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Abstract. The existing method for blind identification of 
a punctured convolutional code involves searching for 
dual words and the puncturing pattern exhaustively. As the 
length of the dual words and the code rate increase, the 
computational complexity of this method expands exponen-
tially. To address this problem, a fast scheme for blind 
identification of punctured convolutional codes is pro-
posed. First, a recursive algorithm for solving the parity 
check equation set is proposed. The dual word and genera-
tor polynomial bases of the punctured convolutional code 
are estimated by using the recursive algorithm. After this, 
by using the structural properties of the generator matrix 
of the blocked code, possible generator matrices of the 
punctured convolutional code are obtained. Finally, since 
a generator polynomial of the parent convolutional code 
can be recovered from any column of its polycyclic pseudo-
circulant matrix, the corresponding generator matrix of the 
parent code and the puncturing pattern are reconstructed 
simultaneously from an estimation of the generator matrix 
of the punctured code. The reconstructed generator matrix 
of the parent code with a minimal constraint length is de-
termined to be the identification result. Simulation experi-
ments show the effectiveness of the proposed method. As 
there is no need to search for the dual word and punctur-
ing pattern exhaustively, the method can achieve fast iden-
tification of punctured convolutional codes. Additionally, 
the method is robust to bit errors in the received sequence. 

Keywords 
Punctured convolutional code, blind identification, 
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1. Introduction 
Error correcting codes are widely used in communica-

tion systems as a means of enhancing the quality of com-
munication [1]. Since punctured convolutional codes have 
high code rates and can be decoded flexibly, they are often 
used by preference in modern communication systems 

across domains such as satellite communication, deep 
space communication and mobile communication [2]. This 
makes blind identification of punctured convolutional 
codes an important issue in the fields of cognitive radio 
and information interception. 

Blind identification of a punctured convolutional code 
aims to reconstruct the generator matrices of the punctured 
and parent codes and identify the puncturing pattern. In the 
case that the parent code rate is 1/2 and the punctured code 
rate is K/(K + 1) where K is the input dimension of the 
punctured convolutional encoder, an identification method 
has been proposed in [3]. The method first of all identifies 
the parity check matrix of the punctured convolutional 
code by using Gaussian elimination algorithm to solve the 
parity check equation. Then, under every possible punctur-
ing pattern, a linear equation set is established according to 
the orthogonality between the parity check matrix and the 
generator matrix of the punctured code. The generator 
matrices of the punctured and parent codes can be recon-
structed by solving the linear equation set. The generator 
matrix of the parent code which has a minimal constraint 
length, together with the corresponding generator matrix of 
the punctured code and the puncturing pattern, is deter-
mined to be the identification result. However, this method 
requires that there exist no errors in the received sequence. 
It also cannot be applied in general cases where the parent 
code rate is 1/n with n being the codeword length of the 
parent convolutional code.  

To address this limitation, an identification method 
was proposed by Cluzeau [4]. First, the parity check matrix 
of the punctured convolutional code is estimated by search-
ing for the dual words exhaustively. After this, a canonical 
generator polynomial matrix of the punctured code can be 
reconstructed according to the orthogonality between the 
parity check matrix and the generator matrix. Finally, all 
the possible parent code lengths and puncturing patterns 
are tested. Under each hypothesis, the generator matrix of 
the parent code and the puncturing pattern can be recov-
ered based on the properties of the generator matrix of the 
blocked code. Similarly, the generator matrix of the parent 
code with a minimal constraint length is considered to be 
the identification result. Since the dual words and punctur-
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ing pattern are searched for exhaustively, the computa-
tional complexity of this method is quite high. If the gener-
ator matrix of the punctured code is known a priori, the 
generator matrix of the parent code and the puncturing 
pattern can be identified by using the polycyclic pseudocir-
culant (PCPC) matrix proposed in [5]. Nevertheless, it is 
difficult to have a priori knowledge of the true generator 
matrix of a punctured code. Usually, only an equivalent 
generator matrix can be obtained by employing the 
methods for identifying convolutional codes put forward 
variously in [6–12].  

