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Abstract. Radar has great potential in military and civil-
ian areas, including automobile anti-collision, battlefield 
surveillance, etc., due to its high penetration and all-
weather capability. On the basis of traditional targets 
detection, targets classification can be realized. In this 
paper, a comparison of targets classification between deep 
learning (Deep Convolutional Neural Networks (DCNNs)) 
and conventional supervised learning methods (Support 
Vector Machine (SVM), Naive Bayes (NB) and SVM-Bayes 
fusion algorithm) has been made. Furthermore, several 
factors affecting the accuracy of classifying targets includ-
ing SNR, decrease of samples, have been researched and 
discussed. We employ a K-band Doppler radar to acquire 
the raw signal due to its stationary clutter-rejection, move-
ment detection ability and short wavelength. Then Short-
time Fourier Transform (STFT) is applied to the raw signal 
to characterize micro-Doppler signatures which is the 
fundament of the classification process. We adopt the 
DCNNs to deal with the spectrograms directly, while fea-
tures have been designed and extracted for classification 
with conventional supervised learning methods. It is shown 
that the DCNN can achieve average accuracy approxi-
mately 99.4% followed by SVM-Bayes fusion algorithm 
reaching around 95.8%, while the accuracy for SVM and 
NB is about 94.4% and 91% respectively.  

Keywords 
Targets classification, micro-Doppler, DCNNs, CW 
Doppler radar, SVM, Naive Bayes, SVM-Bayes 
fusion 

1. Introduction 
As the growing concerns of security and surveillance, 

targets classification [1–3] is drawing increasing attention. 
Traditional targets classification methods are usually based 
on camera surveillance system and video surveillance sys-

tem, which have high requirements of lighting in test sce-
narios. Besides, these methods invade people's privacy to 
a certain extent. These factors limit the use of traditional 
targets classification methods under many circumstances. 
On the contrary, Doppler radar is excellent in detecting 
movement in no light and bad weather conditions com-
pared with the optical surveillance system, which makes it 
a popular tool to detect and classify targets. Meanwhile, 
a Doppler radar is easy to build and cost-effective, which 
makes it easy to be used widely [27]. The Micro-Doppler 
refers to the additional frequency components to the main 
Doppler shift, which is caused by rotating or vibrating 
parts of moving targets such as wheels of vehicles, the 
rotor of a helicopter, and the swinging limbs of human 
targets. Micro-Doppler has been investigated for various 
applications [4–6] including automobile anti-collision, 
battlefield surveillance and etc. In [24], a comprehensive 
review of micro-Doppler signatures based on different 
kinds of targets together with its importance and applica-
tions, was given. In [25], micro-Doppler signature gener-
ated from a target’s micro-motions has been extracted 
using Forward Scattering Radar. But the targets classifica-
tion based on Micro-Doppler signatures is still in current 
research.  

In previous works, conventional supervised learning 
methods are preferred for investigating targets classifica-
tion, for instance, Xiaoran Shi utilized the SVM to classify 
humans and vehicles based on time-frequency spectro-
grams [7], in [8] the SVM was also employed as the classi-
fier for the classification of a human, a dog and a horse 
based on time-velocity spectrograms and in [9] Bayesian 
Classifier was used to classify humans and vehicles. How-
ever, the numbers of the classified species in the researches 
are small and the process of using conventional supervised 
learning methods relying on extracted features is very com-
plicated, which limit their practical applications. In [28], 
the authors employed Bayes linear, k-nearest neighbor, and 
support vector machine to classify targets based on Gabor 
features. [24] utilized DCNN to recognize only one human, 
one dog, one horse and one car. Compared with these re-
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searches, in this paper, five species have been detected, 
with each species having four different targets, which has 
increased the difficulty of detection, but a higher accuracy 
has been achieved by our algorithm. We employ both the 
deep learning method and the conventional supervised 
learning methods to deal with targets classification prob-
lem based on Micro-Doppler signatures. Furthermore, 
a fusion of the conventional supervised learning methods 
(SVM-Bayes) has also been implemented to study whether 
a better result will be achieved using fusion algorithm. In 
addition, the effect of SNR as well as the decrease of sam-
ples have been investigated.  

