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Abstract. In this paper, taking the positions of pico-cell
base stations (PBSs) into consideration, a scheme of cell
range expansion (CRE) for maximum sum rate is addressed
in heterogeneousmulti-inputmulti-outputmulti-userwireless
networks. The optimal CRE bias obtained numerically by the
proposed CRE scheme with inter-cell interference coordina-
tion (ICIC) allows us to maximize the sum rate while suc-
cessfully maintaining the load balance between the macro-
cell base station and PBSs. Numerical results confirm that
the proposed CRE scheme with ICIC can provide higher sum
rate than conventional schemes and balanced load.
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1. Introduction
Consisting of macro-cells overlaid by smaller cells such

as micro-cells, femto-cells, and pico-cells, heterogeneous
networks have been proposed as a breakthrough for an effi-
cient deployment of base stations (BSs) in space and spectrum
[1], [2]. One of the advantages of heterogeneous networks
is the reduced burden of macro-cell base stations (MBSs)
with the smaller cells incorporated, leading to a highly effi-
cient network design. On the other hand, since various types
of BSs are incorporated, the network planning, resource al-
location design, and interference management may become
more complicated. Apparently, various aspects of the het-
erogeneous networks have been investigated including cell
assignment strategy [3], [4], power control schemes [5], cov-
erage area [6–8], stochastic geometry models [9], [10], and
cell range expansion [11].

Unlike in homogeneous networks, in which the BS that
provides the highest downlink signal power is selected as
the serving BS, the variety of level of power for various
BSs should be taken into account in heterogeneous net-
works. Specifically, since the transmission power of a pico-
cell BS (PBS) is lower than that of the MBS, most users
would choose the MBS instead of a PBS as the serving BS,
which naturally leads to load unbalance among the BSs. Ad-
dressing this problem, the scheme proposed in [11] expands
the cell range by imposing a bias to the reference signal re-
ceived power (RSRP) from the PBS, consequently making
some macro-cell users be offloaded to a pico-cell.

Although the cell range expansion (CRE) improves the
performance (i.e., overall sum rate) of the heterogeneous net-
work, CRE users (that is, users offloaded to pico-cells) suf-
fer from high inter-cell interference (ICI) from the MBS. To
avoid the decrease in the overall sum rate of the system result-
ing from the high ICI, the MBS normally employs inter-cell
interference coordination (ICIC) with the CRE [11], [12].
Among the typical research on CRE are capacity and fair-
ness analysis [13], resource partitioning [14], adaptive CRE
bias control [15], cell association [16], and offloading perfor-
mance [17]. In addition, an algorithm that allows each user
to determine CRE bias value to lower the number of outage
users is proposed in [18]. The CREmethod in [19] optimizes
the parameters by evaluating the average throughput of the
cell-edge users as well as the other users. The optimal CRE
bias value for various density of small cell clusters in the
coverage area of the macro-cell has been analyzed in [20].
Adaptive CRE schemes have also been proposed taking into
account varying load among the MBS and PBSs [21] and
overall capacity [22].

In this paper, we propose a CRE scheme in which the
positions of PBSs are taken into account for the determina-
tion of the CRE bias, which have not been considered in other
research of the CRE. In the proposed CRE scheme, the CRE
bias, as a function of the PBS location, is determined to max-
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imize the overall sum rate of the system. Through simulation
results, we have shown that the proposed CRE scheme with
ICIC has better overall performance and more balanced load
among BSs than the conventional schemes.

The rest of this paper is organized as follows. After
a description of the system model assumed in this paper, the
problem is formulated in Sec. 2. Section 3 provides some re-
sults from numerical simulations and performance analysis.
Section 4 concludes this paper.

2. System Model and Problem Formu-
lation
Consider the downlink of a heterogeneous network in

a multi-input multi-output multi-user (MIMO-MU) system.
We assume that the heterogeneous network is composed of
one macro-cell overlaid by CP pico-cells, where the MBS
and each of the CP PBSs are equipped with NM and NP an-
tennas, respectively, with NM > NP. It is also assumed that
the users, each equipped with a single antenna, are uniformly
distributed over the cell.