In practice, the rates of most punctured and parent 
convolutional codes are K/(K + 1) and 1/n respectively 
[13]. In this case, the identification of a punctured convolu-
tional code by using the existing methods requires either 
an enormous amount of computation or a priori knowledge 
of the generator matrix of the punctured convolutional 
code. In order to solve the limitations of these methods, 
a fast method for blind identification of a punctured con-
volutional code is presented in this paper. In our proposed 
method, there is no need to search for the dual word and 
puncturing pattern exhaustively. It is also robust against bit 
errors. 

The rest of this paper is organized as follows. In 
Sec. 2, the construction of a punctured convolutional code 
is briefly reviewed. In Sec. 3, a recursive algorithm for 
estimating the dual word and the generator polynomial 
bases of a punctured convolutional code is proposed. In 
Sec. 4, the generator matrices of the punctured and parent 
codes, together with the puncturing pattern, are identified 
simultaneously. This is done by drawing on the properties 
of the generator matrix of the blocked code and the PCPC 
matrix. The method’s computational complexity is ana-
lyzed and simulation results are shown in Sec. 5. Conclu-
sions are provided in Sec. 6. 

2. Construction of a Punctured 
Convolutional Code 
The procedure for constructing a punctured convolu-

tional code is shown in Fig. 1. 

A (n,1,m) parent convolutional code, where m is the 
constraint length of the convolutional code, is equivalent to 
its Kth blocked code [4]. This Kth blocked code can be 
denoted by a K  nK generator polynomial matrix. The 
construction procedure for the Kth blocked code is as fol-
lows. 

Let us assume that the generator matrix of a parent 
code is G(D) = [g1 (D), g2 (D), …, gn (D)]. Each polyno-
mial gi (D) can be split into K different polynomials and 
expressed as 
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Fig. 1. Construction of a punctured convolutional code. 

The polynomial gi
[j]K

 (D) consists of the terms of gi (D) 
whose degree d modulo K is congruent to j. Thus, the Kth 
PCPC matrix Qi

[K](D) of gi (D) can be expressed as 
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Incorporating (2) into (3), we obtain that 
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  (4) 

By substituting the corresponding Kth PCPC matrix for 
each element in G(D) and interleaving the columns at the 
depth K, the generator matrix of the Kth blocked code is 
obtained and denoted as G[K](D). 

The puncturing pattern P is a (n  K) binary matrix 
where the (i, j) element in P corresponds to the [i + n(j – 1)]th 
column in G[K](D). If the value of an element is equal to 0, 
the corresponding column in G[K](D) is deleted. Otherwise, 
the column is retained. Consequently, the generator matrix 
Gp(D) of the punctured convolutional code is derived from 
G[K](D) by using P. 

3. A Recursive Algorithm for Estima-
tion of the Dual Word and the Gen-
erator Polynomial Bases 

3.1 Estimation of the Dual Word 

For a punctured convolutional code with the code rate 
K/(K + 1) there exists a (K + 1)  1 parity check matrix 
Hp(D), which is orthogonal to the generator matrix Gp(D) 
of the punctured code [14], i.e.,  

 T
p p( ) ( ) 0.D D G H   (5) 

The inner product xy represents xy mod 2 in this paper. 
In order to reconstruct Gp(D), the parity check matrix 
Hp(D) has to be estimated first.  

Since the punctured convolutional code sequence 
C(D) can be expressed as C(D) = M(D)  Gp(D), with 
M(D) being the source bit sequence, then (5) can be used 
to obtain the following equation 

 T
p( ) ( ) 0.D D C H   (6) 
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According to (6), the following parity check equation 
set can be established 

 T 0 C h   (7) 

where C is the received bit matrix and h is the dual word. 
By solving the parity check equation set, the dual word h 
can be estimated. Consequently, the parity check matrix 
Hp(D) is derived. In this subsection, we proposed a recur-
sive algorithm that can achieve fast estimation of the dual 
word. 

Let Ĥ denote the matrix consisting of the values of 
the elements that were estimated in the dual word, and let 
hʹ denote the vector consisting of the undetermined ele-
ments. If the external degree of the punctured convolu-
tional code is dp, the length of the dual word would be 
(K + 1)(dp + 1) [10]. The steps of the recursive algorithm 
are as follows. 

(1) Initialize Ĥ = ϕ and hʹ= [h1, h2,…, h(K + 1)(dp + 1)]
T  

where ϕ denotes a blank matrix. 

