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Abstract. In the resampling procedure of traditional box
particle filtering, selected box particles are divided in a ran-
domly chosen dimension. This resampling procedure may
fail when some elements in the target state vector are unmea-
sured. To deal with this problem, an improved resampling
method for box particle filtering is proposed, where limits
on the sizes of box particles are imposed to restrain the box
particles from growing too large. In addition, we extend the
inclusion and the volume criteria from single-target tracking
to multi-target tracking. Instead of indicating whether the
true target state is included in the support of the posterior
track probability density in single target tracking, the inclu-
sion value in multi-target tracking indicates how many true
targets are included in the supports of the posterior probabil-
ity densities. And the volume value in multi-target tracking
is redefined as the mean volume of the supports of the poste-
rior probability densities. Simulation results are provided to
illustrate the effectiveness of the proposed approach.

Keywords
Box particle filter, multi-target tracking, resampling, in-
clusion and volume, labeled multi-Bernoulli filter

1. Introduction
The problem of multi-target tracking is the on-line re-

cursive estimation of an unknown and time-varying number
of targets, their states and trajectories. Recently, the ran-
dom finite set (RFS) approach [1] attracts much attention
because it casts multi-target tracking into a Bayesian frame-
work. The propagation of the multi-target state cannot be im-
plemented directly due to prohibitive numerical complexity.
Therefore, feasible approximations of the Bayes multi-target
filter have been developed, including the probability hypoth-
esis density (PHD) [2], [3], cardinalized PHD (CPHD) [4],
multi-target multi-Bernoulli (MeMBer) [1], cardinality-
balanced MeMBer (CBMeMBer) [5], [6], δ-generalized la-

beled multi-Bernoulli (δ-GLMB) [8], [7], and labeled multi-
Bernoulli (LMB) [9], [10] filters. In this paper, the LMB
filter is adopted as the basic framework for tracking.

Though the aforementioned filters are numerically less
complex, they still involve multiple integrals without closed-
form expressions. To address this problem, two main
implementation methods are developed: Gaussian mix-
ture (GM) [11], and sequential Monte Carlo (SMC) or par-
ticle filter (PF) [12]. The GM method is suitable for lin-
ear Gaussian dynamic and measurement models, whereas
the SMC\PF method is suitable for nonlinear non-Gaussian
scenarios. The GM method assumes precise point measure-
ments affected by additive measurement noises of a Gaussian
probability density function (pdf). However, many practical
applications involve not only nonlinear non-Gaussian mod-
els, but also imprecise stochastic measurements with un-
known biases and error distributions. Though the SMC\PF
method can be used to handle such situations, it requires
a large number of particles to achieve satisfactory perfor-
mance. As a result, it can be so time-consuming that real-time
implementation is hardly achievable.

In recent years, box particle filter (BPF) [13–16],
an emerging implementation method for RFS-based filters,
is gaining in popularity because it accommodates imprecise
stochastic measurements with unknown biases and error dis-
tributions. A box particle is a vector comprised of intervals.
The average computation cost per box particle is higher than
that per point particle. Nevertheless, to achieve a similar level
of performance, the BPF requires less computation power
than the PF does, because the number of particles used by
the BPF is much smaller than that used by the PF.

For the PF resampling, particles with large weights are
replicated [12], while for the traditional BPF resampling,
boxes with large weights are divided into sub-boxes as many
times as they are selected [13]. The dimension in which the
selected boxes are divided is chosen randomly. This method
is only suitable for the situations where all elements in the
target state vector are measured. Because in such situations
intervals in all dimensions of a box particle can be contracted

DOI: 10.13164/re.2018.0846 SIGNALS



RADIOENGINEERING, VOL. 27, NO. 3, SEPTEMBER 2018 847

by the measurements. So the choice of dimension is insignif-
icant and thus can be random. However, this method may fail
in situations where some elements in the target state vector
are unmeasured. To deal with this problem, an improved re-
sampling method for the BPF is proposed. A new parameter
called box resolution vector is defined to set an upper limit to
the interval width in every dimension of every box particle
after resampling. Another contribution of this paper is that
the inclusion and volume criteria [13] initially defined for
single-target tracking are extended for multi-target tracking.
We propose that the inclusion value for multi-target tracking
indicate how many true targets are included in the supports
of the posterior track pdfs, and that the volume value for
multi-target tracking be redefined as the mean volume of the
supports of the posterior track pdfs.

The paper is organized as follows. Background on LMB
filter and interval analysis is presented in Sec. 2. Section 3
presents the proposed approach. Section 4 outlines BPF-
LMB and PF-LMB implementations using the proposed ap-
proach. Section 5 presents a numerical example to examine
the effect of the proposed resampling procedure. Conclu-
sions are drawn in Sec. 6.

