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Abstract. This paper proposes a new methodology for
comparing two performance methods based on confidence
interval for the ROC curve. The methods performed and
compared are two algorithms for face recognition. The nov-
elty of the paper is three-fold: i) designing a methodology for
the comparison of decisionmaking algorithms via confidence
intervals of ROC curves; ii) investigating how sample sizes
influence the properties of the particular methods; iii) rec-
ommendations for a general comparison of decision making
algorithms via confidence intervals of ROC curves. To sup-
port our conclusions we investigate and demonstrate several
approaches for constructing parametric confidence intervals
on real data. Thus, we present a non-traditional and reli-
able way of reporting pattern recognition results using ROC
curves with confidence intervals.
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1. Introduction
The Receiver Operating Characteristic (ROC) pro-

vides a simple and useful instrument for the diagnostic and
overview of the overall statistical test performance. The
ROC curve is a graphical representation of the relationship
between sensitivity and specificity with respect to the cut-
off point which runs through the whole range of possible
values [1], [2]. ROC curves have been used in natural sci-
ences such as medicine, biology or chemistry [3], [4] as well
as in signal processing, machine learning, pattern recogni-
tion [6] and other technical sciences [5]. While in engineer-
ing it is possible to obtain a large sample of data, in medicine
or biology the samples are moderate or small. Generally,
statistical tests conducted on small samples can be biased
and can lead to incorrect conclusions. Large samples are
therefore preferable.

We investigate methods for estimating the ROC curve
confidence in the field of machine learning. This research
was motivated by the need of a comparison between two
decision making algorithms. Their performance is usually

presented in the form of ROC curves. Analysing ROC curve
confidence enables us to compare classifiers and estimate sta-
tistical accuracy of the reported classifier performance. The
confidence of anROCcurve is therefore essential for develop-
ing classifiers, comparing their performance and optimizing
classifier parameters in all disciplines.

In this paper we investigate the performance of two ma-
chine vision algorithms for face recognition. We enumerate
the confidence of the results reached by each algorithm using
several methods. Each method has different properties and
thus the enumerated confidence slightly differs. We show that
even if a data set contains thousands of samples it is worth
investigating the confidence of the results. The construction
of confidence intervals (CIs) allows us to decide if the exam-
ined face recognition algorithms performs better. This is one
of the first in-depth works describing ROC curve confidence
in depth in the field of face recognition or pattern recognition.
We would like to encourage researchers in the field of pattern
recognition and machine learning to adopt this methodology
for ROC curve confidence, especially when tests are con-
ducted on non-public data-sets.

2. Contemporary Methods for ROC
Comparison
ROC curves have been used as a diagnostic instrument,

however, they are also useful for the comparison and per-
formance evaluation of decision making algorithms. There
are generally two approaches to make the comparison. The
first one is numerical, employing the Area Under the ROC
Curve (AUC) [3, 4, 6], the other one is graphical. The latter
shows the sample variability of the ROC curve estimate by
plotting bounds around the ROC curves [1] and the compar-
ison is performed by evaluating the overlap of CIs.

The AUC represents the probability that a randomly
chosen object of group A is (correctly) rated with a higher
probability to group A than a randomly chosen object
of group B. Thus, a comparison is performed on the compar-
ison of CIs for the AUC value [7–10]. A detailed look into
the calculation of AUC uncovers a possible inaccuracy of its
enumeration which is usually based on the Mann-Whitney
statistic [10]. Further, Westin [8] and Brown and Davis [10]
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proposed a calculation of the AUC and its CI. The work of
Zou et al. [11] focused on the comparison of multiple AUCs
derived from the same group of objects. They presented
a method using simultaneous CIs for AUC and investigated
a small sample size. The comparison via AUC is a two-
step algorithm (the first one is the approximation of AUC,
the second one its testing) which can bring additional imper-
fections and statistical inaccuracies to the enumeration and
estimation compared to a one-step approach. As Westin [8]
pointed out, a non-significant difference between AUCs for
two methods does not imply an equivalence between these
methods. A different point of view on AUC was provided
by [12] which focused on the fusion of methods for differ-
ent detectors to improve their individual performance. The
authors investigated the maximization of AUC as one of the
instruments for optimizing the fusion. Maintaining the aim
of this paper we tend to use CIs for ROC curves as they can
better visualize the behavior of different decision making al-
gorithms. The comparison of AUCs confidence intervals is
not suitable for studying overlaps in detail, thus, we do not
investigate it.