The DCNN acts as the representative of the deep learn-
ing method while the SVM and NB which are excellent 
among conventional supervised learning methods, and 
frequently used by previous works, are chosen as the repre-
sentative of conventional supervised learning methods. The 
SVM, based on Statistical Learning Theory (SLT), is one 
of the best conventional supervised learning methods. It 
performs well in solving small sample pattern recognition, 
nonlinear pattern recognition and high dimensional pattern 
recognition. The NB is a directed acyclic graph model, 
which can represent the causal dependence of attribute sets. 
Additionally, it takes full advantages of prior knowledge 
and possesses strong ability of learning and predicting. 
Although the conventional supervised learning methods 
have achieved good performance in a relative wide field, 
the process of selecting and extracting features, which 
requires domain knowledge of each problem, is quite com-
plex and difficult. Whereas the DCNN observably outper-
forms them in several applications like pattern recognition, 
image recognition and speech recognition [10–12] without 
any feature extraction process. The reason for such success 
is the ability of the DCNN to jointly learn the features and 
classification boundaries directly from raw input data. 
Furthermore, its significant characteristics including 
nonlinear, high parallelism and robustness are accounted. 
Therefore we expect to yield good results for targets 
classification problem by exploiting the DCNN. We will 
present our experimental results and brief backgrounds of 
these four methods. 

The remaining paper is organized as follows. Section 2 
illustrates experiments setup and data processing. Brief 
backgrounds on DCNN, SVM, NB and SVM-Bayes fusion 
algorithm will be described in Sec. 3. Section 4 presents 
the experiments results analysis and discussion. Section 5 
concludes the paper. 

2. Experiment Setup and Data 
Analysis 

2.1 Experiment Setup 

The experiments performed in the parking lot of the 
campus, which is shown in Fig. 1 (a), (b) and (c). While 
Figure 1(d)  shows  the equipment  and system  deployment 

 
                                   (a)                                             (b) 

 
                                   (c)                                             (d) 

Fig. 1.  Data collection setup and experiment scenario. 

of our experiments. The system, which was employed to 
collect experimental micro-Doppler signatures of targets, 
included IVS-179 radar, M2i.4912 eight-channel parallel 
data acquisition card and ACME industrial personal porta-
ble computer. The IVS-179 Doppler radar worked at 
24 GHz in the CW (continuous wave) mode without modu-
lation while the ACME data recording industrial samples at 
2 kHz. 

We collected data from four humans, four dogs, four 
bicycles, four cars and four trees respectively. During the 
process, there was no disturbance created by other objects. 

Each target moved along the line-of-sight path of the 
radar for 100 times and at each time the target moved for 
5 seconds. In the experiments, the cars started from 
approximately 100 meters in front of the radar, the bicycles 
started from approximately 40 meters in front of the radar, 
the persons and the dogs started from approximately 
20 meters in front of the radar. 

2.2 Micro-Doppler Signatures and Choice of 
Features 

According to the Doppler effect, a moving target 
relative to the wave source will cause a change 
in frequency or wavelength of a wave. Meanwhile, if the 
moving target has rotating or vibrating parts, the additional 
frequency components in addition to the main Doppler 
shift will be observed, which are called the micro-Doppler 
effect. When targets are moving, micro-Doppler will be 
generated in radar signatures which can be clearly 
observed in the joint time-frequency space [13]. Therefore, 
Short-time Fourier Transform (STFT) is exploited to 
characterize micro-Doppler signatures. 