2. Background
This section summarizes the LMB filter and interval

analysis [7–9, 17].

2.1 LMB Filter
A labeled RFS [8] is a finite-set-valued random vari-

able, where each state x ∈ X is coupled with a unique label
` ∈ L. Here X denotes the target state space and L denotes
the finite label space.

1) LMB Filter Prediction: Suppose that the multi-
target posterior density and birth model are both LMB
RFSs with parameter sets π = {r (`), p(`) : ` ∈ L} and
πγ = {r

(`)
γ , p(`)γ : ` ∈ B}, respectively, where B denotes

the birth label space. Then the multi-target predicted density
is characterized by the parameter set

π+ = {r
(`)
S , p(`)S : ` ∈ L} ∪ {r (`)γ , p(`)γ : ` ∈ B} (1)

where
r (`)S = r (`)〈Ps(·, `), p(·, `)〉, (2)

p(`)S (x) =
〈Ps(·, `) f (x |·, `), p(·, `)〉
〈Ps(·, `), p(·, `)〉

, (3)

〈 f , g〉 ,
∫

f (x)g(x)dx denotes the standard inner product,
Ps(x, `) is the state dependent survival probability, f (x |x ′, `)
is the single-target transition density for track `.

2) LMB Filter Update: Suppose that the multi-
target predicted density is an LMB RFS with parameter set
π+ = {r

(`)
+ , p(`)+ : ` ∈ L+}. Then the updated parameter set

is πZ = {r (`), p(`) : ` ∈ L+}, where

r (`) =
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+ (`), (4)

p(`)(x) =
1

r (`)
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+ (`)p
(θ)(x, ` |Z),

(5)

w(I+,θ)(Z) ∝
∏
`∈L+

(1 − r (`)+ )
∏

`∈I+∩L+

1L+ (`)r
(`)
+

1 − r (`)+

×
∏̀
∈I+

〈p+(·, `), ψZ (·, `; θ)〉,
(6)

p(θ)(x, ` |Z) =
p+(x, `)ψZ (x, `; θ)
〈p+(·, `), ψZ (·, `; θ)〉

, (7)

ψZ (x, `; θ) =

{
Pd(x,`)g(zθ (`) |x,`)

κ(zθ (`))
if θ(`) > 0

1 − Pd(x, `) if θ(`) = 0
, (8)

F (L+) denotes the class of finite subsets of L+, ΘI+ is
the space of mappings θ : I+ → {0, 1, · · · , |Z |} with
θ (i) = θ (i′) > 0 implying i = i′, Pd(x, `) is the state de-
pendent detection probability, g(z |x, `) is the single-target
measurement likelihood, and κ(z) is the clutter intensity.

2.2 Interval Analysis
A real interval [x] ∈ IR is defined as [x] , [x, x] =

{x ∈ R : x ≤ x ≤ x}, where IR is the class of closed
and connected subsets of the set R of real numbers, x and
x denote its lower and upper bounds respectively. The
width of [x] is w ([x]) , x − x. The center of [x] is
c ([x]) ,

(
x + x

)
/2. An n-dimensional real interval vector or

a box [x] = ([x1], · · · , [xn])T is the Cartesian product of n real
intervals. Its width and center are w ([x]) , max

1≤i≤n
w ([xi])

and c ([x]) , (c ([x1]) , · · · , c ([xn]))T . In addition, the size of
a box [x] is |[x]| ,

∏n
i=1 w ([xi]). Elementary arithmetic and

set operations for real intervals and boxes are summarized
in [17], [18].

1) Inclusion Function: Consider a function f from Rn
to Rm. The interval function [ f ] from IRn to IRm is an inclu-
sion function for f , if f ([x]) ⊂ [ f ] ([x]), for any [x] ∈ IRn.
Inclusion functions may result in bounding boxes larger than
necessary [16], as shown in Fig. 1.

Fig. 1. Image of a 2-dimensional box by a function f and two of
its inclusion functions [ f ] and [ f ]∗. [ f ]∗ is minimal.
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Consider a function h fromRn toR expressed as a finite
composition of the operators +,−, ∗, / and elementary func-
tions (sin, cos, exp, sqrt, etc.). Its natural inclusion function
[h] from IRn to IR is obtained by replacing each real variable
xi , i = 1, · · · , n, with an interval variable [xi] and each oper-
ator or function with its interval counterpart. If each of the
variables xi , i = 1, · · · , n, occurs at most once in the formal
expression of h, then [h] is minimal.