Another approach reflected in the literature is a one-
or two-dimensional CI for each point of an ROC curve (for
sensitivity and specificity separately). Since sensitivity and
specificity are both proportions, we can calculate CI using
the standard methods for proportions. Two types of 95% CI
are generally constructed around the proportion - the asymp-
totic and the exact 95% one. The exact CI is constructed
using binomial distribution while the asymptotic approach
assumes a normal approximation of sampling distribution.
Asymptotic types of the procedure based on a simple nor-
mal approximation of the binomial distribution for CI con-
struction were proposed in [1]. Further, Schäfer [1] pre-
sented „Greenhouse and Mantel“ confidence bounds based
on a statistical test which was 40% smaller than the interval
constructed as a combination of separate CIs for sensitiv-
ity and specificity derived as a normally distributed relative
frequency parameter. Brown and Davis [10] discussed meth-
ods for determining CI on various measures. Their paper
proposed two expressions of CI of the proportion with the
continuity correction term. They considered joint confidence
intervals, bootstraping, and regression. Westin [8] summa-
rized the basic approach to the ROC curve construction, its
CI and the comparison of two curves via AUCs testing. She
provided formulas for standard error of sensitivity and speci-
ficity and discussed the influence of sampling.

An alternative approach to the construction of ROC
CIs can be performed by using a regression model (and the
construction of its confidence band) or a non-parametric ker-
nel estimate. In a similar way to the AUC, the confidence
band (CB) for regression curves is a two-step algorithm.
First, a regression model of ROC curve is estimated, subse-
quently, the CB or AUC is calculated. An advantage of such
modeling is its usability for the AUC as well as for the CBs
calculations. The enumeration of AUC, if the ROC trend
is described by the function, could be more precise com-

pared to an approximation in the ROC points. In the case of
a sufficiently large sample, it is suitable to use the smoothing
of ROC curve points via a non-parametric kernel estimation
such as [13], [14]. To apply the kernel method, we need
the optimization of its parameters. As Hall [13] proved, the
asymptotic method can provide very good performance. Un-
fortunately, a disadvantage of this approach is the need of
a large sample of ROC points and optimum choice of the
bandwidth, which is computationally time demanding. As
written in [14], the kernel methods usually struggle with the
edge problem (when significant parts of a histogram are near
zero). Therefore, this approach is not investigated in this
paper.

2.1 Paper Contribution and Organization
We have determined that literature does not deal with

the following: firstly, how the ROC curve, its CI and AUC
can be used for an objective comparison, i.e. to answer the
questionwhether the difference between curves is statistically
significant; secondly, what the conditions and recommenda-
tions for using such instruments for comparison are. In this
paper, ROC curves are used for evaluating methods for face
recognition. The task is a reliable identification of a method
which makes the whole recognition process more successful.
We suggest, for this purpose, a novel methodology based on
the CI estimation of ROC curves and the subsequent assess-
ment of possible overlap of CIs. The main contributions of
the paper are:

• an algorithm for the comparison of decision making
algorithms via CIs of ROC curves,

• a demonstration of several approaches for the paramet-
ric CI construction on real data,

• an investigation of how a sample size influences the
properties of discussed approaches,

• a recommendation for a general comparison of decision
making algorithms via CI of ROC curves.

The demonstration of the proposed algorithm, and conse-
quent results discussion, are shown on the comparison of
two machine vision algorithms for face recognition.

