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Abstract. In MIMO radar, existing sparse imaging algo-
rithms commonly vectorize the receiving data, which will
destroy the multi-dimension structure of signal and cause the
algorithm performance decline. In this paper, the sparsity
characteristic and multi-dimension characteristic of signals
are considered simultaneously and a new compressive sens-
ing imaging algorithm named tensor-based match pursuit
(TMP) is proposed. Firstly, MIMO radar tensor signal model
is established to eliminate “dimension disaster”. Then, ex-
ploiting tensor decomposition to process tensor data sets,
tensor-basedmatch pursuit is formulated for multi-dimension
sparse signal recovery. Simulation results validates that the
proposed method can accomplish high-resolution imaging
correctly compared with conventional greedy sparse recov-
ery algorithms. Additionally, under fewer snapshots condi-
tion, RMSE of proposed method is lower than other sparse
recovery algorithms.
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1. Introduction
Mulitple-input multiple-output (MIMO) radar is an new

emerging radar system that has been paid much attention re-
cently. Compared with canonical phased-array radar, MIMO
radar can transmit and receive independent waveforms via
multiple antennas [1] and show advantage in resolution
and better parameter identifiability [2].Recently, research on
MIMO radar is mainly focused on waveform design, array
configurations, imaging application, parameter estimation
and otherwise [3]. In this paper, we focus on the colocated
MIMO radar imaging issue.

ForMIMO radar imaging issue, many data-independent
approaches, such as delay-and-sum (DAS) (also called
matched filtering) algorithm [4] have been proposed. But

DAS algorithms are constrained by low-resolution and high
sidelobe level due to the imperfect orthogonality of the mea-
sure matrix. For the purpose of enhancing the imaging qual-
ity,compressed sensing technology is introduced. It can not
only reduce the amount of observation data but also improve
the resolution of imaging. The radar imaging technology
using compressed sensing is called radar sparse imaging. In
aerial radar imaging applications, targets such as aircraft and
missiles can be characterized by a few scattering points for
the imaging area, so sparse signal recovery technique can
be used to provide more accurate target description. The
undetermined system of equations is a problem to be solved
by using optimization algorithms, and this problem com-
monly appears in sparse signal processing. The essence of
sparse imaging is solving underdetermined equations through
compressed sensing technology to focus pixel of imaging
area [5]. Compared with DAS algorithms, sparse imag-
ing algorithms can decrease data sampling rate and system
complexity [6], [7]. Because of the spatial spectral domain
filling, the imaging results can lead to higher sidelobe lev-
els and lower resolution if the DAS algorithm is used di-
rectly. Furthermore, spare recovery algorithm with its inner
super resolution has the potential to promote imaging per-
formance. For instance, iterative adaptive algorithm (IAA)
was proposed in [8] to provide more accurate sparse sig-
nal representation for MIMO radar sparse imaging.The IAA
algorithm was proved to provide accurate estimation when
the number of snapshots was low, but suffered from signif-
icantly computational burden compared to DAS algorithms.
In [9], the radar sparse imaging is completed by the Bayesian
learning frame method, which needs the prior knowledge of
interesting area. In [10], a combination between compressed
sensing technology and conventional DAS beamforming al-
gorithm is presented, which can recovery the sparse signal
well and has a high SINR lever, but the final imaging still
subjected to low-resolution and high-sidelobers caused by
delay-and-sum algorithms.

Moreover, the above sparse imaging algorithms com-
monly vectorize the received data, which will destroy the
multi-dimension structure of signal and cause the algorithm
performance decline, especially in lower snapshots and signal
to ratio (SNR) condition. Tensor decomposition is a powerful
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tool for multidimensional signal processing. In [11], an an-
gle estimation algorithm for MIMO radar in the presence of
colored noise fields is presented, which make use of tensor
decomposition to estimate DOA. In [12], method to recover
low-rank tensors has been proposed to image human body.
But in the above approaches, compressed sensing technology
is not involved. As a consequence, computational burden is
intolerable and the sparsity of objection is neglected. In [13],
a hybrid matching pursuit method is proposed to enhancing
the imaging quality in through-wall radar imaging (TWRI).
But the imaging model is not suitable for MIMO radar imag-
ing and fail to solve the “dimension disaster" problem.