(2) For simplicity, only the general jth recursion of the 
algorithm is elaborated in this step. Let us assume that 
the matrix A is composed of the columns of C corre-
sponding to the elements that were estimated in h. Let 
us also assume that the matrix B is composed of the 
columns of C corresponding to the unknown ele-
ments in .h Thus, the parity check equation set shown 
in (7) can now be expressed as 

 ˆ .Bh AH 0=   (8) 

Find the sparsest row in which the number of 1 ele-
ments is the smallest in .B  If the ith row is the spars-
est row, and the 1 elements are the coefficients of the 
unknowns hk1, hk2,…, hkp

 then according to the ith 
equation, the modulo 2 summation value of the ele-
ments hk1, hk2,…, hkp

 can be obtained as follows 

 
1 2

ˆ
pk k k ih h h    a H   (9) 

where ai is the ith row of .A  From (9), we can get all 
the possible values of the vector [ĥk1, ĥk2,…, ĥkp

]T. 
These vectors can then be used to expand the matrix 
Ĥ, and the elements hk1, hk2,…, hkp

 in hʹ are deleted. 
Once this is done, the jth recursion is finished. 

If there are errors in the received bit sequence, it 
is probable to obtain an incorrect summation value of 
hk1, hk2,…, hkp

 resulting from only one parity check 
equation. Since there are more correct equations than 
incorrect ones in practice, we use several parity check 
equations to jointly determine the summation value in 
each recursion. Let us assume there are Neq equations 
which have the same form as (9). The number of 
equations by which the summation value is estimated 
to be 1 is N1

eq and the number of equations by which 
the summation value is estimated to be 0 is N0

eq. 
Then, the summation value is determined according to 
the following rule. 

When Neq  theq, 
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When Neq > theq, 
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where theq is the smallest number of parity check 
equations required for determining the summation 
value. Equation (11) denotes that the summation is 
assigned two possible values, 0 and 1. 

The maximum probability of incorrect determi-
nation of the summation value under the threshold theq 
is 
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The proof of (12) is shown in the appendix. 
Equation (13) denotes the error probability for a par-
ity check equation, where  is the bit error ratio and w 
is the weight of the dual word. According to (12), we 
can calculate the threshold theq from the assumed pmax. 
The threshold theq increases as pmax decreases. 

(3) The recursion in step (2) is carried out again until all 
the elements in h are estimated. 

As the number of estimated elements increases, 
more and more rows in the matrix B will contain just 
a single 1 element. This makes it possible to estimate 
the unknown elements of h one by one. 

3.2 Verifying the Correct Estimation of the 
Dual Word 

Since there is only one dual word for a punctured 
convolutional code with the rate K/(K + 1) [15], it is essen-
tial to choose the correct one among all the estimations. To 
verify which one is correct, the received bit matrix C is 
multiplied by an estimation ĥ of the dual word. 0 elements 
in the output vector indicate that the corresponding equa-
tions hold. 1 elements indicate that the equations do not 
hold. Define variables i, (i = 1,2,…,N), where N is the 
number of parity check equations. If the ith equation holds, 
i = 1. Otherwise, i = –1. The testing statistic is defined as 

1

.
N

i
i



  Let the hypothesis H1 denote the estimation of the 

dual word is correct and the hypothesis H0 denote the esti-

mation is incorrect. The probability distributions of 
1

N

i
i



  in 

the cases of hypotheses H1 and H0 are shown as follows [16] 
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Let us assume the false alarm probability is pf. Since 
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f

1
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stant false alarm criterion, it is straightforward to obtain the 
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2

x
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    If an estimation has a test-

ing statistic that is larger than both the detecting threshold 
and the testing statistics of the other estimations, it is 
recognized as the dual word. 

3.3 Estimation of the Generator Polynomial 
Bases 

The parity check matrix Hp(D) can be obtained from 
the dual word h. By using (5), a linear equation set can be 
established. The generator polynomial bases of the punc-
tured convolutional code can be estimated by solving this 
equation set. If the degree of Hp(D) is dp, i.e., 
deg(Hp(D)) = dp, the degree of the ith row of Gp(D) is 
ep,i  = (dp + i – 1)/K [3]. On this basis, we can establish 
(dp + ep,i  + 1) linear equations with (K + 1)(ep,i + 1) un-
knowns, which are the coefficients of the generator poly-
nomial bases. As the number of unknowns is larger than 
the number of equations, the linear equation set cannot be 
solved by using the conventional Gaussian elimination 
algorithm.  