3. ROC Curves
The ROC was developed in the field of statistical de-

cision theory [15]. Let us assume two groups of objects.
One group of objects satisfies a condition (the positive case)
and the other group does not (the negative case). We take
a test which denotes an object as positive or negative. Fur-
ther we will use the following denotation: true positive (TP),
true negative (TN), false negative (FN) and false positive
(FP). TP, FN, FP, TN represent the number of trials resulting
in particular outcomes. Thus, according to [4] we can define

TP outcome positive & test positive
T N outcome negative & test negative
FP outcome negative & test positive
FN outcome positive & test negative
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Fig. 1. Illustration of ROC curve construction.

It holds that TP + FN + FP + T N = q, where q is the
total number of trials. Now, we can estimate Sensitivity as
the true positive rate (TPR)

TPR = Sensitivity =
TP

TP + FN
=

TP
n+

(1)

and Specificity as the true negative rate (TNR)

T NR = Specificity =
T N

FP + T N
=

T N
n−

. (2)

The false positive rate FPR = 1 − Specificity = 1 − T NR.
In the area of face recognition TPR is denoted as the Correct
Classification Rate and FPR as the False Acceptance Rate.

The resultant ROC curve displays the relationship be-
tween Sensitivity (TPR on the y-axis) and 1-Specificity (FPR
on the x-axis) for each value of the threshold θ (Fig. 1). As
the threshold θ changes, the sizes of surfaces of Sensitivity
and Specificity change too. In this way, the ROC performs all
possible combinations of the relative frequencies of various
kinds of correct and incorrect decisions.

4. Confidence Interval
We distinguish two approaches to the CIs construction.

The first one, the parametric CIs, is based on an estimation
of the proportion as the population parameter. Consequently,
we calculate CI for this proportion. With respect to the as-
sumptions and sample size we correct/adapt the calculation
of boundaries. The second approach we suggest is the com-
putation of a CB for the regression model which describes
the ROC curve.

4.1 Parametric Confidence Intervals
The investigated normalized characteristics TPR, TNR

are defined as proportions (i.e. relative frequencies of the
algorithm decisions). We propose the use of CI for the rel-
ative frequency as presented in [16]. Denote m as the num-
ber of positive results (recognition successes) in the case of
TPR, (m = TP), the number of negative results in the case of
T NR, (m = T N). Let n = n+ be the total number of trials (the
number of face images) in the case of TPR, and let n = n−

be the total number of trials in the case of T NR. The lower
bound CIL and the upper bounds CIU of confidence interval
for X = TPR,T NR are defined as in [17]:
if np > 5 and n(1 − p) > 5

(CIL,CIU) = X ± u1−α/2

√
X(1 − X)

n
, (3)

else

CIL =
m

(n − m + 1)F1−α(2(n − m + 1), 2m) + m
,

CIU =
(m + 1)F1−α(2(m + 1), 2(n − m))

n − m + (m + 1)F1−α(2(m + 1), 2(n − m))
(4)

where u1−α/2 is a quantile of the normal distribution and
F1−α is a quantile of Fisher-Snedecors’s distribution for the
risk α. The CI, determined by the lower and upper bounds,
can be estimated for each point of the ROC curve. This
approach allows different levels of m, n, it is, therefore, more
general.

According to [8] we can estimate the standard er-
ror (SEE) for a sufficiently large sample for Sensitivity and
for Specificity as

SEE (TPR) =
√

TPR(1 − TPR)/n+, (5)

SEE (T NR) =
√

T NR(1 − T NR)/n−. (6)

Thus, the CI can be constructed as

(CIL,CIU) = TPR ± t1−α/2(n+ − 1)SEE (TPR), (7)

(CIL,CIU) = T NR ± t1−α/2(n− − 1)SEE (T NR). (8)

The univariate CI proposed by Brown and Davis works
with two formulas [10]. Let both TPR and T NR be pro-
portions having a binomial distribution. If the number of
events is reasonably large, the binomial distribution can be
approximated by the normal distribution. Thus, the CIs on
estimation proportions X are similar to (3) adapted with the
continuity correction term 1/2n. It yields