If window function is g(t) which will slide along the 
time line, the time-domain Doppler signal is designated as 
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x(t); its STFT [14] can be expressed as  

 *
STFTx ( , ) ( ) ( )exp( j2 )dF t f x u g u t fu u




   . (1) 

In our work, we choose Gaussian window, then 
FSTFTx(t,f) can be expressed as:  

  2
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Proper time-window size and sliding step is vital in 
capturing particular features of target in Doppler domain. 
After repeated practice, we choose 0.132 s as the time-
window while the sliding step size is 1/2000 s, which is 
appropriate to recognize the micro-Doppler characteristics 
in the time-frequency domain. The spectrograms of five 
subjects are shown in Fig. 2. Since the process of DCNN 
requires a mass of data, when we employ it to deal with the 
classification problem, the data of one time was divided 
into five parts by average. The number of spectrograms for 
one target was 500, and that for each species was 2000, 
since the data was gathered from four different targets for 
one species. Furthermore, we are collecting data and ex-
panding the dataset actively for future researches and 
applications. 

As shown in Fig. 2, the five spectrograms of targets 
are different from each other. Figure 2(a) is the spectro-
gram of a moving bicycle, the strongest return comes from 
the bicycle body and torso while periodic waveforms sur-
rounding it come from limb movements and rotation of 
wheels. The spectrogram of a moving car is shown in 
Fig. 2(b), it is observed that the vibration of the car body 
and the rotation of the wheels can hardly be observed, 
since they are too weak compared with the car body reflec-
tion. Figure 2(c) is the spectrogram of a stationary tree, the 
micro-Doppler of it is caused by the waggle of leaves and 
trunk. The spectrograms of a walking dog and a walking 
person, shown in Fig. 2(d) and (e) respectively, are very 
similar. Nonetheless, the bandwidth of a person without 
micro-Doppler is smaller than that of a dog owing to the 
fact that human has a smaller motion amplitude during the 
working process. 

Features adopted in this paper are listed as follows. 

(1) Torso/body radial velocity. 

(2) Offset of total Doppler. 

(3) Total bandwidth of Doppler signal. 

(4) Bandwidth without micro-Doppler. 

It is universally acknowledged that the radial veloci-
ties of humans, bicycles, dogs, cars and trees are usually 
different. In general, cars are the fastest, followed by bicy-
cles then dogs and human, finally trees, as trees are usually 
stationary. The beat signal of the CW radar can be ex-
pressed as: 
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Fig. 2.  Sample spectrograms of different targets. (a) a moving 
bicycle, (b) a moving car, (c) a stationary tree, 
(d) a walking dog, (e) a walking person. 

Here, ϕ is phase of beat signal. λ is the wave length and R 
is the distance. Then we can get the distance term R is 
linear relationship with the phase term ϕ and the distance 
difference is linear with the phase difference. Comparing 
the unfolded phase of two data points from the same re-
ceiving channel, the distance difference between the two 
points can be derived as follows: 

 
4

D
 



 .   (4) 

Here, D is the distance difference and the radial displace-
ment and Δϕ is the phase difference. Considering the inter-
val between two adjacent points is very short, the speed of 
a target is almost constant during the interval. Then the 
radial velocity of an interval and average radial velocity 
can be expressed as: 

 s4
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where fs is the sampling frequency, n is the total number of 
intervals over a period of time. 
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It’s apparent that the offset of total Doppler, total band-
width of Doppler signal and bandwidth without micro-
Doppler of different targets are different, which can be 
observed from the spectrograms in Fig. 2. Although the 
vibration of the car body and the rotation of the wheels are 
small, these still generate the micro-Doppler signatures, 
which are clear enough to be differentiated and analyzed. 
Moreover, from Fig. 2(d) and (e), bandwidth of the dogs 
without micro-Doppler is larger than that of human since 
the dog has a greater motion amplitude than human when 
moving. Even though the energy of targets is different 
from each other in Fig. 2, it still can’t become a classifica-
tion criterion for its being affected by distance to a certain 
extent, which means it is not universal. 

3. Classifiers  

3.1 Deep Convolutional Neural Networks  

Deep Learning is used to identify new samples or pre-
dict the possibility intelligently by learning the underlying 
patterns and characteristics from existing data. It usually 
adopts deep neural network structure, which is constituted 
by interconnected neural network architecture, to extract 
hierarchical abstractions and generalization from the data. 
In recent years, deep learning has performed well in a wide 
range of fields such as image recognition and speech recog-
nition with numerous researchers’ study. 