Let the transmit power of the MBS and each of the CP
PBSs be PM and PP, respectively, with PM > PP, and de-
note by αM and αP the pathloss exponents of the macro-cells
and pico-cells, respectively. Assuming simplified pathloss
model, the RSRP from the MBS and a PBS can be expressed
as PM d̃−αMM and PP d̃−αPP , respectively, where d̃M and d̃P are the
distances between a user and theMBS and PBS, respectively.

2.1 Expansion of Pico-Cell Range in Heteroge-
neous Network
We will denote the BS of the kth cell and the ith user

in the jth cell by BS-k and User-(i, j), respectively: Here,
without loss of generality, we assume that the zero-th cell
is the macro-cell and the first, second, . . . , CP-th cells are
pico-cells. In addition, by Situations A and B, we denote
the cases in which the MBS does not and does, respectively,
incorporate ICIC via zero-forcing for users in pico-cells: In
any of the two situations, no PBS performs ICIC.

The servingBS, towhich a user reports the channel state
information (CSI) and through which the user transmits and
receives the information signal, of a user is determined by
comparing the RSRP from BSs. Specifically, without CRE,
the serving BS of user i will be BS-k(i) when

k(i) = arg
j

max RSRPi, j (1)

is satisfied, where

RSRPi, j =

{
PP d̃−αPi, j , if BS- j is a PBS,
PM d̃−αMi, j , if BS- j is the MBS

(2)

denotes the RSRP of the ith user from BS- j with d̃i, j the
distance between the ith user and BS- j.

Now, consider a CRE scheme with which the serving
BS of the i-th user is determined by

k(i) = arg
j

max
{
bj RSRPi, j

}
, (3)

where

bj =

{
b, if BS j is a PBS,
1, if BS j is the MBS

(4)

is the bias with b ≥ 1. Equation (3) basically implies that
we have now expanded the cell ranges of pico-cells. Clearly,
when the ranges of pico-cells are expanded, some users in
the macro-cell will be offloaded to a pico-cell.

Once the servingBS for every user is determined, the re-
ceived signals yi,0,S and

{
yi, j,S

}CP
j=1 of users in the macro- and

pico-cells, respectively, under Situation S can be expressed as

yi,0,S =

√
PM
UM

d−αM
i,0,0

×


h∗i,0,0 f i,0,S xi,0 +

UM∑
m=1, m,i

h∗i,0,0 f m,0,S xm,0︸                         ︷︷                         ︸
intra-cell interference


+

CP∑
k=1

UPk∑
p=1

√
PP

UPk

d−αP
i,0,kh

∗
i,0,k f p,k,S xp,k︸                                         ︷︷                                         ︸

inter-cell interference

+zi,0 (5)

and

yi, j,S =

√
PP

UPj

d−αPi, j, j

×


h∗i, j, j f i, j,S xi, j +

UP j∑
p=1, p,i

h∗i, j, j f p, j,S xp, j︸                       ︷︷                       ︸
intra-cell interference


+

UM∑
m=1

√
PM
UM

d−αM
i, j,0 h

∗
i, j,0 f m,0,S xm,0

+

CP∑
k=1, k,j

UPk∑
p=1

√
PP

UPk
d−αM
i, j,k

h∗i, j,k f p,k,S xp,k︸                                                 ︷︷                                                 ︸
inter-cell interference

+zi, j (6)

for j = 1, 2, . . . ,CP, where S ∈ {A, B} is the set of the two
situations we consider; UM and UPk for k = 1, 2, . . . ,CP are
the numbers of users in the macro- and k-th pico-cells, re-
spectively; di, j,k is the distance between User-(i, j) and BS-k;
f i, j,S is the precoder of User-(i, j) under Situation S; hi, j,k is
the channel constant betweenUser-(i, j) andBS-k and ismod-
eled as a zero-mean uncorrelated fading with unit variance
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and Rayleigh-distributed envelope; xi, j is the desired signal
for User-(i, j) with power constraint E

[��xi, j ��2] = 1; and zi, j
is the complex Gaussian noise for User-(i, j). In passing, let
us note that the precoder f i, j,S is of size NM × 1 when j = 0
and NP × 1 when j = 1, 2, . . . ,CP with

 f i, j,S2
= 1 and that

the channel constant hi, j,k is of size NM × 1 for k = 0 and
NP × 1 for k = 1, 2, . . . ,CP. It should be noted that the re-
ceived signals yi,0,S and

{
yi, j,S

}CP
j=1 are functions of the bias

b although we have not shown the dependence explicitly for
a brevity reason.