2) Contraction: Consider n real variables xi ∈ R,
i = 1, · · · , n, and m functions gj from Rn to R, j = 1, · · · ,m.
Denotes x = (x1, · · · , xn)T and G = (g1, · · · , gm)

T. A con-
straint satisfaction problem (CSP) H is formulated as H :
(G (x) = 0, x ∈ [x]) . And the solution set ofH is defined as
S = {x ∈ [x]|G (x) = 0}. A contraction of H means re-
placing [x] by a smaller box [x]′ such that S ⊆ [x]′ ⊆ [x].
Contraction is used in the definition of likelihood functions
and the update step. Existing methods for building con-
tractors, such as the Gauss elimination, Gauss-Seidel algo-
rithms, linear programming and constraint propagation (CP),
are elaborated in [17]. In this paper, the CP technique is
adopted.

3. Proposed Approach

3.1 Improved Resampling
For situations where not all elements in the target state

vector can be measured, assume that a prior for the unmea-
sured elements is available. We propose to contract the mea-
sured elements of a box particle by the measurements and
the unmeasured elements by the support of the prior, which
may result in different levels of uncertainty in different di-
mensions of the box particle. So instead of being random,
the choice of the dimension for the division of boxes to take
place is proposed to be based on calculation and a new step
is added to the traditional box particle resampling procedure,
as is explained as follows.

We define a box resolution vector % ∈ Rn as % ,
(ρ1, · · · , ρn)

T, where ρj , j = 1, · · · , n, are user specified
and application dependent and stand for an upper limit to
the interval widths in the jth dimension of all box particles
after resampling. % has the same dimensionality and units as
a single-target state vector does.

Step 1: Suppose that we are to resample J1 box par-
ticles from the set {w̃i, [x̃i]}Ji=1. If a box particle [x̃i] =
([x̃i1], · · · , [x̃in])T is selected ci times, then [x̃i] is divided in
the dith dimension into ci smaller boxes, where di is calcu-
lated as:

di = arg max
1≤ j≤n

(
w

(
[x̃i j]

)
ρj

)
. (9)

After dividing all boxes [x̃i], i = 1, · · · , J, and renor-
malizing their weights, we have a new set of box parti-
cles {w′

k
, [x ′

k
]}

J1
k=1, where w′

k
= 1/J1. In practice, [x ′

k
],

k = 1, · · · , J1, can still be too large in size, whichmeans great

uncertainty. So a new step to redivide [x ′
k
], k = 1, · · · , J1,

is added to the traditional box particle resampling procedure
to reduce the uncertainty each box represents. And the new
step is explained below.

Step 2: To redivide [x ′
k
] =

(
[x′

k1], · · · , [x
′
kn
]

)T
, k =

1, · · · , J1, we calculate ak = (ak1, · · · , akn)T, where

ak j =


w

(
[x′

k j
]

)
ρj

 , j = 1, · · · , n, (10)

and dxe denotes the ceiling of x.

Next, divide [x ′
k
] in the first dimension into a set of

ak1 boxes and denote the resulting set of boxes as Ξk ={
[x(1)

k
], · · · , [x(ak1)

k
]

}
. Similarly, divide each box in Ξk in

the second dimension into ak2 boxes, then we have a re-
newed set of ak1ak2 boxes as Ξk =

{
[x(1)

k
], · · · , [x(ak1ak2)

k
]

}
.

Continue this operation in each of the remaining dimensions
sequentially. And finally, [x ′

k
] is divided into Ak =

∏n
j=1 ak j

smaller boxes inΞk =
{
[x(1)

k
], · · · , [x(Ak )

k
]

}
with equal weight

1/(J1 Ak).

After all [x ′
k
], k = 1, · · · , J1, have been redivided in this

way, the set of resampled box particles is obtained as

{wl, [xl]}
J2
l=1 =

J1⋃
k=1

{
1

J1 Ak
,Ξk

}
. (11)

Hereafter, the proposed box particle resampling proce-
dure is refered to as planned division resampling (PDR), on
the other hand the resampling procedure in [13] is refered to
as random division resampling (RDR).

3.2 Extended Inclusion and Volume Criteira
As is proposed in [13], the inclusion value for single-

target tracking measures if the true target state is contained
in the support of the posterior pdf p(x). And the volume
value measures the spread of particles that approximate p(x).
We propose that the inclusion value for multi-target tracking
indicate howmany true targets are included in the supports of
the posterior pdfs, and that the volume value for multi-target
tracking be redefined as the mean volume of the supports of
the posterior pdfs.

To compute the inclusion value, first we define τ(`)t as
an indicator function showing whether or not the true target
state x∗t is contained in the support of posterior pdf p(`)(x):

τ
(`)
t ,

{
1, if x∗t ∈ C(`)(α)
0, otherwise

, t = 1, · · · ,T and ` ∈ L (12)

where C(`)(α) is a credible set [13] with α � 1 satisfying

P(C(`)(α)) =
∫
C(`)(α)

p(`)(x)dx = 1 − α.