In this paper, we combine tensor structure decomposi-
tion with sparse signal recovery technology for MIMO radar
imaging and a new algorithm named tensor-based match pur-
suit (TMP) algorithm is proposed. MIMO radar tensor signal
model is established to eliminate “dimension disaster” at first.
Then, exploiting tensor decomposition to approximate ten-
sor data sets. At last, aimed at the drawback of conventional
greedy recovery colocated, proposed algorithm can recon-
struct high-resolution sparse image correctly by combining
the strength of OMP and SP algorithms.

Notation: We denote vectors and matrices by boldface
lowercase and uppercase letters, respectively. (·)T denotes
the transpose operation, (·)H denotes the conjugate transpose
operation. vec(·) denotes the vectorization operation, which
means stacking the columns of a matrix on top of each other.
Symbol ⊗ denotes kronecker product and symbol ◦ denotes
the outer product of vectors.

2. MIMO Radar Tensor Signal Model
Consider a colocated MIMO radar with M closely

spaced transmitting antennas and N closely spaced receiving
antennas. All the elements are omnidirectional. The posi-
tions of the mth transmitter and the nth receiver are shown in
a polar coordinate as (RTx,m, ϕTx,m) and (RRx,m, ϕRx,m), re-
spectively. ϕTx,m is the angle between transmitting antenna
and Y axis. Similarly, ϕRx,m is the angle between receiving
antenna andY axis. The geometry ofMIMO radar imaging is
shown in Fig.1. There are K targets located at rk = (xk, yk),
and σ(rk) denotes the scatter RCS coefficient. The range
between mth transmitter antenna and kth scatter is denoted
by Rk

Tx,m and the range between nth receiver antenna and kth
scatter is denoted by Rk

Rx,m similarly. The range between
imaging area center and the antennas location baseline is
denoted by R0.

Assuming that orthogonality condition of transmitted
signals holds here, the mth transmitted signal is defined by

Sm(t) = pm(t) exp(j2π fct) (1)

where pm(t) denotes the transmitted signal envelope, fc de-
notes the carrier frequency.

The correlation function can by be written as

Rmm
′ (τ) =

{
1, m = m

′ & τ = 0
0, otherwise. (2)

The echo corresponding to the mth transmitter and the nth
receiver is given as

Sn(t) =
K∑
k=1

M∑
m=1

σ(rk)Sm(t − τn,m(k)) (3)

where τn,m(k) is the range delay from the mth transmitter to
the kth scatter and then to the nth receiver. Under the far
field assumption, we have |rk | � RTx,m and |rk | � RRx,m,
then the distance Rk

Tx,m from the mth transmitter to the kth
scatter and the distance Rk

Rx,n from the kth scatter to the nth
receiver can be approximated by

Rk
Tx,m ≈ RTx,m + ITx,m · rk,

Rk
Rx,n ≈ RRx,n + IRx,n · rk

(4)

where ITx,m and IRx,n denote the unit vector from the mth
transmitter to the kth scatter and the unit vector from the
nth receiver to the kth scatter, respectively, and they can be
written as

ITx,m = (sin ϕTx,m, cos ϕTx,m),

IRx,n = (sin ϕRx,n, cos ϕRx,n)
(5)

then, we can get the approximation of τn,m(k)

τn,m(k) =
Rk
Tx,m+R

k
Rx,n

c

≈
RTx,m+RRx,n+ITx,mrk+IRx,nrk

c

(6)

where c denotes the electronmagnetic wave velocity, RTx,m
and RRx,n are known fixed term.
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Fig. 1. Colocated MIMO radar imaging model.
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After matched filtering, the (n,m)th channel signal is
obtained, which can be written as

Sn,m(t) = Sn(t) ⊗ p∗m(t)

=

K∑
k=1

M∑
m=1

σ(rk)pm(t − τn,m(k))

exp(−j2π fcτn,m(k)) ⊗ p∗m(t). (7)

