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Abstract. In this paper, we addressed the problem of esti-
mating the two-dimensional (2D) Direction of Arrival 
(DOA) elevation and azimuth angles for multiple sources. 
The proposed method employs Propagator Method (PM) in 
conjunction with parallel factor (PARAFAC) model using 
a new antenna array configuration. The proposed method 
overcomes two main drawbacks in the existing 2D DOA 
schemes: use of high computation eigenvalue decomposi-
tion (EVD) or singular value decomposition (SVD), and 
complex pair-matching methods for elevation and azimuth 
angles in case of multiple sources. Therefore, significant 
reduction in computational load and complexity is 
achieved. Computer simulations demonstrate the effective-
ness of the proposed method. 
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1. Introduction 
Two-dimensional direction-of-arrival (2D DOA) es-

timation plays an important role in the field of array signal 
processing especially in applications such as radar, sonar, 
mobile communication systems, etc. Conventional methods 
such as MUSIC [1] and ESPRIT [2] and their variants have 
been widely used owing to their high-resolution DOA 
estimation performance. However, these methods incur 
high computational cost as they require either eigenvalue 
decomposition (EVD) or singular value decomposition 
(SVD) operations to decompose the received data matrix 
into a signal subspace and a noise subspace. In the pres-
ence of multiple sources, the problem of computation com-
plexity becomes more acute. Another problem that needs to 
be contended with is the pair-matching of azimuth and 
elevation angles for each of the sources.  

The problem of computational cost can be addressed 
by considering simpler and less complex techniques [3–5] 
which do not require either EVD or SVD. The propagator 

method (PM) [5] is one such method which employs linear 
operations with a least square criterion. The PM has been 
applied to different array geometries such as uniform linear 
arrays, L-shaped and parallel-shaped arrays [6–9]. How-
ever, the PM applied to parallel-shaped arrays requires 
pair-matching of azimuth and elevation angles and also 
suffers from estimation failure problem when elevation 
angles are between 70° and 90° [7]. The L-shaped array 
also suffers from pair-matching of the two electric angles 
estimated from the two orthogonal linear sub-arrays which 
form the L-shape. The work reported in [8] combines the 
PM method with ESPRIT algorithm and exploits the con-
jugate symmetry property of the array manifold matrix for 
DOA estimation without pair-matching problem. One 
drawback of this method is its relatively high computa-
tional cost due to its use of EVD. 

The 2-D DOA estimation algorithm reported in [10], 
estimates the elevation angle based on the polynomial root 
methods (such as fast root MUSIC or ESPRIT) using a 1-D 
uniform linear subarray along the z axis. To estimate azi-
muth angle, it uses the elevation angle estimated earlier and 
a 2-D uniform linear subarray along the x axis based on 
a subspace method (such as 2-D MUSIC). This algorithm 
does not require pair-matching, but its drawbacks are rela-
tively high estimation errors at low SNR and the need for 
a large number of snapshots. A cumulant-based direction 
finding algorithm has been proposed in [11] which resolves 
the pair-matching and aperture loss problems seen in other 
methods. Another method [12] which resolves the pair-
matching problem does so by employing a trilinear decom-
position-based [17] blind 2D DOA estimation algorithm 
for an L-shaped array. One drawback of this method is that 
it requires higher number of snapshots for estimation accu-
racy and higher computation cost for constructing the 
cross-correlation matrices. The work proposed in [13] 
employs PM-like method for an L-shaped antenna array. It 
employs cross-correlation of the received signals and uses 
linear operations to reduce the computation complexity. 
However, it does not resolve the pair-matching problem 
and therefore does not work for multiple sources. The pair-
matching problem can also be alleviated by considering 
a parallel factor analysis (PARAFAC) [14] model which 
has become popular lately in array signal processing. 
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PARAFAC was used to solve the problem of parameter 
pairing (or pair-matching) for the L-shaped array in [15] 
and for the conformal array in [16].  