(CIL,CIU) = X ±

[
uα/2

√
X(1 − X)

n
+

1
2n

]
(9)

where X = TPR is the true positive rate, n = n+; and for
X = T NR the number of negative results, n = n−; u1−α/2
is a quantile of the normal distribution; α is the risk. If
n · X(1 − X) < 10, the formula can be extremely erratic and
inaccurate.
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Brown and Davis [10] proposed another formula, the
Wilsons interval, which has better statistical properties. Such
a CI is reasonable for any n · X(1 − X), n is the sample size
of the corresponding proportion. Thus

(CIL,CIU) =
n

n + uα/2

X +
uα/2
2n
± u1−α

√
X(1 − X)

n
+

u2
α/2

4n2

 .
(10)

The corresponding formulas for the FPR is easily de-
rived from the relation FPR = 1 − T NR.

4.2 Confidence Band aroundRegressionModel
Let us consider the number of given ROC curve points

constructed as pairs {(TPRi, FPRi)|i = 1, . . . N}. The ROC
curve points can be described by a regression model

Y = Xβ + ε, (11)

where Y is the dependent variable, X = (xi j) is the matrix
of inputs, β is the vector of unknown parameters and ε is the
error terms vector. An estimate of the unknown parameter
β, denoted further as b, can be found via the ordinary least
square method [18].

Considering the shape of an expected ROC curve, we
pre-selected the power and the polynomial regression model.
Thus the regression model for the power function [18] is

TPRi = β0 · FPRβ1
i + εi, i = 1, . . . , N (12)

whereTPRi is the observation of a dependent variable, FPRi

is the observation of an independent variable. To simplify
the calculations from the non-linear to linear form, we use

ln (TPRi) = ln(β0)+β1 ln(FPRi)+ln(εi), i = 1, . . . , N . (13)

The CB around the regression power model is given by
the area where empirical values are dispersed around the re-
gression function representing the theoretical values. Denote
the lower bound CBL and the upper bound CBU. Then

(CBL,CBU) = exp
{
Ŷi ± t1−α/2(N − k) ·

√∑N
i=1(Yi−Ŷi )

2

N−k

}
(14)

where N is the sample size, k is the number of re-
gression parameters including the absolute member and
Ŷi = ln(b0) + b1 ln(FPRi) is the regression model estimate.

The regression model for a polynomial function of or-
der p is [18]

TPRi = β0 + β1 · FPRp
i + . . . + βp · FPRp

i + εi, (15)

whereTPRi is the observation of a dependent variable, FPRi

is the observation of a independent variable. The correspond-
ingCBs (CBL,CBU) around the polynomial regressionmodel
of order p is

(CBL,CBU) = Ŷi ± t1−α/2(N − k) ·
√∑N

i=1(Yi−Ŷi )
2

N−k
(16)

where N is the sample size, k is the number of re-
gression parameters including the absolute member and
Ŷi = b0 + b1FPRi + b2FPR2

i + . . . + bpFPRp
i is the regres-

sion model estimate.

Let us denote the regression model estimate Ŷ = �TPR
and Y = 1

N

∑N
i=1 TPR. For measuring how well the regres-

sion function fits, we can use the index of determination

R2 =
ESS
TSS

=
=

∑N
i=1(Ŷi − Y )2∑N

i=1(Yi − Y )2
(17)

where N is the number of ROC curve points. The closer R2

is to 1, the better data description we obtain.

5. Application
This section presents the application of the proposed

methods for the ROC confidence estimation on the perfor-
mance comparison of two face recognition algorithms. It
also briefly introduces face recognition algorithms and data-
sets used for testing.

5.1 Face Recognition Algorithms
Face recognition consists of face detection (i.e. the

localization of a face in an image) and recognition. The
method we used for face detection is the Viola-Jones face
detector [19]. Face location and rotation was refined by an
algorithm based on the detection of facial features - eyes,
nose and mouth. The detected and aligned face was de-
scribed for the purpose of recognition by Local Binary Pat-
ternHistograms (LBPH) [20]. The face image represented by
LBPH features was classified by the Nearest Neighbor (NN)
classifier. This basic recognition framework is common for
both of the algorithms being compared. the difference is
the creation of reference models (also called templates) for
the NN classifier. We used two approaches to model cre-
ation: Centroid method (Centroid) and the Higher Quantile
Method (HQM) [21].