Clearly, macro-cell users would suffer intra-cell inter-
ference from the MBS and ICI from the PBSs. Similarly,
pico-cell users would suffer intra-cell interference from the
serving PBS and ICI from the MBS and other PBSs. Now,
since the transmit power of theMBS is normally much higher
than that of the PBSs, pico-cell users, especially the CRE
users, suffer high ICI from the MBS. To alleviate the influ-
ence of such interference, we employ precoders at the BSs.
Specifically, the precoders used in theBSs can be expressed as

f i,0,A =
hi,0,0hi,0,0

 (7)

for i = 1, 2, . . . ,UM and

f i, j,A =
hi, j, jhi, j, j

 (8)

for i = 1, 2, . . . ,UP j and j = 1, 2, . . . ,CP under Situation A,
and

f i,0,B =

{
INM − H (H∗H)−1 H∗

}
hi,0,0{INM − H (H∗H)−1 H∗

}
hi,0,0

 (9)

for i = 1, 2, . . . ,UM and

f i, j,B = f i, j,A (10)

for i = 1, 2, . . . ,UP j and j = 1, 2, . . . ,CP under Situation B.
Here, ‖ ‖, In, and the superscript ∗ denote the Euclidean
norm, n × n identity matrix, and complex conjugate trans-
pose, respectively, and the matrix

H =
[
H1 H2 . . . HCP

]
(11)

of the channel constants is of size NM × UP with

H j =
[
h1, j,0 h2, j,0 . . . hUP j , j,0

]
and UP =

CP∑
k=1

UPk the to-

tal number of users in the CP pico-cells.

Equations (7) and (8) indicate that the MBS and PBSs
both employ eigen-beamforming for their own users with no
ICIC in Situation A. In Situation B on the other hand, as
implied in (9) and (10), the MBS employs zero-forcing in
order to reduce the interference toward the users in the pico-
cells [23] while the PBSs still exploit eigen-beamforming.
Here, the MBS normally exploits many antennas and high

transmission power and thus the performance degradation of
the macro-cell users due to the ICIC via zero-forcing would
be, if not negligible, small while the ICICwould allow signif-
icant performance enhancement for pico-cell users. On the
other hand, as the PBS has less antennas and lower transmis-
sion power, performance degradation of the pico-cell users
would be severe if the PBS performed ICIC via zero-forcing.
This is why only MBS performs ICIC and the PBS exploits
eigen-beamforming regardless of the situation.

The signal to interference plus noise ratio (SINR) can
now be expressed as

SINRi,0,S =
PMd−αM

i,0,0

��h∗i,0,0 f i,0,S ��2
UM

(
N0W + Ii,0,S

) (12)

for macro-cell users and

SINRi, j,S =
PPd−αPi, j, j

���h∗i, j, j f i, j,S ���2
UP j

(
N0W + Ii, j,S

) (13)

for pico-cell users, where W is the system bandwidth, N0 is
the noise power per unit bandwidth, and

Ii,0,S =
UM∑

m=1, m,i

PM
UM

d−αM
i,0,0

��h∗i,0,0 f m,0,S ��2
+

CP∑
k=1

UPk∑
p=1

PP
UPk

d−αP
i,0,k

���h∗i,0,k f p,k,S ���2 (14)

and

Ii, j,S =
UM∑
m=1

PM
UM

d−αM
i, j,0

���h∗i, j,0 f m,0,S ���2
+

UP∑
p=1, p,i

PP
UP

d−αPi, j, j

���h∗i, j, j f p, j,S ���2
+

CP∑
k=1, k,j

UPk∑
p=1

PP
UPk

d−αP
i, j,k

���h∗i, j,k f p,k,S ���2 (15)

denote the total interference in the macro- and pico-cells,
respectively. When the MBS incorporates the ICIC, the ICI
term (that is, the first term in the right-hand side) of (15) will
vanish. Note that, when we have only one PBS, the last term
of (15) will be zero.