In this paper, we propose a novel 2D DOA estimation 
method that employs two parallel linear antenna arrays, 
and uses the PM in conjunction with a PARAFAC model 
to avoid pair-matching problem. The methods for 2D DOA 
estimation employing PARAFAC model in [11], [12], and 
[15] are based on dividing the whole array into several 
subarrays and then forming the cross-correlation matrices 
using second-order statistics. Construction of each cross-
correlation matrix requires O(4N2L) FLOPs where N repre-
sents the number of antennas and L represents number of 
snapshots. In the proposed method, the propagator method 
can be applied directly to the data matrix with an order of 
O(3(N – 1)L) or to a second-order statistics of the autocor-
relation and cross-correlation matrices with an order of 
O(3(N – 1)2L). In addition, the proposed method requires 
(N – K)  K  3 dimensional three-way array (TWA) re-
quired for PARAFAC model whereas the methods in [11], 
[12], and [15] require N  N  K. As a drawback, this will 
increase the complexity, processing and convergence time, 
and memory storage requirements for the methods in [11], 
[12], and [15]. Similarly, while the method in [16] is accu-
rate in DOA estimation and does not require pair-matching, 
it suffers from higher computational complexity. Compared 
with existing methods [10–12], [19], the proposed method 
has lower computational complexity and solves the pair-
matching problem with multiple sources. Therefore, sig-
nificant reduction in computational load and complexity is 
achieved.  

The following notations are used throughout this pa-
per: the operations (.)H, (.)†, (.)T, and (.)–1 represent conju-
gate transpose, pseudo-inverse, transpose, and inverse, 
respectively. A scalar is represented by u, a constant by U, 
a vector by u, a matrix by U, an ij−th member of a matrix 
U by uij, and a three-way array (TWA) by U. The opera-
tions diag(.) and diag–1(.) represent the conversion of 
a vector to diagonal matrix and diagonal matrix to a vector, 
respectively. 

2. Array Geometry and Signal Model 
The proposed parallel-shaped array geometry is 

shown in Fig. 1. The distance between adjacent antenna 
elements is d, where d = λ/2 with λ being the wavelength of 
the incident waveform. The arrays are divided into three 
subarrays: xa, yb, and zc. Each linear subarray consists of N 
antenna elements. Consider K narrowband non-coherent 
sources in the far-field region of the antenna array. The 
received signal vectors at tth

 snapshot for xa, yb, and zc 
subarrays from K sources can be represented as: 

        a a ,t t t x A s n  (1) 

          2 b ,t t t  by A Φ s n  (2) 

          c 1 ct t t  z A Φ s n  (3) 







 
Fig. 1. Parallel-shaped array geometry. 

where s(t) is a K  1 dimensional vector representing re-
ceived signals from K sources and na(t), nb(t), and nc(t) are 
N  1 zero mean additive white Gaussian noise (AWGN) 
vectors with variance σ2. The elevation and azimuth angles 
are represented by  and , respectively. The matrix A() 
has dimensions N  K  and is defined as: 
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where 2 cos
exp j k
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 for the kth source. The 

diagonal matrices 1 and 2 in (2) and (3) contain 
information about the elevation and azimuth angles, which 
are defined as: 

  1 1 2diag , , , ,Kv v vΦ   (5) 

  2 1 2diag , , , Kq q qΦ   (6) 

where 
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for the kth source. The dimensions of 1 and 2 are K  K. 

3. Proposed DOA Estimation Method 
In this section, we propose a new DOA estimation 

method for non-coherent sources by using PARAFAC [14] 
model for pair-matching. The auto-correlation matrix Rxx  
of received signal vector xa(t) in (1) is obtained as: 

   

             

H
xx a a

H

a a      .

t t

t t t t 

   
   
 

R E x x

A s n A s n
 (7) 

Assuming uncorrelated noise between antenna elements on 
subarray xa, the above auto-correlation matrix reduces to: 
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    H 2
xx s   R A R A I  (8) 

where Rs = E[s(t)sH(t)] is the auto-correlation matrix of the 
signal vector s(t) and I is an identity matrix. The cross-
correlation matrix Ryx of received signal vectors at subar-
rays  yb and xa, with the same assumption, we get: 

    H

yx 2 s R A Φ R A   (9) 

Similarly, the cross-correlation matrix Rzx or received signal 
vectors at subarrays zc and xa is: 

    H
zx 1 s R A Φ R A  (10) 

where the parameters (,)
 
in 2 and  in 1 are omitted for 

simplicity. The above correlation matrices are concatenated 
to form a new matrix F as follows: 

 
TT T T

xx yx zx       F R R R  (11) 

where the dimensions of F are 3N  N. The matrix F is 
partitioned into two parts by employing propagator method 
(PM) [6], [9]. This is given as F = [F1