Deep Convolutional Neural Networks (DCNN)  
[15–17], which is based on the classical convolution neural 
network, is one of the most successful deep learning algo-
rithms. It is a kind of multilayer supervising learning neural 
network. The key components of the DCNN are the convo-
lution and pooling in the hidden layer. In the feature extrac-
tion part of the network, convolution and pooling will be 
implemented alternatively. Multiple convolution filters 
work in parallel on input data to get the feature maps in 
convolutional layer followed by pooling layer. Figure 3 
shows the schematic of the convolution filter and the pool-
ing operation. The layers after feature extraction part of 
this network are full connection layers, which includes 
logistic regression classifier. The input of the full connec-
tion is the output of the last pooling layer and the output of 
the full connection is classification results. In our work, we 
choose softmax regression to classify the characteristics. 
Softmax is developed from logistic regression in order to 
solve multi-class problems. The function of softmax can be 
expressed as 
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( ) ( )( | ; )i ip y j x  represents the probability of the input  

x(i) of the ith sample  belonging to the category j. The loss 

 

Fig. 3. (a) Process of applying a 4  4 convolution filter  
to the input data to generate the output (in gray).  
(b) Examples of 2  2 pooling (max or mean pooling). 

 
Fig. 4.  A simple DCNN architecture. 

function of the softmax classifier can be expressed as 
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Then the stochastic gradient descent (SGD) is used to 
minimize the regulation of loss function J(θ) in back propa-
gation until the network converges or reaches the maxi-
mum iteration number. To prevent overfitting effectively, 
dropout is widely used. The neuron that is in the state of 
dropout won’t participate in the forward propagation nor in 
the back propagation. In this way, the neural network is 
like trying a new structure for every input sample, which 
reduces the complex interrelationship of neurons. A simple 
DCNN architecture with two convolution layers and one 
fully connected layer is shown in Fig. 4. 

3.2 Support Vector Machine  

The Support Vector Machine (SVM), a conventional 
supervised learning method based on Statistical Learning 
Theory (SLT) [18], has been shown working well in many 
areas. It’s a binary classification model, which defines the 
maximal margin hyper-plane in the feature space, followed 
by the convex quadratic programming optimization algo-
rithm [19]. When classifying targets, the hyper-plane is 
utilized to separate a given set of binary labeled training 
data. In cases where no linear separation exits, the tech-
nique of ‘kernels’ that automatically realizes a non-linear 
mapping to a feature space is introduced, which will result 
in a non-linear decision boundary in the input space.  

The jth input point xj = (x1
j,…, xn

j), labeled by the ran-
dom variable Yj  {–1, 1}, is the realization of the random 
vector XJ. ϕ(x) is the eigenvector of x after the mapping 
with the technique of ‘kernels’. In this paper we choose 
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In the feature space the corresponding decision 
function is 
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w is the maximal margin hyper-plane: 

 
1

( )
m

j i
i

i

y 


 w x .   (10) 

While αi are positive real numbers that maximize 

 
1 1

( ( ), ( ))
m m

i j i j
i i j

i ij

y y    
 

  x x   (11) 

subject to 

 
1

0,  0
m

j
i i

i

y 


  .   (12) 

The decision function can be equivalently expressed as:  
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1
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The complexity of the classifier is not related to the 
number of samples of the training set. The only influencing 
factor is the number of the supported vectors, which indi-
cates that the SVM has a simple system structure. Further-
more, the learning and forecasting process of the SVM is 
no time-consuming, which makes it very popular in pattern 
recognition, image recognition and many other fields. 

3.3 Naive Bayes 

The Naive Bayes (NB), a classification method based 
on Bayes [20], [21] theorem, has the smallest misclassifica-
tion rate when the conditional independence assumption is 
established. Although the assumption limits its application 
to some degree, in practical application, not only the com-
plexity of the Naive Bayesian model reduce exponentially, 
but also the considerable robustness and efficiency have 
been shown in many fields opposition to the assumption. 
Considering its efficient evaluation, high accuracy and 
solid theory foundation, it has been successfully applied to 
data mining tasks including classification, clustering and 
selection of models. 