The Centroid constructs a face model by computing
a centroid of a cluster formed by LBPH feature vectors ex-
tracted from training face images [21]. The centroid repre-
sents the cluster and forms the face model. The centroids
are computed for each individual separately, thus a set of
centroids is used as a reference for NN classifiers. HQM
utilizes the statistical estimation of a cluster formed by train-
ing feature vectors. An Extreme Value Distribution is fitted
to a histogram of feature values in each dimension. Then
two quantiles are used as borders of the space that represents
a face model.

Algorithms for face recognition differ in the face model
creation process sometimes called a training or learning stage.
The recognition performance of algorithm thus differs based
on the method used: the Centroid or the HQM.We will show
that the difference of the performance is up to 10% of TPR
(Specificity). However, for the following steps, we need to
evaluate if the difference of the performance is statistically
significant or not.
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5.2 Test Data
The face recognition algorithms were tested on the face

image database called IFaViD [22]. We created IFaViD in or-
der to examine and investigate the properties and performance
of face recognition algorithms in surveillance camera sys-
tems. IFaViD consists of two subsets based on individuals
actions performed in the view of a surveillance camera, we
call them scenarios.

• Scenario A: a person walking through a door frame or
a corridor (significant variability in face pose); 8731 im-
ages in total.

• Scenario B: a person requesting access at a closed door
or a gateway access via an identification device (signif-
icant variability in illumination); 7711 images in total.

Scenario A images differ from Scenario B images in face
dimensions, face pose, mutual face-camera position and face
illumination. See [22], [21] for sample images. Each sce-
nario based subset contains images of individuals that have
created face models - internal persons and individuals with-
out face models - external persons also called impostors. The
IFaviD database is one of the larger databases. Despite this,
we will show that the confidence of the results expressed by
ROC curves is limited.

5.3 Short Demonstration of Selected Face
Recognition Algorithms
Figure 2 shows ROC curves for different face recog-

nition algorithms. We compare the Centroid Method, the
Weighted Centroid Method and a method estimating cen-
troids using the Gaussian Mixture Model (GMM) on both
scenarios, the Baseline stands for the Most Similar Face
method (for more details see [21]). As it was proved in pa-
per [21] the Centroid Method performs best. Therefore,
in the next part we will demonstrate the comparison of HQM
method with the Centroid using CI assessment.

5.4 Confidence Interval Assessment
In this part, we calculate the CI of ROC curves rep-

resenting the performance of algorithms described above.
We use the following notation for the calculated CIs. The
parametric CI calculated according to Stehlikova [17] and
equations (3), (4) are denoted as „Stehlikova CI“; according
to Westin [8] and equation (7) is denoted as „Westin CI“ and
according to Brown and Davis [10] and equation (10) is de-
noted as „Brown CI“. We also calculate the CB around the
regression model of ROC curve according to (14) or (16) and
denote it „RM CB“.

With respect to the expected shape of ROC curve we
pre-selected the polynomial and the power regression model.
The final selection of the model was done with respect to
the shape of the curve and the level of R2 > 0.99 see (17).
Therefore, we use the power model for both methods (the
Centroid and HQM) in Scenario A. We use the polynomial

model (p = 6) for the Centroid in Scenario B; we use the
polynomial model (p = 5) for HQM in Scenario B. The
summary is shown in Tab. 1.

Let us focus on the comparison of the performance of
face recognition algorithms via CIs. We will assess an over-
lap of CIs for both methods. Generally, if the CIs for HQM
and Centroid do not overlap, the method with a higher TPR
(for the given FPR) performs better. If the CIs overlap, we
identify the regions of ROC points with overlap and assess
the extent of overlap. We keep in mind that a wider CI gives
a higher uncertainty for the estimated proportion. This is con-
sidered as an advantage in the following sense. If wider CIs
do not overlap, there is a strong possibility that one method
provides better results. The estimates of CI for Scenario A
are given in Fig. 3, for Scenario B in Fig. 4.