The equation set can be solved by our proposed recur-
sive algorithm, but there are some differences from the 
recursion outlined in Sec. 3.1. First of all, because all of the 
equations are correct, the summation value of unknowns 
can be determined by only one equation in each recursion. 
Additionally, if there are several sparsest rows of B in 
which the positions of the 1 elements are identical, to make 
all equations hold, the dot products of the corresponding 
rows of A with any column of Ĥ need to be equal. Suppose 
the indices of these rows of B are 1 2, , , qi i i , then 

 
1 2

ˆ ˆ ˆ .
qi i i   a H a H a H= =   (15) 

If any column of Ĥ does not satisfy (15), the column is 
deleted from Ĥ. The recursion is carried out until all the 
unknowns have been estimated. 

After all the generator polynomial bases have been 
obtained, any combination of K generator polynomial bases 
may be the generator matrix Gp(D) of the punctured code. 
Using the properties of the generator matrix of the blocked 
code and the PCPC matrix, we will discuss the identifica-
tion of Gp(D) further in Sec. 4. 

4. Identification of the Generator Ma-
trices of the Punctured and Parent 
Codes and the Puncturing Pattern 

4.1 Preliminary Reconstruction of the 
Generator Matrix of the Punctured Code 

The mathematical structure of the generator matrix of 
the blocked code satisfies Property 1. 

Property 1 [4]: Let Z be the K  K matrix consisting 
of an upper diagonal of 1, a D in the bottom left corner and 
0 everywhere else. The generator matrix G[K](D) of the Kth 
blocked code can be expressed as G[K](D) = [ZK – 1M,  
ZK – 2M,…, ZM, M], where M is a K  n polynomial 
matrix. 

The generator matrix Gp(D) of the punctured code is 
obtained by deleting corresponding columns of the matrix 
G[K](D) according to the puncturing pattern. Since there is 
no zero vector in the puncturing pattern [3], we can get the 
following corollary based on Property 1. 

Corollary 1: The dot product of Z–(K – i) with the ith 
column of Gp(D), (1  i  (K – 1)) and the dot product of 
Zj – 2 with the jth column of Gp(D), (3  j  (K + 1)) are 
columns in G[K](D), where Z–1 represents the inverse of the 
matrix Z.  

According to Corollary 1, it is possible to determine 
partial rows of the generator matrix Gp(D). Then, all the 
estimations of the generator matrix Gp(D), denoted as 
Ĝp(D), can be obtained by using the preliminary recon-
struction result and the rest of the generator polynomial 
bases. 

4.2 Determination of the Generator Matrices 
of the Punctured and Parent Codes and 
the Puncturing Pattern 

Property 2 [5]: Define a matrix β, 
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Let the vector
T

,(1, ) ,(2, ) ,( , )( ), ( ), , ( )i l i l i K lq D q D q D   denote 

the lth column of the Kth PCPC matrix of the generator 
polynomial gi (D) and then gi (D) can be expressed as 

 ( , )
,( , )

1

( ) ( ).
K

k l K K
i i k l

k

g D D q D 


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According to Property 2, a parent generator polyno-
mial can be recovered from any column of its PCPC ma-
trix. The generator matrix Gp(D) contains one or more 
columns of the Kth PCPC matrix of each generator polyno-
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mial of the parent code. Thus, the generator polynomial of 
the parent code can be recovered from Gp(D). After a par-
ent generator polynomial has been recovered, its Kth PCPC 
matrix can be obtained. If a column of the PCPC matrix 
exists in Gp(D), the element in the corresponding position 
of the puncturing pattern is 1. Otherwise, the element is 0. 
Consequently, the puncturing pattern is identified. 

The possible generator matrix Ĝ(D) of the parent 
code and the corresponding puncturing pattern P̂ can be 
derived from Ĝp(D). The generator matrix of the parent 
code with the smallest constraint length, together with the 
corresponding generator matrix of the punctured code and 
the puncturing pattern, is the identification result. 