Abstractly, the probability model for Naive Bayes 
classifier can be expressed as follows: For a given dataset 
T= {(x1,y1), (x2,y2),…, (xN,yN)}, firstly, the algorithm learns 
the joint probability P(X, Y) of input and output based on 
attribute conditional independence assumption. On this 
basis, for a given input X, the method figures out the out-
put Y with the maximum posterior probability using Bayes 
theorem. Naive Bayes can be equivalently expressed as: 

( ) ( )

( ) ( )

( ) ( | )
( ) arg max .

( ) ( | )k

j j
k kj

j jc
k kk j

P Y c P X x Y c
y f x
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 
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

 
 (14) 

When the input is x, choosing the category with the 
highest conditional probability as the class to be classified 
after calculating the conditional probability of all catego-
ries. Since the denominator of formula (14) is the same for 
all ck, formula (14) can be simplified as: 

( ) ( )( ) arg max ( ) ( | )
k

j j
k kjc

y f x P Y c P X x Y c     . (15) 

3.4 SVM-Bayes Fusion Algorithm 

To explore whether better results will be achieved by 
the fusion of different conventional supervised learning 
methods, A SVM-Bayes fusion algorithm has been em-
ployed to process the data. Figure 5 shows the framework 
of this algorithm. In the process of Bayesian inference, 
when there is no empirical data available, the subjective 
probability can be used to substitute the prior probability as 
well as the likelihood function of the hypothetical event.  

Assumed that there are m kinds of features extraction 
methods, n species categories, and let Θ represents the 
collections of species categories Θ = {O1, O2,…,On}. For 
an unknown sample (O  Θ) the fusion algorithm based on 
Maximum a posteriori (MAP) can be expressed as: 

   1 2 1 2( | , , , ) max ( | , , , )m m
MAP

O
P O O O O P O O O O


  . (16) 

Oi is the decision for an unknown sample of SVM using the 
ith feature extraction method. OMAP is the decision of the 
sample based on multi-feature extraction methods. 
P(OMAPO1, O2,…,Om) is joint probability density function 
of SVM based m kinds of feature extraction methods. 

Then the formula (16) can be expressed as: 

 1 2arg  max ( | , , , )m
MAP

O
O P O O O O


  .  (17) 

According to the Bayes formula in Sec. 3.3, the 
fusion algorithm can be expressed as:  
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P(O) is prior probability of O  Θ. 

The denominator of the equation is full probability 
formula which is not affected by the value of O, then it can 
be simplified as: 

  1 2arg max ( , , , | ) ( )m
MAP

O
O P O O O O P O


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Since the feature extraction methods are independent, the 
equation can be expressed as: 
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P(OiO) is the likelihood function of SVM based on the ith 
feature extraction method. As logarithm of this function is 
monotone increasing,  the logarithm on the right side of the 
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Fig. 5. The framework of the SVM-Bayes fusion algorithm.  

formula (20) can simplify the operation without affecting 
the fusion recognition decision.  

Then the equation can be expressed as: 
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arg max ln ( ) ln ( | )
m

i
MAP

O
i

O P O P O O
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
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P(O) and P(OiO) need to be confirmed. P(O) is prior 
probability, and in this case, it is assumed that each species 
has the same probability. In this case, likelihood function 
P(OiO) means that when the species is certain, the 
probability that it can be identified by SVM correctly. Its 
value can be approximated by the recognition experiment 
of training samples. 

4. Classification and Discussion 

4.1 The Classification Result of DCNN 

We employed the DCNN to the measured, experi-
mental spectrograms directly to classify targets. Then the 
targets classification problem was transformed into image 
recognition problem. 80% of the spectrograms of each 
target were used as training data and the rest were used to 
test. We employed Caffe [22], i.e., Convolutional architec-
ture for fast feature embedding, which is open-source and 
speeded up by the NVIDIA GPU and CUDA library, as the 
platform to analyze the spectrograms. The GPU we used is 
the NVIDIA Quadro M4000. 