Then, combining the route delay formula (6) and Fourier
transform, the signal in frequency domain is given as

zn.m( f ) =
K∑
k=1

σ(rk)e−j2π
fc+ f
c (ITx,m+IRx,n)rk . (8)

In (8), let

Kn,m( f ) = −
fc + f
c
(ITx,m + IRx,n) (9)

where Kn,m( f ) = (Kx
n,m( f ),K

y
n,m( f )) is the (n,m)th channel

wavenumber of MIMO radar. Then, the echo is given in
wavenumber domain Kn,m( f ) as

zn.m(Kn,m( f )) =
K∑
k=1

σ(rk)ej2πKn,m( f )rk . (10)

We rewrite (10) in discrete mode,

zn.m(Kn,m( fi)) =
V∑
k=1

σ(rk)ej2πKn,m( fi )rk ,

fi = B
q i, i = 1, · · · , q,

A n,m =
[

an,m(1) · · · an,m(K)
]
,

an,m(k) =
[
ej2πKn,m( f1)rk · · · ej2πKn,m( fq )rk

]T
,

σ =
[
σ(r1) · · · σ(rK )

]T
.

(11)

Formula (10) indicates that the target scatter coefficient
and the echo in wavenumber domain of MIMO radar sat-
isfy the relationship of Fourier transform. It’s assumed that
there are Q samples in wavenumber domain in each chan-
nel. After matched filtering and Fourier transform, data
of each sampling point is a matrix. Conventional matrix
analysis algorithms vectorize every sampling data in (10) to
compose a receiver data matrix, which ignore the multidi-
mension structure of transmitting array, receiving array and
sampling sequence. According to the definition of tensor,
multiple samples of receiving data can be rewritten in tensor
form. In another words, a tensor model Z ∈ CM×N×Q can be
builded using Q samples. Based on the definition of tensor
matrix-unfold, the three order tensor data X can be written as

[Z]T
(3) = A σ + N . (12)

Based on (12), the transpose of 3-mode product from
MIMO radar tensor signal model Z ∈ CM×N×Q equals the
matrix form of receiver data. According the above analysis,
MIMO radar tensor signal model consists of transmitting di-
mension, receiving dimension and sampling dimension, and

tensor analysis algorithm can effectively exploit the multi-
dimension characteristic information, which is ignored in
conventional algorithm.

3. MIMO Radar Imaging Technology
Based on Multidimensional Com-
pressed Sensing Algorithm

On the basis of MIMO radar tensor signal model, we
will first motivate the need of sparse tensor signal recovery in
Sec. 3.1. The Tensor-based hybrid match pursuit algorithm
will be introduced in Sec. 3.2.

3.1 Introduction to Sparse Tensor Signal Re-
covery
In compressed sensing theory framework, the classical

model is z = Φy with Φ ∈ RM×I and the equation is a under-
determined equation. If we want to use CS theory to process
the tensor signal directly, the nature way is to vectorize the
tensor signal and use typical greedy algorithms such as OMP
and BP to recover the sparse vector and then reconstruct the
original tensor signal. However, this strategy is quite unwise.
The size of measurement matrix Φ = BD ∈ RM×I will in-
crease sharply as the tensor signal dimension increases. The
computer burden increase as well.

To avoid the above shortcomings, tensor decomposition
is introduced to approximate tensor signals. High-Order Sin-
gular Value Decomposition (HOSVD) [14] is a commonly
tensor signal decomposition method. Specifically, it is de-
fined by the following expression

Y = X×1D1×2D2 · · · ×NDN (13)

where X ∈ RR1×R2×···×Rn is core tensor and Dn ∈ R
In×Dn are

unfolding matrices. The tensor decomposition schematic is
shown in Fig.2.

In this paper, we consider HOSVD model and its appli-
cation to solve compressed sensing problem, and exploit this
method to fulfill MIMO radar sparse imaging.