Fig. 2. ROC curves describing face recognition system perfor-
mance in two scenarios from the IFaViDdatabase. (Base-
line: solid line; Centroid: dashed line; Weighted cen-
troid: dotted line; GMM: dashed dotted line). The y-axis
is displayed in the range 〈0.1, 0.5〉 for Scenario A, and
in 〈0.25, 0.6〉 for Scenario B.

Scenarios A
Regression model Centroid (N = 43) HQM (N = 29)
Polynomial, p = 6 0.9992 0.9890
Polynomial, p = 5 0.9987 0.9839
Power model 0.9969 0.9966

Scenarios B
Regression model Centroid (N = 43) HQM (N = 32)
Polynomial, p = 6 0.9914 0.9988
Polynomial, p = 5 0.9885 0.9981
Power model 0.9828 0.9663

Tab. 1. A regression model and its R2 (N is number of ROC
curve points).
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Fig. 3. Confidence intervals for scenario A (Stehlikova CI: solid line; Brown CI: dashed line; Westin CI: dashed dotted line; RM CB: dotted line).
The y-axis is displayed in the range 〈0.2, 0.6〉 to enable better reading. Westin CI and Stehlikova CI show similar results, therefore we
cannot see the difference in the figure.

Fig. 4. Confidence intervals for scenario B (Stehlikova CI: solid line; Brown CI: dashed line; Westin CI: dashed dotted line; RM CB: dotted line).
The y-axis is displayed in the range 〈0.35, 0.73〉 to enable better reading. Westin CI and Stehlikova CI show similar results, therefore we
cannot see the difference in the figure.

Let us focus on Scenario A (Fig. 3). We can see that
the HQM method performs better than the Centroid. The CI
of the respective ROC curves are very tight and they overlap
in some areas. If we make an in-depth analysis of CI for both
methods, we can find three basic areas - not overlapping CIs,
tight CIs and overlapping CIs. In the range of FPR 〈0, 0.1〉,
no CI or band overlaps. In the range 〈0.1, 0.6〉, the CIs are
very tight, and in the range 〈0.6, 1〉, they overlap. Hence,
we conclude that HQM can provide better results than the
Centroid for low values of FPR; the improvement is not so
significant for higher FPR values.

In the case of Scenario B (Fig. 4), we can see that the
HQM method outperforms the Centroid. In the initial range
〈0, 0.1〉 of the FPR, both ROC curves are close to each other.

Both CIs overlap, so in this range the difference of the per-
formance between methods is considered insignificant. Fur-
thermore,in the range of FPR 〈0.1, 1〉, no intervals or bands
overlap. Therefore, with respect to the 90% of non overlap-
ping CIs, we conclude that the HQMmethod performs better
than the Centroid.

Focusing on the results of the CIs calculated accord-
ing to [17], [8] and [10] for both scenarios (Fig. 3, 4) we
do not observe any significant differences. The proximity of
the results is caused by the large sample size (n > 5000) for
estimating ROC points. Therefore, in such a case, we recom-
mend calculating the CI according to Westin ( [8] and (7))
due to its simplicity. Next we investigate the influence of
sample size on the estimated confidence of ROC curve.
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5.5 Sample Size Investigation
The influence of the sample size on the CI width is

natural. Therefore, considering the calculation of CI which
can be generally written as estimated statistic ± permissi-
ble error, we can also investigate the level of permissible
error with respect to the sample size. Firstly, we investi-
gate the influence of sample size reduction on the CI width.
The reduction is done by establishing the percentage of the
complete data-sets. The percentage was established on the
100, 50, 20, 10, 8, 1 % setting value which corresponds to
the sample size n = 6549, 3275, 1310, 655, 524, 65. The il-
lustration of the Brown CI for HQM is presented in Fig. 5.
The graphs of the other CIs, i.e. for HQM according to
Stehlikova and Westin, generally look the same and give the
same conclusion. That is, the smaller the sample size, the
wider the CI. Therefore, we do not present them.

