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Abstract. This paper investigates the use of a particular 
splitting-based optimization technique for constrained l∞-
norm based peak-to-average power ratio (PAPR) reduc-
tion problem in multiuser orthogonal frequency-division 
multiplexing (OFDM) based multiple-input multi-output 
(MIMO) systems. PAPR reduction and multi-user interfer-
ence (MUI) cancelation are considered in a saddle-point 
formulation on the downlink of a multi-user MIMO-OFDM 
system and an efficient primal-dual hybrid gradient 
(PDHG) inspired algorithm with easy-to-evaluate proximal 
operators is developed. The proposed algorithm converges 
significantly faster to satisfactory solutions with much 
improved asymptotical convergence rate than existing 
methods. Numerical results illustrate the superior perfor-
mance of the proposed algorithm over existing methods in 
terms of PAPR reduction for different MIMO configura-
tions. 
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1. Introduction 
Very-large multi-user multiple-input multiple-output 

(MU-MIMO) system or massive MIMO, with hundreds of 
base station antennas, is an emerging technology to meet 
the explosively increasing demand of throughput. Marzetta  
[1] firstly conceived the idea of employing large number of 
transmit antennas at the base-station (BS), in co-located or 
distributed manner, to simultaneously serve dozens of user-
equipments (UEs) in the same time-frequency source. Mas-
sive MIMO arrays of realistic physical sizes provide sub-
stantial improvement in spectral and energy efficiency 
compared to the conventional small-scale MIMO systems. 
Moreover, the use of large-scale antenna arrays yields 
favorable propagation where the channel vectors between 

the base station and the user terminals become mutually 
orthogonal. Hence, the simple linear signal processing 
methods become efficient and optimal for multi-user inter-
ference suppression [2]. Massive MIMO systems are 
promising candidates for 5G [3]. 

Practical wireless channels generally suffer from fre-
quency-selective fading. The intersymbol interference 
resulting from the frequency-selective fading can be com-
pensated by orthogonal frequency division multiplexing 
(OFDM). OFDM divides the entire bandwidth of a wide-
band channel into a set of orthogonal narrowband sub-
channels such that each individual sub-channel is exposed 
to flat fading rather than frequency selective fading. 

MIMO and OFDM technology are widely used at the 
same time in the physical layer for wireless communication 
systems [4], [5]. However, the OFDM signal incurs high 
peak-to-average power ratio (PAPR) of the system due to 
the fact that phases of sub-carriers may combine in a con-
structive or destructive manner. Constructive superposition 
of subcarriers via inverse fast Fourier transform (IFFT) 
operation will result in a signal with high value of envelope 
peaks. To avoid high out-of-band radiation caused by high 
side lobes of modulated subcarriers, and inter-modulation 
distortion among subcarriers, we require power amplifiers 
and digital-to-analog converters (DAC) with large linear 
dynamic ranges, which is costly and power-inefficient [6]. 
Therefore, signals with low PAPR become more important 
to make massive MIMO systems affordable as well as 
power efficient. 