1 2 3I I I  


1 2 3I I I  


1 1(1) I J
U




2 2(2) I J
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


Fig. 2. Tensor decomposition schematic diagram.
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3.2 Compressed Sensing Based on HOSVD De-
composition
As described in equation (13), the core MIMO radar

tensor signal can be calculated by

X = Y×1DT
1×2DT

2×3DT
3 . (14)

Throughout linear measurements in each dimension, as fol-
low

Z = Y×1Φ1×2Φ2×3Φ3
= X×1Φ1D1×2Φ2D2×3Φ3D3

(15)

where Φi(i = 1, 2, 3) is the measurement matrix. Which can
be also written in vectorized form as follow

z = (B3 ⊗ B2 ⊗ B1)x, with‖x‖0 ≤ K (16)

where z = vec(Z) and Bn = ΦnDn(n = 1, 2, 3) and K is the
sparse degree. The tensor-based compressed sensing means
to find the solution of a underdetermined equation with Kro-
necker structure.

3.3 Tensor-Based Match Pursuit Algorithm
The above analysis on tensor decomposition motivate

us to propose the TMP algorithm. Through the TMP al-
gorithm, the tensor decomposition is used to transform the
receive signal into equation (17). In the proposed method,
the standard OMP algorithm is used to solve the local sparse
solutions, and the global estimation of the common support
set is carried out by combination of all the local solution.

At the initialization stage, the sparse solution is calcu-
lated by using the Kron-OMP[16] algorithm, which can be
expressed as

σkron-OMP = kron-OMP(Z
−
,B1,B2,B3,K) (17)

where σkron-OMP is the solution of the Kron-OMP algorithm.
Then the support set Λold can be initialized as

Λold = max_ind (|σkron-OMP | ,K) (18)

where the function max_ind(a, b) denotes b indices cor-
resonding to the largest magnitude entries in the vector a.
The initial residual tensor is

R
−
= Z
−
−

K∑
n=1

σnB1(Λold(n)) ◦ B2(Λold(n)) ◦ B3(Λold(n)).

(19)

Then we still use Kron-OMP algorithm to process the resid-
ual

σn
kron-OMP = kron - OMP(R

−
,B1,B2,B3,K) (20)

where the function of kron-OMP denotes the output of Kron-
OMP algorithm.

The support set is expanded to 2k

Λtemp = Λold ∪max_ind
(��σn

kron-OMP
�� ,K )

. (21)

Then we can renew the support set

Λnew = max_ind(Z
−
×3B1(Λtemp)T

×2B2(Λtemp)T×1B3(Λtemp)T,K).
(22)

The support set update is developed from SP algorithm. We
use the equation (25) to renew the residual

R
−
= Z
−
−

K∑
n=1

σnB1(Λnew(n)) ◦ B2(Λnew(n)) ◦ B3(Λnew(n)).

(23)

Repeat renewing residual R
−
and support set Λ, we can get

the sparse solution.

4. Simulation Result and Analysis
In this section, simulations are performed to validate

the proposed method. A colocated MIMO radar with M = 4
transmit antennas and N = 4 receive antennas is consid-
ered here. Both of them are arranged in half-wavelength-
spaced uniform linear array, and the transmit and receive
arrays are placed in (0, 4, 8, 12) × λ/2 and (0, 1, 2, 3) × λ/2
respectively. Transmitting orthogonal waveform is obtained
by cycling algorithm-new algorithm (CAN) [15], in which
the code number is 100, carrier frequency is 10GHz and
the bandwidth is 50MHz. The corresponding code dura-
tion is 0.02 µs, the pulse repeat period is 6 µs, and the sam-
ple period equal the code time width. In order to compare
the performance of the proposed algorithm, the results of
Kron-OMP [16] and NBOMP [17] are also presented.

4.1 Point Imaging Simulation
Grid on the imaging zone. Considering that the ob-

servation area is divided in 50 range cells and the azimuth
angel range from −80◦ to 80◦. An gel cell is set 5◦. Assum-
ing that there are several point target in the imaging zone and
the coordinations are (40, 0◦), (40,−20◦), (25, 20◦), (5,−10◦),
(5, 10◦), (10, 10◦), (15,−10◦), (15, 10◦) and (45, 10◦). We as-
sume that all the radar cross section of the targets are 1 and
the statistical characteristic of noise meet the additive gauss
noise. The signal to noise ratio (SNR) is assumed 30 dB.
The imaging results of Kron-OMP algorithm, NBOMP algo-
rithm and TMP algorithm are shown in Figs. 3–5. The fake
shadows are marked with red circles on the Figs. 3–5.