The computation of τ(`)t is given in Appendix 1.
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Note that in multi-target tracking one true target state
may be contained in the supports of multiple posterior pdfs
and that one posterior pdf may have multiple true target states
contained in its support. We propose that the inclusion value
for multi-target tracking be the number of one-to-one assign-
ments between the true target states x∗t , t = 1, · · · ,T , and
posterior pdfs p(`)(x), ` ∈ L. The meaning of a one-to-
one assignment is threefold: a) x∗t is assigned to p(`)(x) if
x∗t is included in the support of p(`)(x); b) Once x∗t is as-
signed to p(`)(x), it cannot be assigned to another posterior
pdf p(`

′)(x), `′ , `, even though it may be included in the
supports of both pdfs; c) Once p(`)(x) is assigned to x∗t , it
cannot be assigned to another true target state x∗t′, t

′ , t, even
though it may contain both true target states in its support.
It is unnecessary to know exactly which target is assigned to
which pdf. Only the number of assignments matters here.
Therefore, a simple way to compute the inclusion value ρ is

ρ = min
{
nα, nβ

}
(13)

where nα is the number of nonzero αt =
∑
`∈L τ

(`)
t , t =

1, · · · ,T , and nβ is the number of nonzero β(`) =∑T
t=1 τ

(`)
t , ` ∈ L. Moreover, αt can be interpreted as the

number of posterior pdfs that have x∗t in their supports and
β(`) as the number of true target states that are in the support
of p(`)(x).

Suppose that the volume of p(`)(x) is given as ν(`), then
volume value for multi-target tracking is computed by

ν =
1
|L|

∑̀
∈L

ν(`) (14)

where |L| is the cardinality of the label space L. The compu-
tation of ν(`) is given in Appendix 1

4. Implementations
The implementations are based on the following as-

sumptions.

A.1. The sensor provides biased1 box measurements
[z] ∈ IZ, where IZ denotes the set of closed and connected
subsets of the point measurement space Z.

A.2. The survival probability Ps and detection proba-
bility Pd are state independent.

A.3. In PF, the measurement noise v is modeled as
zero mean white Gaussian. Assume that the stochastic un-
certainty due to v is small so that p(v) can be approximated
by p(v) ≈ U[ε](v) in BPF, where [ε] is the measurement noise
support.

4.1 BPF-LMB Implementation
1) Prediction: Suppose that the posterior and birth

parameter sets are given as π = {r (`), p(`) : ` ∈ L} and

πγ = {r
(`)
γ , p(`)γ : ` ∈ B}, respectively. According to (2)-(3),

r (`)S = r (`)Ps, p(`)S = 〈 f (x |·, `) , p (·, `)〉. In BPF, suppose
that p(`)(x) is approximated by a set of weighted box parti-
cles {w(`)i , [x(`)i ]}

J (`)

i=1 . Then p(`)S (x) can be approximated by
{w
(`)
S,i
, [x(`)

S,i
]}J

(`)

i=1 , where

[x(`)S,i ] = [ f ]([x
(`)
i ]) + [u], (15)

w
(`)
S,i = w

(`)
i , [ f ]([x]) is the natural inclusion function for

the transition function f (x), and [u] is the bounded process
noise. In this paper, p(`)γ (x) is approximated by a uniform pdf,
i.e. p(`)γ (x) = U

[x
(`)
γ ]
(x), where [x(`)γ ] is the box representing

a region in the state space where new targets may appear.

2) Update: Suppose that the predicted parameter set
is given as π+ = {r (`)+ , p(`)+ : ` ∈ L+}, where p(`)+ (x) is ap-
proximated by {w(`)

+,i, [x
(`)
+,i]}

J
(`)
+

i=1 . Then p(θ) (x, ` |Z) in (7) can

be approximated by {w(`,θ)U,i , [x
(`,θ)
U,i ]}

J
(`)
+

i=1 , where

[x(`,θ)U,i ] =

{
[hCP]

(
[x(`)
+,i], [zθ(`)]

)
if θ(`) > 0

[x(`)
+,i] if θ(`) = 0

,

w
(`,θ)
U,i =

w
(`)
+,iψZ

(
[x(`)
+,i], `; θ

)
J
(`)
+∑
i=1

w
(`)
+,iψZ

(
[x(`)
+,i], `; θ

) ,

ψZ

(
[x(`)
+,i], `; θ

)
=


g
(
[zθ (`)] |[x

(`)
+, i ],`

)
Pd

κ([zθ (`)])
if θ(`) > 0

1 − Pd if θ(`) = 0
,

[hCP] ([x], [z]) is a function that returns a contracted version
of [x] under the constraints given by the measurement func-
tion z = h(x), g

(
[zθ(`)]|[x

(`)
+,i], `

)
=

���[x(`,θ)U,i ]

��� /���[x(`)+,i]��� is the
measurement likelihood for box measurements conditioned
on box particles [13]. The rest of the computations for (4)–(8)
are the same as in [9].