T  F2
T]T, where the 

dimensions of F1 and F2 are K  N and (3N – K)  N, re-
spectively. The least squares solution for propagator matrix 
P̂, similar to [9], is given by: 

    1H H
1 1 2


 1P F F F F  (12) 

where the dimensions of P̂ are K  (3N – K). The 
propagator matrix P̂ is partitioned as: 

      
TH T T T T T

1 2 3 4 5            
P P P P P P  (13) 

where the dimensions of P̂1, P̂2, P̂3, P̂4, and P̂5 are  
(N – K)  K, K  K, (N – K)  K, K  K,

 
and (N – K)  K, 

respectively. From (8), (9), and (10), and following the 
same procedure in [9], the partitions P̂1, P̂3, and P̂5 are 
defined as: 

    1H H
1 2 2 1 1 ,s s


P A R A A R A  (14) 

    1H H
3 2 1 2 1 1 ,s s


P A Φ R A A R A  (15) 

    1H H
5 2 2 2 1 1s s


P A Φ R A A R A  (16) 

where A1 and A2 are the partitions of A, i.e. A = [A1
T A2

T]T 
(again, the parameter  is omitted in A for simplicity). The 
dimensions of A1 and A2 are K  K and (N – K)  K, re-
spectively. The (N – K)  K  3 dimensional TWA required 
for PARAFAC model can be obtained by using P̂1, P̂3, and 
P̂5 as follows: 
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where Q denotes the noise matrix. Comparing the above 
TWA with the PARAFAC model in [14], we can write: 

   T  G D B C Q  (18) 

where 
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operation   denotes the Kronecker product. The 
alternating least squares (ALS) method [17] is applied to 
get the estimates of  D, B, and C. 

The COMFAC algorithm [18] is used to fit the 
PARAFAC model to the TWA G. For fast implementation 
of alternative least squares method to solve PARAFAC 
model, COMFAC algorithm is employed which speeds up 
the least squares fitting and reduces the complexity by 
utilizing a compressed version of the three-way data into 
smaller matrix dimensions. The algorithm outputs the 
identification matrices D̂, B̂, and Ĉ. The matrix Ĉ contains 
information about the elevation and azimuth angles. The 
diagonal matrices  ̂1 and ̂2 are estimated from the 

identification matrix Ĉ as    
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
 , respectively, where the index k denotes 

the kth source. The elevation angle  k  and the azimuth 

angle  k  for the kth source are then estimated as: 
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   (19) 

The pair-matching is taken care of using the 
PARAFAC model. We derive the Cramer-Rao Bound 
(CRB) for the proposed method in a similar manner as 
shown in [20]. The received signals in (1), (2), and (3) are 
concatenated as shown in the following: 
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CRB can be expressed by using the above signal model as: 
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the ith column of M, ⊚ represents Hadamard product, and 

  1H H
3M N

  I M M M M .  The  matrix  P̂  in  (21)  is 



RADIOENGINEERING, VOL. 27, NO. 3, SEPTEMBER 2018 773 

 

 
Tab 1.  Complexity analysis. 

given as 
 

 
s s

s s

 
  
  

P   P
P

P   P
, where     H

s
1

1 L

l
t t

L 
 P s s . The 

matrix P̂s is not diagonal in the presence of coherent 
sources. Table 1 shows the complexity in terms of number 
of FLOPs for major processing steps of the proposed 
method, universal 2D DOA estimation [10], and joint ele-
vation and azimuth angle estimation [19]. It can be inferred 
from the table that the proposed method has much lower 
computational complexity compared to other methods, 
where N, L, and K denote the number of antenna elements, 
snapshots of the received signals, and number of sources, 
respectively.  

To illustrate the superiority of the proposed method in 
terms of complexity compared with other methods in [12], 
[11], [10], and [19], the case of N = 15, K = 2, and L = 100 
is considered and actual FLOPs calculated. Table 2 shows 
the number of FLOPs required for this case. It is clear from 
the table that the proposed method requires the least 
number of FLOPs.  
 
 

Method Number of FLOPs 

Proposed method  

7156  
(in case of data matrix)  

28756  
(in case of cross- or 

autocorrelation matrix) 

Novel L-Shaped in [12] 38304 

Cumulant-based in [11] 957924 

Universal 2D DOA in [10] 1.4400 e+10 

Joint L-Shaped in [19] 7.1856 e+12 

Tab 2.  Complexity analysis for the case N = 15, K = 2, and 
L = 100. 