From Figs. 3–5, we can conclude that all the three
tensor-based algorithms can focus the correct imaging, but
has the different performance. The imaging of Kron-
OMP and NBOMP has fake shadow in incorrect place and
the proposed algorithm can focus a radar imaging without
fake shadow.
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Kron-OMP algorithm for MIMO radar imaging
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Fig. 3. Kron-OMP algorithm for MIMO radar imaging.

NBOMP algorithm for MIMO radar imaging
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Fig. 4. NBOMP algorithm for MIMO radar imaging.

TMP algorithm for MIMO radar imaing
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Fig. 5. TMP algorithm for MIMO radar imaging.

4.2 TMP Algorithm Performance Analysis

In this example, wewill demonstrate the performance of
the introduced algorithms described in Sec. 3 by using the pa-
rameter of rootmean square error (RMSE). Results are shown
in Fig. 6 and Fig. 7, in which percentage of correctly recov-
ered tensor versus SNR is presented. In order to effectively
explain the proposed algorithm superiority, standard OMP
and SP are presented at the same time. Gradient algorithm
for ISAR proposed in [18] and a new 2D signals recovering
algorithm proposed in [19] are presented at the same time to
compare with the TMP algorithm. From Fig. 6 and Fig. 7,
we can conclude that all the seven algorithms’ performance
become better with SNR increasing. The performance of

three algorithm based on tensor structure are better than the
vectorization-based algorithm. The reason is that operation
of vectorizing the received data destroy the multidimension
structure of signal and cause the multidimension information
loss. Meanwhile, The performance of proposed algorithm is
better than the others, because the proposedmethod combines
the index selection strategy of OMP and the index reevalu-
ation strategy of SP based on tensor signal model. TMP
can reconstruct high-resolution radar image with no artifacts
compared with the other two tensor-based algorithms.

We compared the operation time and reconstruction
accuracy of the above seven algorithms. The simula-
tions are performed in MATLABR2015a environment using
an Inter® Core™ i7-6700HQ, 2.6GHz processor with 8GB
of memory, and under Microsoft Windows 10 operating sys-
tem. The SNR is set 15 dB. The results are shown in Tab. 1.

From Tab. 1, we can conclude that compared with other
conventional greedy algorithms, the proposed TMP method
can get better sparse recovery accuracy at the cost of increas-
ing computering burden. The reason is that the tensor struc-
ture of the received data is applied in the proposed TMP algo-
rithm, and tensor decomposition operation can suppress the
additive noise. As a consequence, the RMSE can decrease
while the CPU time increase due to tensor decomposition.

Then, the relationship between snapshots and RMSE
is demonstrated by mathematical simulations. The result is
shown in Fig. 8. The answer reveals that the error will de-
crease along with snapshots increase, and the performance
of proposed algorithm is better than the others.
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Recovery algorithm OMP SP Kron-OMP NBOMP TMP GA for ISAR 2D CS Recovery
Running time [s] 2.148 3.654 11.245 10.476 10.833 3.465 6.735

RMSE 0.2927 1.2364 0.0433 0.0222 0.0097 0.2276 0.1485

Tab. 1. Performance comparison of different methods.
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Fig. 8. The relationship between snapshots and RMSE.

5. Conclusion
In this paper, a new Tensor-based Match Pursuit al-

gorithm (TMP) for MIMO radar imaging is proposed. We
extend the tensor decomposition technology to MIMO radar
sparse imaging. MIMO radar signal is firstly formulated
as a tensor-based sparse model. Then, the aim of MIMO
radar sparse imaging is recoverying the sparse signal in ten-
sor formulor. By combining the advantage of OMP and
the advantage of SP in back tracking strategy, the proposed
TMP algorithm can reconstructs high-precision radar images
without distortion. In colored noise field, high order cross
correlation matrix tensor decomposition algorithm is pro-
posed in this paper. This approach can be used to mitigate
the performance loss of TMP algorithm caused by colored
noise. Simulation results validate the performance of the
proposed method.
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