3) Resampling, Pruning and Estimation: Suppose
the updated parameter set is given as π = {r (`), p(`) : ` ∈ L}
with p(`)(x) approximated by {w(`)i , [x(`)i ]}

J (`)

i=1 . The proposed
resampling method has been explained in Sec. 3.1. In PDR,
we resample J(`)1 = r (`)Jmax1 boxes for each updated track
in Step 1, where Jmax1 is the maximum number of boxes per
track after Step 1. In RDR, we resample J(`) = r (`)Jmax2
boxes for each updated track, where Jmax2 is the maximum
number of boxes per track after the whole resampling. Note
that if Jmax1 = Jmax2, then the number of boxes per track
after PDR is larger than that after RDR due to the redivision
of boxes in Step 2 of PDR. After resampling, tracks with
an existence probability r (`) lower than a specific threshold
are pruned. Box estimates of the target states are extracted
in the same way as in [9], then we take the centers of the box
estimates as the output point estimates.

1A box measurement is biased in the sense that the target originated point measurement are not at the center of the corresponding box measurement.
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4.2 PF-LMB Implementation
1) Prediction: Suppose that the posterior and the

birth parameter sets are given as π = {r (`), p(`) : ` ∈ L} and
πγ = {r

(`)
γ , p(`)γ : ` ∈ B}, respectively. According to (2)-(3),

r (`)S = r (`)Ps, p(`)S = 〈 f (x |·, `) , p (·, `)〉. The sets of weighted

particles {w(`)S,i, x(`)S,i }
J (`)

i=1 and {w(`)γ,i, x(`)γ,i }
J
(`)
γ

i=1 that respectively
approximate p(`)S (x) and p(`)γ (x) can be obtained in the same
way as those in [9].

2) Update: Given box measurements, g
(
zθ(`) |x, `

)
in (8) should be replaced by g

(
[zθ(`)]|x, `

)
and κ

(
zθ(`)

)
by

κ
(
[zθ(`)]

)
[13]. g

(
[zθ(`)]|x, `

)
and κ

(
[zθ(`)]

)
are computed

as follows:

g
(
[zθ(`)]|x, `

)
= ϕ(h(x); zθ(`), R) − ϕ(h(x); zθ(`), R),

κ
(
[zθ(`)]

)
=

∫
[zθ (`)]

κ
(
zθ(`)

)
dzθ(`)

where ϕ(x; µ, Σ) denotes a Gaussian cumulative distribution
with mean µ and covariance Σ. The rest of the computations
for (4)–(8) is the same as in [9].

3) Resampling, Pruning and Estimation: Suppose
the updated parameter set is given as π = {r (`), p(`) : ` ∈ L}
with p(`)(x) approximated by {w(`)i , x(`)i }

J (`)

i=1 . For simplicity,
the multinomial resampling method is used in this paper. We
resample J(`) = r (`)Jmax particles for each updated track,
where Jmax is the maximum number of particles per track af-
ter resampling. Tracks with r (`) lower than a specific thresh-
old are pruned. Estimates of the target states are obtained in
the same way as in [9].

5. Numerical Examples
In this section, we first present the simulated sce-

nario. Then we examine the performances of PDR-BPF-
LMB, RDR-BPF-LMB and PF-LMB. We show that in the
scenario considered PDR-BPF-LMB is better than the RDR-
BPF-LMB, and that to achieve a similar level of performance,
PDR-BPF-LMB is more time efficient than the PF-LMB. In
this paper, we use cardinality statistics, the proposed extended
inclusion and volume, and OSPA distance [20] to measure
the performance of a multi-target tracking filter.

Consider a non-linear multi-target tracking scenario
with a maximum of six targets appearing on the scene using
range and bearings measurements. The number of targets
varies in time due to births and deaths, and observations are
subject to missed detections and clutter. The true trajecto-
ries are shown by different colors in Fig. 2 along with the
start and stop positions of each track. The initial states, birth
times and death times of the true trajectories are given in
Tab. 1. The sensor is placed at the origin. The target state

xk =
(
x̃T
k
, ωk

)T
is composed of the position and velocity

vector x̃k =
(
px,k, Ûpx,k, py,k, Ûpy,k

)T and the turn rate ωk .

Fig. 2. Target tracks in the rθ plane. Start/Stop positions for
each track are shown with ◦/4.