Secondly, we investigate the influence of sample size
on the permissible error of CI for a selected ROC point. Fig-
ure. 6 provides the illustration for Stehlikova, Westin and
Brown CIs for the range of sample size 20–6549. The cal-
culation follows two basic steps. First, we take the value of
TPR for which we then calculate the permissible error of CI
for a changing sample size. then we start with a sample size
value n = 20, we establish a step of 10 samples and end with
the sample size n = 6549. This calculation yields one of the
curves in Fig. 6.

The curves in Fig. 6 are calculated for the pre-selected
TPR = 50, 80, 95. We show the results of the sample size
in the range 20 to 300, because from a sample size n > 300
all curves have the same tendency and converge slowly to
the horizontal axis. The bottom group of curves corresponds
to the ROC point for which TPR = 0.95, the middle group
of curves corresponds to TPR = 80 and the upper group of
curves corresponds to the ROC point for which TPR = 50.
Hence, we simulate the influence of sample size for several
points of ROC curve according to TPR.

Based on Fig. 6 we can formulate several conclusions:
i) the biggest differences among the CI estimation methods
are for the sample size in (0, 150); ii) for a growing sample
size n > 200, the CIs converge to each other and to the hor-
izontal axis (i.e. the permissible error decreases); iii) the
higher the position of ROC (the higher TPR) for a non-zero
value of FPR, the lower the permissible error; iv) for everyCI
estimation method, a higher TPR yields a lower permissible
error in the whole range of the sample size.

As for comparingROCcurves, based on the first conclu-
sion in the previous paragraph denoted as i), we recommend
using Stehlikova and Brown CIs in the case of a small sam-
ple size ranging (0, 150). The estimation of CB around the
regression model is not considered because the permissible
error of such a CB depends on the number of ROC points
and on the estimated regression model. The permissible er-
ror does not depend on the sample size used for estimating
of each ROC curve. We recommend using the regression
modeling of ROC points when the calculation of AUC is in-
vestigated. This, however, falls out of the scope of this paper.

Fig. 5. Brown CI for different sample size. The sample size re-
duction causes the reduction of the CI’s width. The order
of the legend corresponds with the reduction of the CIs.

Fig. 6. Dependence of permissible error on sample size.

6. Conclusion
The aim of the paper was to propose a methodology for

comparing decision making processes on the basis of CIs for
ROC curves and to investigate how a sample size influences
the applicability of this methodology. We studied CIs for
ROC curves and the overlap of CIs for the compared ROC
curves. We kept in mind that a wider CI gives a higher un-
certainty for the estimated ROC point. If a wider CI does not
overlap, we can claim that one method provides better results
with a stronger probability. The application was demon-
strated on face recognition in order to identify a method with
a higher recognition performance.

The sample size investigation and the application on
real data revealed the following conclusions and recommen-
dations. In cases of large samples (n > 1000) we recommend
comparing ROC curves via the calculation of CI according to
Westin because of its simplicity and the proximity of all dis-
cussed intervals. For a growing sample size n ∈ (200, 1000),
all parametric CIs provide similar confidence and permissi-
ble errors. Therefore, there is no preferred approach. In the
case of small samples n ∈ (0, 150), we recommend using
both Stehlikova and Brown approaches for comparing ROC
curves, i.e. of decision making algorithms.
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We recommend calculating of CBs, via regressionmod-
eling of the ROC curve trend, if the aim of an analysis is
i) comparing each of ROC point separately via CIs, and/or
ii) calculating of AUC. In such a case the CI depends on the
number of ROC points and on the quality of the fitted model.

Focusing on real data, we can state the following.
In the case of Scenario A, HQM provided better results than
the Centroid for a lower level of FPR; for a higher level of the
FPR, the improvement was not so significant. In Scenario B,
with respect to 90% of non overlapping CIs we claim that
HQM provided a better face template than the Centroid.
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