Eventually, we try to find the optimal CRE bias value

b∗ = arg
b

max
∑
j

∑
i

Ratei, j,S (16)

for which the sum rate of overall system is maximized, where

Ratei, j,S = W log2
(
1 + SINRi, j,S

)
(17)

is the achievable rate for User-(i, j) under Situation S. As we
shall see shortly, the overall sum rate first increases and then
decreases as the value b of the CRE bias increases.
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2.2 Two Examples of Heterogeneous Networks
One PBS (1-PBS) model: The simplest case of het-

erogeneous networks with one macro-cell and one pico-cell
(CP = 1) is shown in Fig. 1. The two small circles of solid
and dash-dot lines indicate the ranges of the pico-cell without
and with the CRE, respectively. The solid and dotted arrows
indicate desired (information data) signal and ICI, respec-
tively, with the CRE. The user between the two small circles
is the CRE user, offloaded to the PBS, and would suffer high
ICI from the MBS.

Three PBS (3-PBS) model: Figure 2 shows the het-
erogeneous networkwith onemacro-cell and three pico-cells.
It is easy to see that the ICI will be higher with more PBSs
as we have already observed in, for example, (6) and (15).

3. Numerical Results and Analysis
Let us now consider some simulation results, for which

the simulation parameters in the 1-PBS model are shown in
Tab. 1. Here, the values of the transmit power of the BSs
and the pathloss exponents of the macro- and pico-cells are
adopted from those employed in [24]. It is assumed that the
transmit power of a BS is equally distributed to its users:
Thus, the power received by each user is determined by the
type of its serving BS and the number of users dwelling in
the same cell. The maximum value of the CRE bias is set
to 12 dB, at which the coverage area of a pico-cell becomes
almost the same as that of the macro-cell. For the 3-PBS
model, we have in addition assumed the minimum distance
between two PBSs to be 100m.

Since the number of users serviced simultaneously is
upper-limited by the number of antennas of the MBS, we
assume that the total number of users in the heterogeneous
network is 8 for simplicity. When the number of users in
a pico-cell reaches the number 4 of antennas of the PBS,
no additional macro-cell user will be offloaded even when
the pico-cell range is expanded with the CRE. Note that the
minimum and maximum distances between BSs are consid-
ered to avoid the cases in which the PBS is too close to the

MBS or to the boundary of the macro-cell: In both cases, the
coverage area of the PBS would become too small.

Without loss of generality, we assume that the MBS
and PBS are located at (0, 0) and (xP, 0), respectively, on
the x-axis in the 1-PBS model, with two additional PBSs
at

(
xP cos 2π

3 , ±xP sin 2π
3

)
in the 3-PBS model on a two-

dimensional plane.

MBS PBS User

Desired signal with CRE

Interference with CRE

Pico cell coverage without CRE

Pico cell coverage with CRE

Fig. 1. Heterogeneous network: 1-PBS model.

MBS PBS User

Pico cell coverage without CRE

Pico cell coverage with CRE

Fig. 2. Heterogeneous network: 3-PBS model.

Macro-cell Pico-cell
Number of antennas NM = 8 NP = 4
Transmit power PM = 46 dBm PP = 30 dBm
Pathloss exponent αM = 3.76 αP = 3.67

Total number of users 8
Macro-cell radius 1000m

Minimum distance between MBS and PBS 200m
Maximum distance between MBS and PBS 800m

CRE bias range 0 ∼ 12 dB
Noise power per bandwidth N0 = −174 dBm/Hz

System bandwidth W = 10MHz
Tab. 1. Values of parameters used in simulation.
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3.1 Bias and Sum Rate

Figures 3 and 4 show the sum rate as a function of the
bias of the proposed CRE scheme in the 1-PBS and 3-PBS
models, respectively, when the distance between the MBS
and PBS is 200, 500, and 800m. Clearly, it is confirmed that
the proposed CRE scheme increases the overall sum rate of
the systemwhen the ICIC is applied: Such increase of overall
sum rate has been observed, for example, in [25], [26] also.
It is observed that, as the PBS is located closer to the MBS,
the sum rate varies more with the CRE bias. It should be
noted that, at each location of the PBS, there exists an opti-
mal value of the CRE bias maximizing the sum rate and that
the optimal value is dependent on the distance between the
MBS and PBS.