Several schemes have been proposed to handle high 
PAPR in single-input single-output (SISO) OFDM sys-
tems, such as companding [7], [8], precoding [9], clipping 
[10], partial transmit sequence (PTS) [11], tone reservation 
[12], selected mapping (SLM) [13] and active constellation 
extension (ACE) [14]. Although it is easy to extend most 
of these schemes to single user MIMO systems [15–18], 
their applicability to the multi-user (MU) MIMO systems is 
not straightforward. This is due to the fact that, since the 
user terminals are spatially distributed, joint processing of 
the signals is only feasible at the transmitter end. So it is 
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more challenging to apply PAPR reduction schemes in 
multiuser scenarios. In [19], the null-spaces of massive 
MU-MIMO-OFDM channels are exploited based on 
a linear constrained l∞ optimization problem to improve the 
PAPR. Convex optimization via fast iterative truncation 
algorithm (FITRA) jointly performs pre-coding, OFDM 
modulation, and PAPR minimization. It is shown theoreti-
cally that constant-envelope signals with PAPR close to 
unity can be obtained for infinitely large antenna limit. 
FITRA results in dramatic PAPR improvement (around 
10 dB) for massive MIMO systems but shows the limited 
PAPR improvement when applied to the small scale 
MIMO configurations, i.e., 4 × 2 or 8 × 2 MIMO. Simi-
larly, in [20], the perturbation signals lying within the null 
spaces of the associated channel matrices are added to the 
pre-coded signals in order to reduce the PAPRs of the 
transmitted signals via convex optimization problem. Un-
like [19], where the proximal operator of the l∞-norm is 
basically a clipping operator, an efficient algorithm is de-
veloped by resorting to the alternating direction method of 
multipliers (ADMM). A PAPR reduction scheme analo-
gous to the tone reservation was proposed in [21], where 
a peak clipping scheme is used for some transmit antennas 
at base station, while other antennas are reserved to com-
pensate for the distortions due to peak clipping. This an-
tenna-reservation scheme has a low computational over-
head but can achieve only a moderate PAPR minimization. 
Moreover, the antennas reserved to compensate for clip-
ping distortion may also experience large PAPRs. Methods 
proposed in [22], [23] formulate the PAPR reduction 
problem as approximate message passing (AMP)-based 
Bayesian inference problem that use priors to encourage 
constant magnitude solutions. The Bayesian approach in 
[22] treats MUI cancelation as an underdetermined linear 
inverse problem and offers better PAPR reduction than the 
FITRA algorithm [19], with much lower computational 
complexity. 

In this paper, we present a generalized usage of the 
primal-dual hybrid gradient (PDHG) algorithm [24] for 
joint consideration of PAPR reduction and multi-user pre-
coding in multiuser MIMO-OFDM systems. PAPR reduc-
tion problem is formulated as a saddle-point problem and is 
solved by using a variant of the PDHG algorithm. The 
algorithm progresses by taking forward and backward 
proximal steps that alternately maximize and minimize 
a constrained form of the saddle function. The associated 
proximal operator for the convex non-differentiable  
l∞-norm is implemented in linear time with low computa-
tion cost.  

The remainder of the paper is structured as follows: in 
Sec. 2, the description of the system model, basic assump-
tions and introduction to the PAPR reduction problem, are 
provided. Section 3 describes the formulation of PAPR 
reduction as a saddle-point problem along with the devel-
opment of modified PDHG algorithm. In next section sim-
ulation results are presented and conclusions are drawn in 
Sec. 5. 

Notations: Throughout the paper, the lowercase and 
uppercase symbols such as “x” and “X” respectively are 
used to represent column vectors and matrices. The trans-
pose is denoted as (.)T and conjugate transpose as (.)H. The 
inner-product of two vectors x and y will be denoted by 
x,y = xTy. Moreover ║x║1, ║x║2 and ║x║∞ will be used 
to denote the l1 -norm, l2 -norm and l∞ - norm of a vector x. 
{x} and {x} respectively represent the real and imagi-
nary part of a vector x. The U × U unitary discrete Fourier 
transform, the N × N identity matrix and M × N zero ma-
trix are represented as FU, IN and 0M × N, respectively. The 
symbol  denotes the Kronecker product. The notation 
abs(x) denotes the component-wise application of the ab-
solute value to a vector x. 

2. System Description 

2.1 System Model 

Consider a multiuser MIMO-OFDM downlink system 
depicted in Fig. 1 that consists of a base station (BS) hav-
ing N transmit antennas. The BS simultaneously serves M 
single antenna equipped terminals, where M << N. For 
a total of U OFDM tones (subcarriers), the M × 1 signal 
vector su contains information at u-th tone for each of the 
M terminals. The subcarriers are divided into two comple-
mentary sets φ and φC. The set φ contains the data trans-
mission tones and φC indexes the inactive guard band 
tones, such that for each tone u  φC, su = 0M  1. 

To eliminate the multi-user interference (MUI) at the 
receivers, the information symbols on the u-th subcarrier 
are linearly precoded as  

 u u up W s  (1) 

where pu = CN  1 is the pre-coded vector and Wu  CN  M  
represents the precoding matrix for the u-th OFDM tone. 
To eliminate MUI, the widely used precoding schemes are 
maximum ratio transmission (MRT), zero forcing (ZF), 
and minimum mean-square error (MMSE) precoding [25]. 
For known channel matrix H  CM  N at the transmitter, the 
standard ZF linear pre-coder can be written as 

   1ZF H H .u u u


W H H Hu    (2) 

The normalized precoded vectors pu, u are then re-
ordered to N transmit antennas according to the following 
mapping: 

    T

1 2 1 2, ,......, , ,....,N Ur r r p p p    (3) 

where U-dimensional vector rn contains the frequency-
domain signal to be transmitted from the nth antenna. 