We adopted AlexNet [23] in which there were five 
convolution layers, two fully connected layers with 4096 
hidden nodes in the first fully connected layer and an out-
put layer as shown in Fig. 6(a). The size of the input 
spectrograms of the whole AlexNet must be 256  256 and 
we used the tools of Caffe to normalize the spectrograms 
directly. The partial internal structure of the network is 
shown in Fig. 6(b) and (c). Figure 6(b) shows the first two 
convolutional layers and pooling layers while Figure 6(c) 
shows the first full connection layer. Rectified Linear Units 
(ReLU) was used as activation function and followed by 
max pooling in each layer. We fine-tuned the parameters of 
the network according to our experiments, which was rec-
orded in the configuration file of Caffe. The data of learn-
ing rate was adjusted to 0.001 because when the learning 
rate was larger the loss wouldn’t converge and when the 
learning rate was smaller the process would be time-con-
suming. In our experiments, the data of maximum iteration 

number was changed to 4000 for stable results. The learn-
ing rate was reduced to 0.001  0.9^(floor(4000/2000)) 
after every 2000 iteration, since we employed gradient 
descent method to solve the optimization problem. The 
weight decay was changed to 0.0005. The definition of the 
network for training and validation as well as the parame-
ters for every layer are recorded in a particular file. In this 
file the spectrograms were resized to 227  227, since the 
size of the input spectrograms of the first convolution layer 
must be 227  227. The batch sizes in “Train” part and 
“Test” part were adjusted to 32 and 16, respectively. Batch 
size represents the number of samples taken in each itera-
tion. The average of the gradient of these samples is used 
to update the parameters of the network. The batch size 
determines the direction of gradient descent and the effect 
and rate of convergence, as well as memory utilization. In 
the full connected layer, we adapted the learning rate of 
bias to 10  and the  learning rate of weight to 20 to speed up 
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Fig. 6.  (a) The structure diagram of AlexNet, (b) the first two 
convolution layers and pooling layers, and (c) the first 
full connection layer. 
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Fig. 7.  The feature maps: (a) the first pooling layer, (b) the 
fifth pooling layer. 
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Fig. 8.  (a) The accuracy and loss of classification process for 
5 species, (b) confusion matrix for DCNN. The x and y 
axis indicate the species of the subjects. 

the learning rate in this layer. After 4000 iterations, our 
own network was generated storing some model parame-
ters like weight according to our spectrograms. 

We assessed the performance of our own network un-
der the scenario where we recognized one species from 
five different species with every species having four differ-

ent targets. We randomly selected 100 spectrograms for 
each species from the test data to verify the stability of our 
own network, and calculated the time it took to classify one 
species. The whole process was repeated for 100 times. 
The variance of the 100 times was 0.004, which means that 
the repeated 100 times varied slightly with each other, and 
our network was very stable. 

The feature maps of the first pooling layer and the 
fifth pooling layer are shown in Fig. 7. Compared with (a) 
in Fig. 7, (b) is already a little abstract for us to obtain the 
physical insights into our case. In the future, we plan to 
study the learned features of the DCNN, which will help us 
get better insights. Figure 8(a) shows the accuracy as well 
as the loss of training and testing process for the species 
classification process. The loss showed is the value of the 
loss function in formula (8). As it converges to a number 
tending to zero, the network doesn’t overfit. Figure 8(b) 
shows the confusion matrices of a random time for classifi-
cation results of the DCNN. Since the results of the re-
peated 100 times varied slightly, result of one time could 
represent the accuracy to some extent. The average accu-
racy is 99.4%, which shows that one species can be classi-
fied from five species with high possibility. 