Figures 5 and 6 show the sum rate with the proposed
CRE scheme as a function of the distance between the MBS
and PBS at several values of the CRE bias.

It is again observed that the ICIC increases the sum rate
at any value of the CRE bias irrespective of the PBS posi-
tion. It is also observed that the increase of the sum rate with
the optimum CRE bias is more considerable with the ICIC.

For example, consider the sum rate when the PBS is 200m
from the MBS in Fig. 5. The sum rate with the CRE bias
of 0 dB is slightly over 95Mbps and that with the optimum
bias is less than 100Mbps, implying that the optimum CRE
provides us with an increase of about 5Mbps in the sum rate.
On the other hand, with the ICIC applied, the sum rate with
the CRE bias of 0 dB is around 110Mbps and that with the
optimum bias is around 160Mbps. In essence, the increase
in the sum rate with the ICIC is around 50Mbps.

From the comparison of the results in Figs. 5 and 6,
we may conclude that the sum rate in the 3-PBS model is
generally higher than that in the 1-PBS model. We believe
this is due to the fact that, although the interference would
also be increased, more PBSs in a fixed space imply more
antennas and higher transmit power in addition to decreased
average distance between the user and BS, resulting in in-
creased average received power for users.

Figures 7 and 8 show the optimal CRE bias that induces
the maximum sum rate as a function of the distance between
the MBS and PBS. The optimal CRE bias tends to decreases
when the distance between the MBS and PBS increases.
This is due to the increase of the coverage area of the PBS.
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Fig. 3. Sum rate when the distance between the MBS and PBS is
200, 500, and 800 m in the 1-PBS model.
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Fig. 4. Sum rate when the distance between the MBS and a PBS is
200, 500, and 800 m in the 3-PBS model.
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Fig. 5. Sum rate when the distance between the MBS and PBS
varies from 200 to 800 m in the 1-PBS model.
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Fig. 7. Optimum CRE bias value versus the distance between the
MBS and PBS in the 1-PBS model.
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Fig. 8. Optimum CRE bias value versus the distance between the
MBS and a PBS in the 3-PBS model.

3.2 Coverage Area

The boundary of the pico-cell can be expressed as

PM

(
x2 + y2

)− αM
2
= PP

{
(x − xP)2 + y2}− αP

2 , (18)

or equivalently as

{
(x − xP)2 + y2}αP − (

PP
PM

)2 (
x2 + y2

)αM
= 0, (19)

which can eventually be approximated as an ellipse under
the assumption that the coverage area of the macro-cell is
unbounded [7]: Some examples are shown in Figs. 9–11 for
the 1-PBS model. In these figures, a user located at the posi-
tions of black and red dots represents a macro- and a pico-cell
users, respectively.

Figure 12 shows the coverage areas of the PBS without
any CRE, with the proposed CRE scheme only, and with the
proposed CRE scheme plus ICIC, where ‘proposed scheme’
denotes the proposed CRE scheme with an optimum bias
value. It is observed that the coverage area of the PBS in-
creases with the proposed CRE scheme, and that the ICIC
makes the coverage of PBS less dependent on the distance
between the PBS and MBS.

Figure 13 shows the ratio of the coverage area with
the proposed CRE scheme to that without a CRE scheme
in decibel scale. Clearly, when the ICIC is employed with
the proposed scheme, the ratio (denoted by blue circles) de-
creases and then increases slightly after a certain point as
the PBS is located farther from the MBS. On the other hand,
when the ICIC is not employedwith the proposed scheme, the
ratio (denoted by red triangles) decreases monotonically. It is
interesting to note the resemblance between Figs. 7 and 13.
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Fig. 9. Coverage areas of the MBS and PBS when the MBS and
PBS are located at (0, 0) and (200, 0), respectively.
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PBS are located at (0, 0) and (800, 0), respectively.
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Fig. 11. Coverage areas of the MBS and PBS when the MBS
and PBS are located at (0, 0) and (566, 0), respectively.
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Fig. 13. Ratio of the coverage area with the proposed CRE to the
coverage area without CRE in the 1-PBS model.