Then an Inverse Discrete Fourier Transform (IDFT) F 
is applied on the precoded signal to obtain the time-domain 
signal, i.e., 
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Fig. 1. System model of the MU-MIMO-OFDM downlink 

scenario, with U OFDM tones, N transmit antennas 
and M user-terminals. 

 Hˆ .n U na F r   (4) 

After applying IDFT, a cyclic prefix is appended to 
the time domain samples of each antenna to avert inter-
symbol interference (ISI). Lastly, the time domain samples 
are transmitted through the wireless channel. 

2.2 Peak-to-Average Power Ratio (PAPR) 
Reduction 

The time domain samples {ân} have large dynamic 
range due to the superposition of the individual subcarriers, 
which can be characterized by peak-to-average power ratio 
(PAPR) metric on the n-th antenna as [19]: 
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used because RF-chains process and modulate the real and 
imaginary parts independently. 

Alternative PAPR definitions also exist in the 
literature where l∞-norm instead of ~l  and U instead of 2U 

are used. The relation 
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ensures that reducing the PAPR as defined in (5) also 
reduces an l∞-norm-based PAPR definition. 

The best and worst case PAPR is bounded as 

 UPAPRn 21  . (6) 

Since the transmit antennas are more in number than 
the user terminals i.e., N >> M so there will be infinitely 
many precoded signals, p≜ [p1

T, p2
T,……, pU

T]T that satisfy 
the precoding constraint s = Hp. In this paper, we search 
for the precoded signal p whose related time domain sig-
nals {ân} result in low dynamic range and which also sat-
isfy the following conditions to cancel out the MUI. 
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where s͞  CUM  1 is the aggregation of all user data 
symbols and inactive tones, and H͞ is a block diagonal 
matrix having the main diagonal blocks as Hu, uφ and 
IN, uφC . 

As defined in (3), the entries of each precoded vector 
are assigned to N transmit antennas through a linear trans-
formation T as: 

 .r Tp   (8) 

Using (4) and (7) we obtain 

 T ˆs HT Fa  (9) 

where F͞  IN FU and â  [â1
T, â2

T, …, âN
T]T . 

For symbol vector s͞ the aim is to find time domain 
samples â that satisfy (9) such that each antenna emits 
signals with low PAPR. Inspired by [19], the PAPR mini-
max reduction problem can be framed as a l-̃norm based 
constrained optimization which reduces the largest PAPR 
existing among all the transmit antennas as 

 .ˆ subject to ˆmin T
~ aFTHsa 


  (10) 

This problem can eventually be transformed into equiva-
lent real-valued l∞-norm based problem  P  by relaxing 

the equality constraint T ˆs = HT Fa  to T

2
ˆ  s HT Fa  

[27], i.e. 
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2
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3. Problem Formulation and Proposed 
Algorithm 

The problem  P  in (11) can be rewritten in the 

constrained form 

     
. , subject to

min
 

2








 
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vHxsv

x
P

NCx   (12) 

After introducing Lagrange multiplier λ  CM to en-
force the equality constraint v = s – Hx, the saddle-point 
formulation takes the following form: 

   T

,
max minM N MC x C v C 

 
  
   x Hx v s v   (13) 

where the characteristic function χδ(ν) used to remove the 
constraint ║ν║2 ≤ δ is defined as follows: 

  








.otherwise ,

 if ,0
2




v
v    (14) 
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3.1 PDHG-PROXINF Algorithm 

The primal-dual hybrid gradient (PDHG) [24], [28], 
[29] is an efficient splitting method that works directly 
with the original saddle-point problem by alternating be-
tween primal and dual variables. In our case, the saddle 
point of the minimax Lagrangian formulation (13) corre-
sponds to a minimizer of (P∞

δ). In order to find the saddle 
point of (13), we propose a variant of standard PDHG 
algorithm, referred to as the PDHG-PROXINF, in 
Algorithm 1.  