4.2 The Classification Result of SVM, NB and 
SVM-Bayes 

The SVM and NB, two typical conventional super-
vised learning methods, were applied to the extracted fea-
tures respectively for the targets classification problem. 
The amount of data required in this part is relatively small 
compared with that utilized in the DCNN, which is one of 
the advantages of conventional supervised learning meth-
ods. Figure 9 is a 3D graph showing the estimated values 
of the features. It seems like that the features of bicycles, 
cars and trees are far from each other while the features of 
the dog and humans mixed together. This indicates that it’s 
promising for the classification of bicycles, cars and trees 
but difficult to classify human and dog. Figure 10(a), (b) 
show the confusion matrices of SVM and NB, respectively. 
The average accuracy of SVM is higher than that of NB, 
which is 94.4% and 91%, respectively. Though both of 
them are satisfying, they both make misclassification of the 
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Fig. 9.  Scatter plot of three features. 
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Fig. 10.  (a) Confusion matrix for SVM. (b) Confusion matrix 
for NB. (c) Confusion matrix for SVM-Bayes fusion. 
The x and y axis indicate the species of the subjects. 

persons and the dogs with a relatively higher probability 
compared with the DCNN. 

Regarding to the results of SVM-Bayes fusion algo-
rithm, two different set of features have been utilized, the 
features that we employed in Sec. 2.2 worked as the first 
set of features. The second features set we chose were 
Principal Component Analysis (PCA) based features.  

We chose three features extracted from PCA on spec-
trograms. The first feature referred to as the latent feature 
was the principal component variance of the covariance 
matrix. While the second feature was Hotelling’s T-
squared statics, which is “a statistical measure of the multi-
variate distance of each observation from the center of data 
set.” The third feature, “explained”, represents the percent-
age of how much the variance explains. The top five values 
of each vector were taken. Figure 10(c) shows the confu-
sion matrices of SVM-Bayes fusion. Table 1 compares the 
results of the four algorithms. The accuracy of SVM-Bayes 
fusion is higher than that of SVM and NB but lower than 
that of DCNN. It means fusion of different conventional 
supervised learning methods may lead to better results with 

 

Methods Accuracy 
DCNN 99.4% 
SVM 94.4% 
NB 91% 

SVM-Bayes 95.8% 

Tab. 1.  Comparison between the results of DCNN, SVM, NB 
and SVM-Bayes. 

constant optimization like using different fusion operation, 
different feature extracted methods or different classifica-
tion methods. However, these methods rely severely on the 
extracted features which means different features will lead 
to different results, and require domain knowledge of each 
problem. Furthermore, the process of choosing and extract-
ing features is very complex. These factors limit their use 
by people who are not familiar with related fields. How-
ever none of them is a problem for DCNN, which means 
DCNN is easier to be used widely in real life. 

4.3 Effect of Noise 

In this sub-part, the anti-noise performances of the 
four algorithms have been studied respectively. In detect-
ing the anti-noise performance of the DCNN, our own 
network was employed. We added different grade (SNR = 
29 dB30 dB, 20 dB21 dB, 15 dB16 dB, 10 dB11 dB, 
0 dB1 dB) of random noise to the echo respectively. For 
example, we added random noise (SNR = 0 dB1 dB) to 
the raw signals that we collected in Sec. 2. And after that, 
we randomly chose 100 spectrograms of each target at each 
noise grade to test the noise immunity of the algorithm. For 
each noise grade, the whole process was repeated for 100 
times, and the average accuracy was taken as the final 
result. As for detecting the anti-noise performance of the 
SVM, NB and SVM-Bayes fusion algorithm, we also 
added different grades SNR = 29 dB30 dB, 20 dB21 dB, 
15 dB16 dB, 10 dB11 dB, 0 dB1 dB of random noise 
to the signals that we collected in Sec. 2 respectively, fol-
lowed by features extraction.  

The classification results are shown in Fig. 11. It’s 
obviously that the classification performance of the four 
methods can be compromised when the noise increases. 
The accuracy of the DCNN, however, decreases very slowly 

 
Fig. 11.  The impact of noise of the four classification 

algorithm. 
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considering the degree of noise increasing, which demon-
strates that the algorithm has good anti-noise performance. 
The noise immunity of the SVM-Bayes fusion algorithm is 
similar to but better than that of SVM, and both are better 
than that of Naive Bayes. Whereas the performance of the 
three algorithms cannot compare with that of the DCNN.  