Targets Initial States Birth Times Death Times

Magenta (0, 0, 1000, 10, π/180)T 1 100

Black (0, 0, 1000,−10, π/270)T 2 100

Green (0, 10, 1000, 0, π/720)T 3 100

Blue (0,−10, 1000, 0, π/360)T 4 100

Cyan (−1000, 10, 1500,−20, 0)T 10 80

Red (1200,−30, 250, 20, π/180)T 20 90

Tab. 1. The initial states, birth times and death times of the true
trajectories.

A nearly constant turn model is considered. The state
transition model for the PF is

x̃k = F (ωk−1) x̃k−1 + Guk−1, (16)

ωk = ωk−1 +$k−1 (17)

where

F(ω) =
©«
1 sinωTs

ω 0 −
1−cosωTs

ω
0 cosωTs 0 − sinωTs
0 1−cosωTs

ω 1 sinωTs
ω

0 sinωTs 0 cosωTs

ª®®®¬ ,G =
©«
T 2
s
2 0

Ts 0
0 T 2

s
2

0 Ts

ª®®®®¬
where p(uk−1) = N(uk−1; 0, σ2

u I2) with I2 the identity ma-
trix of size 2, p($k−1) = N($k−1; 0, σ2

$). Parameters of
the transition model are given in Tab. 2. The survival and
detection probabilities are Ps = 0.99 and Pd = 0.95.

The state transition model for the BPF is

[x̃k] = F ([ωk−1]) [x̃k−1] + G[uk−1], (18)

[ωk] = [ωk−1] (19)

where [uk−1] = ([−3σu, 3σu], [−3σu, 3σu])
T, [ωk−1] =

[−3σ$, 3σ$].

The measurement function is given by

h(xk) =

(
arctan(px,k/py,k)√

p2
x,k
+ p2

y,k

)
. (20)

The measurement noise vk is zero mean white Gaussian
with a covariance Rk = diag((σ2

θ , σ
2
r )

T). The parameters
σθ and σr are given in Tab. 2. The sensor returns inter-
val measurements with an interval length ∆ = (∆θ,∆r)T,
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where ∆θ = π/90 rad is the length of bearing interval and
∆r = 60m is the length of range interval. Thus a biased
interval measurement at time k is defined as:

[zk] = [h(xk) + vk − 0.9∆, h(xk) + vk + 0.1∆] .

The birth process is modeled by a multi-Bernoulli
RFS with density parameters πγ = {r

(i)
γ , p(i)γ }3i=1, where

p(i)γ (x) = N(x; m(i)γ , Pγ). Parameters of the birth process are
given in Tab. 3. Clutter is modeled as a Poisson RFS with in-
tensity κk(z) = λcU(z)/V , where λc = 1.6 × 10−3 (radm)−1,
U(z) is a uniformdensity on the region [0, π] rad×[0, 2000]m
and V =

∫
U(z)dz. In BPF, κk([z]) =

∫
[z]
κk(z)dz. For the

scenario considered, the resolution vector for the position and
velocity vector x̃T

k
is % = (200, 120, 200, 120)T.

The MATLAB code for the PF-LMB filter is from Ba-
Ngu Vo’s website2. Note that no dynamic grouping or adap-
tive birth is implemented in this code, only the standard
filter with static birth is considered. The implementation of
the BPF-LMB involves the using of INTLAB toolbox [19],
which provides users with built-in functions for interval cal-
culations.

As is suggested by the scenario setting, the sensor re-
turns no range rate measurements. Therefore, the velocities
of a target state cannot be measured by the sensor, nor can
they be directly contracted by the measurements. Assume
that the target velocities vary within the range [-60,60]m/s.
We use the measurements to contract the target positions and
the assumed velocity range to contract target velocities. And
the constraint propagation algorithm for target position and
velocity vector [x̃k] is given in Tab. 4.

Figure 3 and 4 present the performance of the PDR-
BPF-LMB for a single sample run. Different tracks are plot-
ted in different colors. It can be seen that the estimates of
individual target states are accurate in general, though a few
outliers exist because of the high degree of ambiguity in-
volved in interval calculations. No track label switching
is observed in this sample run, but dropped or false tracks
occur as expected. However, label switching does happen
occasionally during target crossings due to process noise. In
addition, it can also be seen in Fig. 3 that the farther the box
measurements are from the sensor, the larger they are. This
is due to the fact that corresponding to the same length of
angle interval, the farther a circular arc is from the center,
the longer it is. Less deviation from the ground truth is ob-
served for the estimates of the trajectories that are closer to
the origin, where the sensor is located, because the box parti-
cles representing those trajectories are contracted by smaller
boxes and smaller boxes embody less uncertainty.

Parameters Ts σu σ$ σθ σr
Units s m/s2 rad/s rad m
Values 1 5 π/180 π/600 10

Tab. 2. Parameters of the transition and the measurement mod-
els.