The parameters τk, and σk are step sizes of the primal 
and dual steps, respectively. During any iteration k, PDHG-
PROXINF updates both a primal (in step 1-2) and dual 
variable (in step 4-5) using a combination of forward and 
backward (or proximal) steps. In steps (1-2), PDHG-
PROXINF updates the x  CN by first taking a gradient 
descent step followed by the proximal step involving 
║x║∞. Whereas the dual variable λ  CM is updated 
through a gradient ascent step 4 followed by the backward 
step 5. While the proposed algorithm is nearly as effective 
as constant non-adaptive parameter versions of PDHG, 
well selected adaptive step sizes τk, σk from recently devel-
oped method in [30] can enhance the performance. The 
FITRA [19] requires a manually chosen regularization 
parameter to achieve balance between PAPR reduction and 
multiuser interference, whereas PDHG-PROXINF is free 
of this issue. 
 

Algorithm 1: PDHG-PROXINF Algorithm 

Input: 0,,0  kk
NCx   

while not converged do 

1. kkkk Hxx  T
1ˆ   
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
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3.      , absmax/.1 kkkkkkk vvv   

4. 11
ˆ

  kkkk Hx  

5.  svkkkk   111
ˆ   

3.2 Evaluation of the l∞ Proximal Operator 

Algorithm 1 takes a gradient descent step initially 
followed by the computation of the proximal operator 
associated with l∞-norm in step 2. Proximal operator does 
not have a simple closed-form solution; however, it can be 
computed explicitly as explained in the following section. 

The proximal operator  w
.prox  kkk Hx 

Tprox   

defined in step 2, finds a point close to the minimizer of 
║x║∞ without straying too far from the starting point 

kkk Hxw  T  [31]. The step size τk controls the extent 

to which the proximal operator maps points towards the 
minimum of ║x║∞. In plain terms,  .prox  w  is the func-

tion that maps the vector w  CN to the unique solution of  

 .
2

1
min arg 

2

2









 wxx

k
Cx N


  (15) 

The proximal operator  .prox  w  and the projector 

   
1

.
Proj


w  onto the closed ball of radius τ of the dual  

l1-norm, satisfy the relation 

     ,Projprox
1

.. www  
  (16) 

where 

     
1

2 1.
Proj arg min  subject to  x




  w x w x . (17) 

Ignoring the trivial case ║w║1 ≤ τ, there exists for τ 
each  a Lagrange multiplier γ(τ) such that  

   ,
2

1
min arg

1

2

2
xwxx   (18) 

shares the same solution as (17). 

As shown by Chambolle et al. [32], the solution of 
separable convex optimization problem (18) has a closed 
form accomplished by applying component-wise soft 
thresholding operation Sγ(w) to the vector w for a properly 
chosen value of γ. 

     .Proj
1

. ww  S    (19) 

Thus, the proximal operator associated with l∞-norm 
in (16) becomes    .prox S   w w w  that can be com-

puted by sorting the elements of w  CN in decreasing 
order [33] followed by component-wise truncation, which 
can be performed in ࣩ(n logn) expected time. An improve-
ment of this algorithm was proposed in [34], that avoids 
having to sort the entire vector w; since only the largest 
elements of w are involved in the determination of γ. This 
heap-sorting based approach reduces the complexity to 
ࣩ(log n). We have exploited the linear-time ࣩ(n) median-
search like procedure [35] to compute the proximal opera-
tor. The overall algorithm to minimize (15) is detailed in 
Algorithm 2. 
 

Algorithm 2: Procedure for evaluation of  w
.prox  

Input: A vector NCw and a scalar 0  
 ww abs:abs   

If  
1absw then return absw               [quick exit if w is   

                                                                           feasible] 
Initialize:  0:,: abs  cwq                        [initialization] 

While 1 do 
  ;2/length: qk   

 ;median -upper: qzk                          [set the pivot] 

 ; find:high kzqq         [partition around the  pivot] 

       ; find:low kzqq   
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      ;:
1low klow zqc   

        ;.: low kk zkccz            [soft-threshold upto k ] 

