –33.8 –112.6 
8.5 –1.5 –33.4 –111.5 
8.6 –1.9 –33.8 –112.2 
8.7 –3.3 –35.2 –114.7 
8.8 –6.1 –38.0 –120.2 
8.9 –11.6 –43.7 –130.8 

Tab. 1. Maximum interpolation errors for complex single-frequency signal utilizing the three methods.  
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4.3 Complex UWB LFM Signal  

The discrete complex UWB LFM signal x[n] and the 
ideal delayed signal yIFD[n]

 
are given below 
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where μ = B / t0. B is the signal bandwidth and B = 0.5 GHz. 
t0 is the duration of the signal and t0 = N/fs. f0 = 1.69 GHz. 
n = 0, 1, …, N – 1 and N = 1000. The accuracy ε is 10–3 and 
K = 8. Figure 6 shows the interpolation errors utilizing 
three methods mentioned above when D = 8.1. Table 3 
shows the maximum interpolation errors using three meth-
ods mentioned for D = 8.1, 8.2, …, 8.8, 8.9. In contrast, the 
proposed delayer could effectively split the signal into its 
constituent frequencies and accurately sniff these frequen-
cies. So, our method could estimate the derivative samples 
xʹ[n] much more accurately than using digital differentiator. 
Thus, our scheme is suitable to delay UWB LFM signals. 

4.4 Complex UWB NLFM Signal  

NLFM signals can solve the contradiction between 
the main  lobe  width and the  side  lobe level, so they  have 

 
Fig. 6. The interpolation errors of the three methods tested by 

complex UWB LFM signal when D = 8.1. Dotted, 
solid, dashed lines represent the Hermite interpolation 
method with digital differentiator, the modified 
method and the Hermite interpolation method with 
analog differentiator, respectively.  

been widely concerned in the pulse compression radars and 
UWB radars. One of most the most common UWB NFLM 
signals is the tangent FM signal. The discrete complex 
UWB NLFM signal x[n] and the ideal delayed signal 
yIFD[n]

 
 are given below 
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 Maximum interpolation error(dB) 

D 
Fractional delayer based on 

Hermite interpolation method 
with digital differentiator 

The proposed  
fractional delayer 

Fractional delayer based on 
Hermite interpolation method 

with analog differentiator 
8.1 –11.8 –72.7 –132.4 
8.2 –6.2 –67.3 –122.1 
8.3 –3.4 –64.5 –115.5 
8.4 –2 –63.1 –112.5 
8.5 –1.6 –62.7 –111.5 
8.6 –2 –63.1 –112.1 
8.7 –3.4 –64.6 –114.7 
8.8 –6.1 –67.2 –120.2 
8.9 –11.7 –72.9 –130.9 

Tab. 2. Maximum interpolation errors for complex multi-frequency signal utilizing the three methods. 

 Maximum interpolation error(dB) 

D 
Fractional delayer based on 

Hermite interpolation method 
with digital differentiator 

The proposed  
fractional delayer 

Fractional delayer based on 
Hermite interpolation method 

with analog differentiator 
8.1 −15.4 −101.2 −132.9 

8.2 −9.8 −92.9 −121.7 

8.3 –7.0 −86.7 −116.0 

8.4 −5.6 −83.3 −113.1 

8.5 −5.2 −81.2 −112.0 

8.6 −5.6 −80.2 −112.8 

8.7 −7.1 −80.4 −115.2 

8.8 −9.8 −82.1 −120.5 

8.9 −15.3 −86.7 −131.3 

Tab. 3. Maximum interpolation errors for complex UWB LFM signal utilizing the three methods. 
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 Maximum interpolation error(dB) 

D 
Fractional delayer based on 

Hermite interpolation method 
with digital differentiator 

The proposed  
fractional delayer 

Fractional delayer based on 
Hermite interpolation method 

with analog differentiator 
8.1 −16.2 −79.9 −137.6 

8.2 −10.6 −75.0 −126.3 

8.3 −8.8 −71.8 −121.2 

8.4 −7.4 −70.0 −118.2 

8.5 −6.9 −69.0 −117.2 

8.6 −7.4 −68.9 −117.8 

8.7 −8.8 −69.9 −120.2 

8.8 −11.5 −72.2 −125.5 

8.9 −17.1 −77.3 −136.3 

Tab. 4. Maximum interpolation errors for complex UWB NLFM signal utilizing the three methods.  
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t0 is the duration of the signal and t0 = N/fs. f0 = 1.94 GHz. 
n = 0, 1, …, N – 1 and N = 1000. β is modulation factor of 
the tangent FM signal above and β is given as follows 

 
2 tan( 2)





B

v
 (16) 

where B is the signal bandwidth and B = 0.5 GHz. ν = 0.5. 
The accuracy ε is 10−3 and K = 3. Figure 7 shows the inter-
polation errors utilizing three methods mentioned above 
when D = 8.1. Table 4 shows the maximum interpolation 
errors using three methods mentioned for D = 
8.1, 8.2, …, 8.8, 8.9. The results show that the performance 
of the proposed method has excellent interpolation accu-
racy and is suitable for UWB signals, especially in the high 
frequency region. When the signal frequency approximates 
1.69 GHz, the frequency modulation slope of the NLFM 
signal is larger than that for the LFM signal, so the pro-
posed scheme has a little higher interpolation error than 
using digital differentiator. Although the interpolation error 
is a bit higher, it is still less than −70 dB and high interpo-
lation accuracy is obtained. 

5. Conclusion 
In this letter, we proposed a novel fractional delayer 

utilizing Hermite interpolation with Carathéodory represen-
tation. The derivative samples are obtained by Cara-
théodory representation from the samples of the original 
signal, other than analog or digital differentiator. Thus, 
only one sampler is required. Theoretical analysis and 
simulation results for four types of signals demonstrate that 
our method has much lower interpolation error than 
Hermite interpolation method with digital differentiator. 
Moreover, the proposed method also has a much simpler 
sampling module than Hermite interpolation method with 
an analog differentiator.  

 
Fig. 7. The interpolation errors of the three methods tested by 

complex UWB NLFM signal when D = 8.1. Dotted, 
solid, dashed lines represent the Hermite interpolation 
method with digital differentiator, the modified 
method and the Hermite interpolation method with 
analog differentiator, respectively.  
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