Parameters Values
r(1)γ 0.02
m(1)γ (1200, 0, 250, 0, 0)T

r(2)γ 0.02
m(2)γ (−1000, 0, 1500, 0, 0)T

r(3)γ 0.03
m(3)γ (0, 0, 1000, 0, 0)T

Pγ diag((50, 20, 50, 20, π/180)T )2

Tab. 3. Parameters of the birth process.

Input: [x] = ([px], [ Ûpx], [py], [ Ûpy])
[z] = ([θ], [r])

[px] = [px]
⋂√
[r]2 − [py]2

[py] = [py]
⋂√
[r]2 − [px]2

[px] = [px]
⋂
[py] · tan([θ])

[py] = [py]
⋂ [px ]

tan([θ])
[ Ûpx] = [ Ûpx] ∩ [−60, 60]
[ Ûpy] = [ Ûpy] ∩ [−60, 60]
Output: [x] = ([px], [ Ûpx], [py], [ Ûpy])

Tab. 4. Constraint propogation algorithm.

Fig. 3. The tracking result of a single sample run. Box measure-
ments of target positions and clutter are shown as green
rectangles, while estimates of targets are circles of other
colors.

Fig. 4. Estimates and tracks for x and y coordinates versus time.

2http://ba-ngu.vo-au.com/links.html
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Fig. 5. Cardinality statistics for the (a) PDR-BPF-LMB, (b)
RDR-BPF-LMB.

Filters Computation times (s)
PDR-BPF-LMB 49.16
RDR-BPF-LMB 47.63

PF-LMB with Jmax = 1000 58.29
PF-LMB with Jmax = 2000 106.77
PF-LMB with Jmax = 5000 253.46

Tab. 5. Average computation times for the considered filters for
one single Monte Carlo run.

In Fig. 5, a comparison of the cardinality statistics for
the PDR-BPF-LMB with that for the RDR-BPF-LMB is de-
picted3 . To have a fair comparison, we set Jmax1 = 40 for the
PDR-BPF-LMB and Jmax2 = 130 for the RDR-BPF-LMB so
that their average computation times for one single Monte
Carlo run are very close. The average computation times
are presented in Tab. 5. The cardinality statistics for the
two filters are averaged over 100 Monte Carlo runs. As is
shown in Fig. 5, the PDR-BPF-LMB produces reliable car-
dinality estimates throughout the simulation period, whereas
the RDR-BPF-LMB only produces reliable cardinality esti-
mates during the period from 1 s to 20 s and underestimates
the cardinality for the rest of the simulation period. The
reason for the performance gap is presented as follows. At
every time step, after the addition of interval process noises
to the predicted box particles in (15), the widths of intervals
in every dimension of the box particles grow wider. Dur-
ing the update, the unmeasured target velocities are not con-
tracted bymeasurements but contracted by the range of veloc-
ities. After a few recursions, because no redivision is applied
in the RDR-BPF-LMB, the widths of velocity intervals in
box particles will grow wider than the range of velocities.
Consequently the results of the contraction of velocities in
RDR-BPF-LMB will always be the range of velocities itself,
namely [−60, 60] in this scenario. Because we use the center
of a selected box particle to produce a point estimate, so the
velocities will become zero in this case. This leads to wrong
cardinality estimates for the RDR-BPF-LMB. It is obvious
that the RDR-BPF-LMB is not suitable for this scenario.
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Fig. 6. Cardinality statistics for the (a) PDR-BPF-LMB, (b) PF-
LMB with Jmax = 1000, (c) PF-LMB with Jmax = 2000,
(d) PF-LMB with Jmax = 5000.

Furthermore, the cardinality statistics of the PDR-BPF-LMB
is compared against that of the PF-LMB. As is shown in
Fig. 6, the PDR-BPF-LMB performs better than the PF-LMB
with Jmax = 1000, as well as the PF-LMB with Jmax = 2000,
and slightly worse than the PF-LMB with Jmax = 5000 in
terms of cardinality statistics.

Next, the inclusion and volume values for the PDR-
BPF-LMB, RDR-BPF-LMB, and PF-LMB with Jmax =
1000, 2000 and 5000 are depicted in Fig. 7 and 8. We see
that the inclusion values of PDR-BPF-LMB are generally
lower than the inclusion values of RDR-BPF-LMB, and that
the volume values of the former are smaller than the volume
values of the latter. This is because PDR produces smaller
boxes than RDR does due to the PDR redivision step, and
smaller boxes (ultimately point particles) tend to result in
lower inclusion and volume values, although PDR-BPF-LMB
with Jmax1 = 40 and RDR-BPF-LMB with Jmax2 = 130 have
very close computation times. We can also see that the PDR-
BPF-LMBhas higher inclusion values than the PF-LMBwith
Jmax = 1000 does, has a similar level of inclusion values than
the PF-LMB with Jmax = 2000 does, and has generally lower

3Hereafter, different filters are shown in different colors and the choice of colors is irrelevant with the choice of colors for tracks in Figs. 2–4.
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inclusion values than the PF-LMB with Jmax = 5000 does.
In terms of volume, the two BPF-LMB filters have higher
values than the PF-LMB does.