3.3 Offloading Performance

Figures 14 and 15 show the offloading performance of
the proposed CRE scheme with optimum bias. It is clearly
observed that the number of users in the pico-cell increases
when the proposed CRE scheme is applied. Note also that the
offloading performance (in terms of the ratio of the number
of users in the pico-cell to the total number of users) with
the proposed CRE scheme plus the ICIC is less sensitive to
the distance between the MBS and PBS: 2%–10% versus
12%–14% and 3%–29% versus 17%–29%, in the 1- and
3-PBS models, respectively. In addition, it is confirmed that
the ICIC in the proposed CRE scheme provides more balance
in the loading performance: A possible observation is that
the ICIC in the proposed CRE scheme reduces the influence
of the distance between the MBS and PBS on the number of
users in the pico-cell.

Figures 16 and 17 show the average rates of users in
the 1- and 3-PBS models, respectively. Here, ‘Macro’ and
‘Pico’ in the legends represents average rate of a user in the
macro- and pico-cells, respectively. From the results shown
in these two figures we can make the following observations:
(A) The average rates of users in themacro-cell do not change
considerably with the proposed CRE scheme. (B) The vari-
ation, as the distance between the MBS and PBS changes,
of the average rates of users in the pico-cell with the pro-
posed CRE scheme is smaller than that without the proposed
CRE scheme. (C) If the ICIC is employed in addition to
the proposed CRE scheme, the average rates of users in
the pico-cell increase significantly. In passing, let us note
that, since the average rate of pico-cell users is much higher
than that of macro-cell users, macro-cell users may complain
about such unfairness: Finding a fairer CRE scheme would
be an interesting research topic.
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Fig. 14. Offloading performance of the proposed CRE scheme
with optimum bias in the 1-PBS model.
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Fig. 15. Offloading performance of the proposed CRE scheme
with optimum bias in the 3-PBS model.
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Fig. 16. Average rate of users in the 1-PBS model.
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Fig. 17. Average rate of users in the 3-PBS model.

Wewould like to mention that the goal in this paper is to
maximize the overall sum rate in the macro- and pico-cells,
because of which the basic purpose (providing balance in
the loading of the MBS and PBS while requiring some users
intentionally to operate at lower SINR, or equivalently, in-
creasing the capacity of the system) of CRE may be achieved
only partially. It should also be noted that, while some users
(those in the macro-cell after the CRE) can enjoy more favor-
able environment with the proposed CRE scheme, some of
the other users (especially those originally in the pico-cell)
may have to operate at lower SINR after the proposed CRE
scheme is employed since the number of users in the pico-
cell will tend to be larger than that before the CRE scheme is
employed. This is common to all CRE schemes.

4. Concluding Remark

Heterogeneous networks have recently been proposed
as an attractive solution to overcome the deficiency of in-
valuable spectrum resource. The scheme of CRE has been
reported to be successful in overcoming the drawback of
heterogeneous network and intensifying the merit of het-
erogeneous network. In heterogeneous networks, we have
addressed in this paper a novel CRE scheme, in which the
positions of pico base stations are taken into account for the
determination of the bias. The proposed CRE scheme is
shown to perform better when it is employed together with
an inter-cell interference coordination scheme.

The optimal bias of the proposed CRE scheme is ob-
served to depend on the relative position of PBSs to theMBS.
We have presented simulation results in one-PBS and three-
PBSmodels and confirmed that the sum rate is increasedwith
the proposed CRE scheme. It is noteworthy that the optimal
bias tends to decrease when PBSs are located farther from
the MBS. In addition, the proposed CRE scheme with the
optimal bias is shown to provide higher sum rate and more
balanced load among base stations. Finding a sub-optimal
value of the bias via a simpler method would be an interesting
topic to pursue.
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