4.4 Discussion of Computational Time and 
Decrease of Samples 

It took about 15 minutes to train the network, and 
after that our own network was generated, however, it only 
took about 0.391 s to classify one spectrogram, meaning 
that the trained network could be used in real-time moni-
toring as the time it took to classify one spectrogram was 
so short. Regarding to the time for the other three classifi-
ers, it took about 5.567 s for SVM-Bayes fusion algorithm, 
1.895 s for SVM and 1.592 s for NB to complete the whole 
classification progress based on extracted features. 

Although the time it took to train the network was far 
more than that used by the other three algorithms to clas-
sify species, the time it took to classify one spectrogram by 
the trained network was very short, and the accuracy was 
particularly high. Meanwhile, the progress of selecting as 
well as extracting features were very complicated and time-
consuming, which definitely extended the total time for 
conventional  supervised  learning  methods.  As  for  which 
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Fig. 12. Impact of decrease of samples. (a)  Sample size is 1000, 
(b) sample size is 500. 

method is better, it depends on the amount of the data, the 
accuracy and the computational speed that are required. If 
the volume of the data is large, and is constantly updated 
and expanded, the DCNN is more suitable. Under this 
circumstance, a database needs to be set up, and the param-
eters of the network need to be updated along with update 
of the data. However, if the volume of data is very limited, 
and the accuracy doesn’t need to be very high, conven-
tional supervised learning methods will be better. 

It is well known that the sample size DCNN needing 
is very large. If the sample size is insufficient, the basic 
image transformation methods including translation, rota-
tion, zoom, mirroring and cropping will be applied to the 
spectrograms to augment the dataset, as the basic nature of 
the images won’t be altered by these transformations, 
which means the classification results won’t be influenced. 
To study the performance of the method when the sample 
sizes are reduced, two circumstances have been taken in to 
consideration, where sample size for every species is 1000 
and 500, respectively. Then the basic image transformation 
methods are used to augment the dataset to 2000 for both 
situations. Figure 12 shows the results of the two circum-
stances. The accuracy decreases with the samples size 
reduced, though we augmented the dataset. It is inevitable, 
since some features have not been learned. So more re-
searches need to be done to optimize the frame of the net-
work reducing its severe dependence on big data. 

5. Conclusion 
In this paper, we classify ground targets based on mi-

cro-Doppler signatures using the DCNN, SVM, NB and 
SVM-Bayes fusion algorithm as well as studying several 
factors that will affect results including SNR, decrease of 
samples. By using the four methods, targets can be classi-
fied successfully. To be specific, the average accuracy is 
about 99.4% for the DCNN, 94.4% for the SVM, 91% for 
the NB and 95.8% for the SVM-Bayes algorithm, indicat-
ing that the DCNN performs the best in targets classifica-
tion. In addition, when it comes to noise immunity of the 
algorithms, the DCNN also performs better than the other 
three methods.  

Though the accuracy of the DCNN is high, the 
amount of data that it needs is relatively large, while con-
ventional supervised learning methods can get a satisfying 
accuracy with a small dataset. However, the conventional 
supervised learning methods relying on the extracted fea-
tures require domain knowledge of each problem. Further-
more, their development tends to be saturated, and they 
have low flexibility. Oppositely, none of them is a problem 
for the DCNN, which shows the potential of the DCNN for 
targets classification problems based on radar micro-Dop-
pler signatures. 

In the future, further researches will be done for the 
purpose of promoting the classification performance. First, 
the condition we considered in the experiments, where the 
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targets moved along the line-of-sight path of the radar, is 
simple compared with realistic moving pattern. In the fu-
ture, we will do further researches about non-LOS scenar-
ios. Second, in our experiments one species is classified 
from a group of five species. To apply our system to the 
practical conditions we also need to expand the maximum 
number of species. In addition, the optimization for the 
frame of the network also lies in our future research plan. 
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