Figure 9 compares the PDR-BPF-LMB, RDR-BPF-
LMB, and PF-LMB with Jmax = 1000, 2000 and 5000 in
terms of OSPA miss distance (p = 1, c = 100m). The
OSPA distance of the PDR-BPF-LMB is smaller than that
of the RDR-BPF-LMB and is very close to those of the PF-
LMB with different Jmax during most of the simulation time.
But the BPF-LMB filters have significantly larger OSPA dis-
tance than the PF-LMB filter does during the periods from
1 s to 20 s when there are new births of targets, and during
50 s to 60 s when there are targets crossing. This is mainly
due to the imprecision of the measurements.
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Fig. 7. The inclusion criterion.
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Fig. 8. The volume criterion.
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Fig. 9. OSPA distance (p = 1, c = 100m).

Based on our observations of the cardinality statistics,
inclusion and volume values, and OSPA distance, it is rea-
sonable to say that the overall performance of the PDR-BPF-
LMB is better than that of RDR-BPF-LMB, and is com-
parable to that of the PF-LMB with Jmax = 2000. But the
computation time for one singleMonte Carlo run of the PDR-
BPF-LMB is 49.16 s, about half of the time for the PF-LMB
with Jmax = 2000, namely 106.77 s. So it is proved again
that for a comparable level of performance, the BPF is more
time efficient than the PF.

6. Conclusion
In this paper, we proposed an improved resampling

method for the box particle filter by introducing the box
resolution vector to the resampling procedure of the standard
box particle filter. This vector is in fact a user specified and
application dependent parameter that can be used to control
the size of box particles after resampling. It can be ap-
plied to the situations where not all elements of the target
state can be measured. For example, it can be applied to
the situation described in this paper where the velocities of
a target state cannot be measured due to the fact that the
sensor returns only azimuth and range measurements but no
range rate measurements. Additionally, we extend the in-
clusion and volume criteria from single-target tracking to
multi-target tracking. In the multi-target tracking scenarios
where the measurements are imprecise and biased, it is nec-
essary to use inclusion and volume to measure the tracker’s
performance. It has been shown with a numerical example
that the PDR-BPF-LMB outperforms the RDR-BPF-LMB
and that the PDR-BPF-LMB reaches a comparable level of
performance as the PF-LMB does with much lower compu-
tation time.
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Appendix 1: Inclusion and Volume
for BPF

Suppose that the posterior pdf p(`)(x) is approximated
by a set of weighted box particles {w(`)i , [x(`)i ]}

J (`)

i=1 . Following
the method in [13], τ(`)t in (12) is approximately computed
by

τ
(`)
t =


1, if x∗t ∈

J (`)⋃
i=1
[x(`)i ]

0, otherwise
. (21)

The volume of p(`)(x) is computed as

ν(`) =

√√
n∑
i=1

w([x(`)](i))

where n is the target state dimensionality, [x(`)] =
⋃J (`)

i=1 [x
(`)
i ],

and [x(`)](i) denotes the ith element of [x(`)].
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Appendix 2: Inclusion and Volume
for PF

Suppose that the posterior pdf p(`)(x) is approximated
by a set ofweighted particles {w(`)i , x(`)i }

J (`)

i=1 , its kernel density
estimator [13] is

p̃(`)(x) =
1

J(`)Wn

J (`)∑
i=1

φ

(
x − x(`)i

W

)
(22)

where n is the target state dimensionality, φ(x) is a Gaus-
sian kernel with zero mean and covariance matrix P(`),
P(`) is the covariance of the particles in {w(`)i , x(`)i }

J (`)

i=1 , and
W = (4/n + 2)1/n+4 ·

(
J(`)

)−1/n+4 is the optimal fixed band-
width for the Gaussian kernel. Then following the method

in [13], τ(`)t in (12) is approximately computed by

τ
(`)
t =


1, if p̃(`)(x∗t ) > min

16i6J (`)
p̃(`)(x(`)i )

0, otherwise
.

The volume of p(`)(x) is computed as

ν(`) =

√√
6

n∑
i=1

√
P(`)(i, i).

ν(`) is the square root of the sum of the widths of the small-
est box that contains the 3 − σ ellipse of the center of
x(`)i , i = 1, · · · , J(`).