5. Computational Complexity Analysis 
and Simulation Experiment 

5.1 Computational Complexity Analysis 

The computation of the proposed method is intensive 
in estimating the dual word and verifying the correctness of 
the dual word estimations. Let us define one operation as 
an addition or multiplication between two elements in 
GF(2). Assume the length of the dual word is L, the num-
ber of parity check equations is N and the number of the 
dual word estimations is n1. Thus, the upper bound of the 
computation required for estimating the dual word is 
N(2L – 3)n1 operations. In fact, because the number of 
unknowns in each estimation differs, the upper bound is 
very relax. Verifying the correctness of the estimations 
requires N(2L – 1)n1 operations. Combining the computa-
tion of these two parts, we derive the computational com-
plexity of the proposed method is O(NLn1). For compari-
son, the computational complexity of Cluzeau’s method is 
O(NL2L) [4]. Since n1 << 2L, the computational complexity 
of our method is much lower than Cluzeau’s. 

5.2 Verification of the Effectiveness of the 
Proposed Method 

The identification of the punctured convolutional 
code with the generator matrix Gp(D) = 
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results for the dual word of the punctured convolutional 
code by using our proposed recursive algorithm are shown 
in Fig. 2.  
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Fig. 2. Estimation of the dual word of the punctured 

convolutional code. 

As shown in Fig. 2, more than one estimation of the 
dual word are obtained by using our recursive algorithm. 
However, only one estimation can make all of the parity 
check equations hold after verifying these estimations. 
Consequently, the binary vector 

T[0 11111 01 0111 0 1 0 0 1 0 11 0 1 0 11110]  is regarded as 

the identification result of the dual word. 

By using the identified dual word, the parity check 

matrix 
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H  is obtained. 

Furthermore, all the generator polynomial bases are 

derived by using p
ˆ ( ).DH They are 
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Let us define a matrix 
0 01
0 0 1

0 0D

 
 
 
 

Z . According to Prop-

erty 1, the dot product of Z–2 with the first column of 
Ĝp(D) and the dot product of Z–1 with the second column 
of Ĝp(D) should be polynomial vectors that do not contain 
a term with a negative degree. Therefore, we can determine 
the second and the third rows of Ĝp(D) are 

2 2,1 ,1 ,1D D D D      and 2 2, , ,1 .D D D D D D      

Since p
ˆdeg( ( )) 6,D H  the degree of the ith row of the 

matrix G[K](D)  is p( 1) 2, (1 3)ie d i K i         [3]. 

Thus, the degrees of the polynomial vectors obtained by 
the dot product of Z2 with the third column of Ĝp(D) and 
the dot product of Z with the forth column of Ĝp(D) cannot 
be larger than 2. Therefore, we can determine that the first 

row of Ĝp(D) is 21 ,1 ,0,1D D D     . Consequently, the 
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reconstruction result of the punctured generator matrix is 
2

2 2
p 2 2

01 1 1
ˆ ( ) 1 1 1 .

1

D D D
D D D D D

D D D D D D

   
    
    

G  

Furthermore, according to Property 2, the parent generator 
polynomial 2 3 6

1ˆ ( ) 1g D D D D D      and its PCPC 

matrix 

2

[3] 2
1 2

1 1 1
ˆ ( ) 1 1

1

D D
D D D D

D D D D

  
   
   

Q  is 

got from the first column of Ĝp(D). Comparing Ĝp(D) with 
Q̂1

[3](D), we can determine the first row of the puncturing 
pattern is [1,0,1]. In the same way, the other generator 
polynomial of the parent code and rows of the puncturing 
pattern are obtained by using the other columns of Ĝp(D). 
Eventually, the reconstruction results of the parent 
generator matrix and the puncturing pattern are 

T2 3 6

2 4 6

2 3 5 6

1
ˆ ( ) 1

1

D D D D
D D D D D

D D D D

    
     
     

G  and 
01 1

ˆ 0 0 .1
0 01

 
 
 
 

P  

The experimental results indicate the proposed identifica-
tion method is effective. 