       If    kz then  

;: lowqq   

else 
 ;max: high1 qzk   

  ;.: 1low1   kk zkccz              [soft-threshold  

                                                        upto k+1 ] 
             If    1kz then break        [check termination  

                                                                        condition] 
;: highqq   

;: lowccc   

   ;/: kzz kk       [compute Lagrange multiplier] 

for k=1,…….,N do 
    ;sign.,min: abs kkk wwt       [truncation operator] 

return t 

4. Simulation Results 
To illustrate the PAPR reduction performance of 

PDHG-PROXINF algorithm, simulations are carried out 
for a massive MIMO scenario having N = 100 transmit 
antennas and 10 single-antenna user terminals. OFDM 
modulation with U = 128 tones and spectral map φ with 
114 data tones for transmission are considered [36]. For the 
purpose of simulation, coded transmission is employed, 
i.e., the information bits for each user are encoded by 
a convolutional encoder (rate-1/2, generator polynomials 
[1330,1710] and constraint length 7) [37] which are then 
interleaved, mapped to 16-QAM constellation, precoded, 
and finally transmitted over the assumed frequency-selec-
tive channel. Convolutional code-1/2 rate is opted since it 
provides significant coding gain and low PAPR values as 
compared to higher coding rates. The channel is modelled 
as a tap-delay line with D = 4 taps and impulse response 
matrices Ĥd, d = 1,…,D, have independent and identically 
distributed entries drawn from circularly-symmetric normal 
distribution. The frequency-domain response Hu on the  
u-th tone can be expressed as [38]: 

 
1

j2ˆ exp
D

u d
d

du
H H

U




   
 

 . (20) 

After demodulation at each user terminal, a soft-input 
Viterbi decoder is used to regenerate the transmitted bits. 

In the simulations, the probability of PAPR exceeding 
a threshold PAPR0 is considered as the measurement index 
which is described as complementary cumulative distribu-
tion function (CCDF) [39]. 

    0 0PrCCDF PAPR PAPR PAPR .   (21) 

Also, in order to evaluate the out-of-band radiation of 
the solution, we define the out-of-band (power) ratio as: 

 .
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




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







u
u

C

u

u
C

OBR
p

p

   (22) 

To evaluate the performance of the proposed primal-
dual hybrid gradient proximal infinity (PDHG-PROXINF) 
algorithm, we compare it with the fast iterative truncation 
algorithm (FITRA) [19] and the conventional zero-forcing 
(ZF) precoding scheme for 1000 independent trials. It is 
worth mentioning here that the time taken for per packet 
transmission and overall simulation will not be the same 
for the considered iterative schemes. CPU computational 
time depends on the tolerance level and maximum number 
of iterations taken. The maximum number of iterations is, 
however, explicitly stated for each iterative scheme in the 
ensuing simulation results.  

Firstly, we examine the signals estimated by respec-
tive schemes. Figure 2 depicts the real part of the first an-
tenna’s time-domain samples (i.e. â1) obtained by all con-
sidered schemes. For PDHG-PROXINF and FITRA algo-
rithms, their solutions have most of the entries located near 
to a ceiling, which results in small dynamic range in terms 
of PAPR. The solution of ZF scheme shows a large varia-
tion with few high peaks. Simulation results verify that 
PDHG-PROXINF obtains the lowest PAPR of 1.42 dB 
linked with the first transmit antenna, whereas ZF and the 
FITRA schemes render higher PAPRs of 9.62 dB and 
1.75 dB, respectively.  

In order to assess the PAPR reduction performance, 
we compare the CCDF of the PAPR values for respective 
schemes obtained in 1000 simulation trials in Fig. 3. The 
PAPR associated with all N transmit antennas is considered 
while calculating the empirical CCDF. For system configu-
ration with (N, M) = (32, 4), our proposed algorithm re-
duces the PAPR by 9.7 dB (corresponding to a comple-
mentary CDF of 10–3) compared to ZF scheme and by 
0.3 dB compared to the FITRA algorithm with 2000 itera-
tions. Meanwhile, PDHG-PROXINF exhibits a much 
lower OBR (averaged over 1000 independent runs) than 
FITRA algorithm. Their OBRs are given by –62.49 dB and 
–56.51 dB, respectively. 