3.1  Summary of the Proposed Algorithm 

As described earlier, the proposed algorithm consid-
ers the extended parallel-shaped array as shown in Fig. 1. 
The problem of pair-matching between two or more 
sources is avoided using the PARAFAC model. Following 
steps summarize the proposed algorithm to estimate DOAs 
for non-coherent sources without the problem of pair-
matching.  

Step 1:  Construct the data matrices xa(t), yb(t), and zc(t) as
 

shown in (1), (2), and (3), respectively, from L 
snapshots of the received signals. 

Step 2:  Determine the autocorrelation matrix Rxx as in (8) 
and the cross-correlation matrices Ryx and Rzx as 
in (9) and (10), respectively.  

Step 3:  Concatenate the matrices in Step 2 to form a new 
matrix F as in (11). 

Step 4:  Apply propagator method (PM) to matrix F, as: 
F = [F1

T  F2
T]T. 

Step 5:  Arrange the estimated propagator matrices P̂1, P̂3, 
and P̂5 as in (14), (15), and (16), respectively, 
using PARAFAC method to generate matrix G. 

Step 6:  Apply alternating least squares (ALS) to (17) to 
get the matrix C which contains information about 
1 and 2. 

Step 7:  Estimate the elevation and azimuth angles using 
ˆ ˆand  k k  as in (19), for the each of the K 

sources. 

4. Simulation Results 
This section investigates the performance of the pro-

posed method through simulations. The performance is 
compared with the following methods: novel L-shaped 
method in [12], cumulant-based method in [11], joint ele-
vation and azimuth angles estimation method in [19], and 
universal 2D DOA estimation method in [10]. The sources 
considered are non-coherent. The assumed spacing be-
tween the adjacent antenna elements is d = λ/2 in all the 
simulations. For fair comparison, same numbers of anten-
nas are considered in all algorithms. The plots are obtained 
by averaging over several runs of the algorithm. 

Figure 2 shows standard deviation (STD) against 
SNR from 0 to 30 dB for the proposed method, novel L-
shaped in [12], cumulant-based method in [11], and joint 
L-shaped method in [19], universal 2D DOA in [10], and 
CRB. We observe that the proposed method has the lowest 
STD and it is comparable with CRB at SNR beyond 15 dB. 

Figure 3 shows the standard deviation (STD) against 
increasing number of snapshots for the proposed method, 
cumulant-based method in [11], and joint L-shaped method 
in [19]. The number of antenna elements and number of 
sources considered here are N = 15 and K = 2, respectively. 
The SNR is set at 10 dB, and snapshots are varied from 
L = 200 to L = 2000. The figure shows that the proposed 
method performs slightly better than the other methods. 
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However, the proposed method outperforms these methods 
in terms of computational complexity as discussed earlier.  

Figure 4 shows the comparison of the scatter plot for 
the proposed method with novel L-shaped method in [12] 
and cumulant-based method in [11]. The number of 
sources, antenna elements, and snapshots considered here are 

 
Fig. 2. Standard deviation (STD) vs SNR for two sources 

located at (1 = 50°, 1 = 30°) and (2 = 85°, 2 = 60°).  

 
Fig. 3. Standard deviation (STD) vs snapshots for two sources 

located at (1 = 50°, 1 = 30°) and (2 = 80°, 2 = 60°). 

 

Fig. 4. Scatter plot for two sources located at (1 = 50°, 
1 = 40°) and (2 = 70°, 2 = 60°).  

K = 2, N = 15, and L = 200, respectively. The SNR is set at 
15 dB. The two sources are located at (1 = 50°, 1 = 40°) 
and (2 = 70°, 2 = 60°). 

5. Conclusions 
A new 2D DOA estimation method has been pro-

posed that solves the pair-matching problem for elevation 
and azimuth angles for multiple sources, with significantly 
reduced computational load. Furthermore, the proposed 
method does not require high complexity spectral search 
methods. The proposed method employs propagator 
Method (PM) in conjunction with parallel factor 
(PARAFAC) model. A new antenna array configuration 
consisting of two uniform linear arrays is also proposed to 
estimate 2D DOA for multiple sources. Simulation results 
demonstrate the effectiveness and better performance of 
the proposed method compared to existing methods. 
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