5.3 Performance Analysis of the Proposed 
Method 

First, the robustness of the proposed method to bit 
errors in the received sequence is analyzed. The estimation 
of the dual word is a key step in the method. The correct 
identification of the punctured convolutional code depends 
on the correct estimation of the dual word. The dual word 
estimations of the (3,2,2) and (4,3,2) punctured convolu-
tional codes are considered respectively. The number of 
parity check equations is 4000. The threshold theq in the 
recursive algorithm is assumed to be 4. In the situations of 
different bit error ratios, the correct estimation ratios for 
the dual words of the two punctured convolutional codes 
by using our recursive algorithm and the matrix analysis 
algorithm [9] are shown in Fig. 3 and Fig. 4. 
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Fig. 3. Correct estimation ratio for the dual word of the (3,2,2) 

punctured convolutional code. 
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Fig. 4. Correct estimation ratio for the dual word of the (4,3,2) 

punctured convolutional code. 

As illustrated in Fig. 3 and Fig. 4, the robustness of 
our recursive algorithm to bit errors is much better than 
that of the matrix analysis algorithm. Additionally, under 
the same bit error ratio, the correct estimation ratio for the 
dual word of the (3,2,2) punctured convolutional code is 
larger than that for the (4,3,2) punctured convolutional 
code. The reason is that the length of the dual word of the 
(4,3,2) punctured convolutional code is larger and so there 
are more unknowns to be estimated. 

The second experiment analyzes the relationship be-
tween the correct estimation ratio for the dual word and the 
threshold theq in the recursive algorithm. The same (3,2,2) 
punctured convolutional code as that used in the first 
experiment is considered. Let the value of the threshold 
theq be 2, 3, 4 and 5 respectively. The other experimental 
conditions are the same as those in the second experiment. 
The correct estimation ratios in the cases of different 
thresholds are shown in Fig. 5. 

Figure 5 shows that under the same bit error ratio, the 
correct estimation ratio increases along with the increase of 
the threshold theq. The experimental result also verifies the 
correctness of the theoretical analysis in Sec. 3.1. 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

bit error ratio

co
rr

ec
t 

es
tim

at
io

n 
ra

tio
/(

%
)

 

th
eq

=2

th
eq

=3

th
eq

=4

th
eq

=5

 
Fig. 5. Correct estimation ratios in the case of different 

thresholds theq.  
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6. Conclusion 
A fast method for blind identification of a punctured 

convolutional code is presented in this paper. First, the dual 
word and generator polynomial bases are estimated by 
using the proposed recursive algorithm. Second, based on 
the structural properties of the blocked matrix, the genera-
tor matrix of the punctured convolutional code is recon-
structed preliminarily. Finally, using the relationship be-
tween a generator polynomial of the parent code and its 
corresponding PCPC matrix, we can determine the recon-
struction result of the generator matrix of the punctured 
code and recover the generator matrix of the parent code 
and the puncturing pattern simultaneously. As the dual 
word and the puncturing pattern do not need to be searched 
for exhaustively, the computational complexity of the pro-
posed method is much lower than that of Cluzeau’s 
method. Moreover, the method is also robust to bit errors 
in the received sequence. 
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Appendix 

Proof of the relationship between the threshold theq 
and the maximum error probability pmax for the determina-
tion of the summation value of unknowns. 

Proof: When Neq  theq and Neq = 2n, (n  N+), event 
A denotes that the determination of the summation value of 
unknowns is incorrect. Thus, the probability that event A 
occurs is 
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where pe is the error probability for a parity check 
equation. 

When Neq  theq and Neq = 2n + 1, event B denotes that 
the determination of the summation value is incorrect. 
Thus, the probability that event B occurs is 
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Each term in (2) is divided by the corresponding term with 
the same i in (1). Thus we obtain 
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Since pe > 0.5, thus 
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2 1
(1 ) 1, ( 1 2 ).
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n
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n i


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 
  (4) 

According to (4), it follows that each term in (2) is larger 
than the corresponding term in (1). Consequently, 

 ( ) ( ).P B P A   (5) 

When Neq = 2n + 3, event C denotes that the determi-
nation of the summation value is incorrect. The probability 
that event C occurs is 
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According to (9), (10), (11) and (12), it follows that 
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Based on above analysis, we derive that if theq is 
an odd number, the maximum error probability for the 
determination is 
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Otherwise, if theq is an even number, the maximum error 
probability for the determination is 
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Combining (14) and (15), we obtain the relationship be-
tween the threshold theq and the maximum error probability 
pmax for the determination of the summation value of un-
knowns is 
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