The symbol error rate (SER) performance of each 
considered scheme is represented in Fig. 4. The average 
signal-to-noise ratio (SNR) across user terminals is defined 
as ║x║2

2/NNo, where No denotes the noise variance at the 
receivers. At SER of 10–3, we observe that PDHG-
PROXINF suffers a SNR loss of about 1.66 dB and 
0.38 dB compared to ZF and FITRA schemes, respectively. 
This performance loss is mainly caused due to the fact that 
norm of the obtained solution has more significant in-
crease. It is also worth noting that the ZF precoding attains 
the least-norm solution.  

We now examine the convergence behavior of 
FITRA and PDHG-PROXINF algorithms for system 
configuration (N, M) = (100, 10). Figures 5(a) and 5(b) show 
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(a) 

 
(b) 

 
(c) 

Fig. 2. Time representation for different schemes. (a), (b) and 
(c) are time-domain signals for ZF, FITRA and PDHG-
PROXINF respectively (PAPR: ZF = 9.62 dB, 
FITRA = 1.75 dB and PDHG-PROXINF = 1.42 dB). 

 
Fig. 3. PAPR performance for different schemes for (N, M) 

= (32, 4). (PAPR: ZF = 13.1 dB, FITRA = 3.7 dB and 
PDHG-PROXINF = 3.4 dB). 

the PAPR and OBR performance of these iterative-based 
algorithms as a function of the number of iterations, re-
spectively. We observe in Fig. 5(a) that PDHG-PROXINF 
clearly yields much faster initial as well as asymptotic 
convergence than the FITRA algorithm. PDHG-PROXINF 
algorithm obtains a PAPR of 2.96 dB within only 500 
iterations, while the FITRA algorithm requires about 1550 
iterations to achieve the same PAPR reduction performance 

 
Fig. 4.  Symbol error rate (SER) performance for various 

schemes. 

 
(a) 

 
(b)  

Fig. 5.  Comparison of the convergence rates of different 
metrics for FITRA and PDHG-PROXINF algorithms 
for (N, M) = (100, 10): (a) PAPR, (b) OBR. 

Also, our proposed method reduces the PAPR down to 
2.65 dB within 1000 iterations, while the FITRA algorithm 
needs as many as 2200 iterations to obtain a similar result. 
From Fig. 5(b), we notice that PDHG-PROXINF has OBR 
of –40.66 dB during the first iteration. The highest average 
OBR of –15.29 dB is obtained at the 40th iteration which 
indicates that initially, more amount of power is transmit-
ted outside the active tones φ. As the algorithm progresses, 
the high value of OBR observed in the first few iterations 
falls rapidly. Although FITRA has fast initial convergence 
rate, both algorithms obtain almost same OBR at the 
2500th iteration. Average OBR of FITRA and PDHG-
PROXINF at the 2500th iteration are –57.41 dB and  
–57.56 dB, respectively. 

The impact of the transmit antenna configuration and 
the channel model to the PAPR reduction is investigated in 
Fig. 6 for fixed number of user terminals M = 10, where 
results are averaged over 1000 independent trials. It is 
evident that increasing the number of transmit antennas 
from 20 to 100 and non-zero channel taps from 4 to 8, 
yields  improved  PAPR  performance  for  both FITRA and 
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Fig. 6.  PAPR performance of FITRA and PDHG- PROXINF 

algorithms vs. number of transmit antennas.  

PDHG-PROXINF algorithms. This result is expected be-
cause increasing N and number of channel taps D will 
result in the increase of the degrees-of-freedom (DoF) at 
the base station. However, the PDHG-PROXINF exploits 
the inherent DoFs more efficiently as the number of trans-
mit antennas and channel taps increases. 

5. Conclusion 
We have introduced a variant of primal-dual hybrid 

gradient (PDHG) algorithm for joint consideration of 
PAPR reduction and MUI cancelation in multiuser MIMO-
OFDM systems. The associated proximal map is computed 
using a linear-time projection algorithm. The proposed 
method exhibits an optimal rate of convergence for PAPR 
and OBR metrics in terms of its dependence on the number 
of iterations. Simulation results show that the proposed 
algorithm efficiently exploits the large degrees-of-freedom 
inherent in large-scale antenna systems in order to obtain 
lower PAPRs than FITRA algorithm [19], meanwhile pro-
ducing lower out-of-band radiation.  
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