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Abstract. Edge detection is one of the most commonly 
used procedures in digital image processing. In the last  
30–40 years, many methods and algorithms for edge de-
tection have been proposed. This article presents an over-
view of edge detection methods, the methods are divided 
according to the applied basic principles. Next, the 
measures and image database used for edge detectors 
performance quantification are described. Ordinary users 
as well as authors proposing new edge detectors often use 
Matlab function without understanding it in details. 
Therefore, one section is devoted to some of Matlab func-
tion parameters that affect the final result. Finally, the 
latest trends in edge detection are listed. Picture Lena and 
two images from Berkeley segmentation data set 
(BSDS500) are used for edge detection methods compari-
son. 
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1. Introduction 
Since there is a direct link between the edges in the 

image and the physical properties of the scene (the edges in 
the picture mostly represent the outline of the scene ob-
jects), a lot of scene information can be obtained from the 
edges detected in the image. Therefore, edge detection is 
one of the key operations in image processing. Mostly it is 
used for general goals such as image segmentation, bound-
ary detection or object recognition. But edge detectors are 
also often used for special tasks like fire detection [1], car-
license plate detection [2], fingerprint identification [3], 
synthetic aperture radar (SAR) image processing [4–6], 
lunar surface crater topology [7], polyp detection in colon-
oscopy [8], etc. 

Edge detectors convert a gray-scale or color image to 
a binary image - edge map that preserves much of the in-
formation content of the original image. Most methods can 
be divided into groups according to the basic principle they 
use. A brief description of the frequently applied edge 

detection methods is presented in Sec. 2. In the following 
two sections, the measures and image database used for 
edge detectors performance quantification are described.  

Matlab function for edge detection is often applied as 
part of a larger process or it is used by authors to calculate 
edge maps by older algorithms for comparison with their 
new proposed methods. But both, users as well as authors 
of new edge detectors often use Matlab function without 
understanding it in details. They usually use this function 
with default settings but there are some function parame-
ters which can be changed. The effect of these parameters 
on the final result is described in a separate section. In the 
final section the latest trends in edge detection are listed 
with focusing on edge detectors based on fractional differ-
entiation. Picture Lena and some images from Berkeley 
segmentation data set (BSDS500) are used for computa-
tions. 

2. Edge Detection Methods 
The methods given in the next two subsections do not 

directly create an edge map, but their output is a gradient 
image (edge strength image) and the edge map of it is ob-
tained using one of the methods listed in Sec. 2.3. The 
whole process is illustrated in Fig. 1. 

2.1 Gradient Edge Detectors 

These detectors are based on the fact that the value of 
the image function f(x,y) changes significantly at the edge 
point. The change of function is expressed by its gradient 
f, a two-dimensional vector formed by the partial deriva-
tions  
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Gradient magnitude f and orientation ψ can be 
computed from 
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Fig. 1. Two-step process of edge detection. 

Pixels with high gradient magnitude are considered as 
edge points. The edge direction at a given point is perpen-
dicular to the direction of the pixel gradient. Gradient 
operators are implemented using convolution masks. The 
most used operators are [9]: 
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Then edge strength ES(x,y) can be computed [5] from 

 2 2
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where 

 x .x( , ) ( , )G x y h f x y  , 
y .y( , ) ( , )G x y h f x y    (9) 

are the gradient components (gradient estimation) in the x 
and y directions, which are calculated by the convolution 
masks of the above mentioned operators. Edge strength 
images obtained by these operators are in Fig. 2. If it is not 
necessary to know the gradient direction but only the gra-
dient magnitude, it can be estimated by Laplace's operator 
represented by masks hL4 for 4-connected and hL8 for  
8-connected neighborhood [9] 
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c)                                                           d) 

     
e)                                                            f) 

Fig. 2. Edge strength images obtained by Prewitt (a),  
Sobel (b), Robinson (c), Kirsch (d), 4-connected (e) 
and 8-connected (f) Laplace masks. 

     
a)                                                           b) 

Fig. 3. Gradient magnitude obtained by 5  5 Canny detector 
with sigma = 1 (a) and sigma = 2 (b). 
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Edge strength images obtained by these operators are 
in Fig. 2. Canny [10] has chosen an analytic approach to 
the design of gradient operator for edge detection. He has 
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defined three criteria that an optimal operator for edge 
detection should meet. Description of a detector can be 
simplified as follows. First, the Gaussian filter is applied. 
Then the derivative operators (corresponding masks) are 
used to compute gradient magnitude and direction. Then 
non-maximum suppression is used to get edges with a one-
pixel width. Finally, the threshold with hysteresis is applied 
to eliminate weak edges. Gradient magnitudes obtained by 
5  5 Canny detectors are in Fig. 3. 

2.2 Morphologic Edge Detectors 

Morphological edge detectors can be considered as 
non-linear gradient operators, because they produce edge 
strength, similar to linear gradient operators. However, 
edge strength is obtained by non-linear morphological 
operations. The erosion e(k,l) of the gray scale image f(k,l) 
by a gray-scale structuring element g(k,l) is defined [11] 
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A simple edge detector producing edge strength 
Ge(k,l) can be defined [12] 
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where N4 is 4-connected neighborhood. Similar detector 
can be defined also for 8-connected neighborhood. Edge 
strength images obtained by both detectors are in Fig. 4. 

An edge detector can be defined also by dilatation. 
Then edge strength Gd(k,l) is defined [12] 
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where d(k,l) is a dilatation of the gray scale image f(k,l) by 
a gray-scale structuring element g(k,l) [11] 
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Ge(k,l) and Gd(k,l) shift the edge, each in the opposite 
direction. Their combination Gde(k,l) eliminates this lack 
[12] 
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The above-mentioned edge detectors are very sensi-
tive to noise in the processed image. To improve robustness 

     
a)                                                         b) 

Fig. 4. Edge strength images obtained by 4-connected (a) and 
8-connected (b) morphological edge detectors. 

of morphological edge detectors a new approach was 
proposed based on combination of the biwindow configu-
ration with weighted median filters and anisotropic mor-
phological directional derivatives [13]. 

2.3 Edge Map Creating 

In order to obtain an edge map, after gradient operator 
application, it is necessary to use post-processing, such as 
some of the thresholding methods, the non-maximum sup-
pression or a three-module strategy. 

2.3.1 Thresholding 

The most common way to get edge map is the simple 
thresholding or thresholding with hysteresis. The simple 
thresholding is defined [5] as the rule g(x,y) assigning the 
value V1 or V2 depending on the threshold value t to each 
point (x,y) of the input image f(x,y)  
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In practice, values V1, V2 are often selected as the 
maximum or minimum of the image function, in the case of 
binary output image these values are 1 and 0. Edge strength 
values from gradient operators represent an input data for 
thresholding procedure. 

Hysteresis thresholding for edge detection uses two 
thresholds tu > td. Any pixel which has a value above the 
higher threshold tu is marked as edgel (=edge pixel). Any 
pixel whose value lies between the higher and lower 
thresholds and is connected to an edgel is also marked as 
edgel. Other points are rejected. 

Thresholding produces wide edges. To get edges with 
a one-pixel width it is necessary to apply a suitable thin-
ning procedure, usually morphological algorithm [14]. 
Figure 5 shows the result of simple thresholding and mor-
phological thinning. 

Thresholding itself is not complicated, determining 
the appropriate threshold value, however, can pose quite 
a big problem. In the case of hysteresis thresholding, this is 
not critical, but for simple thresholding several methods for 
determining  the  optimal  threshold  have  been  developed. 
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a)                                                           b) 

Fig. 5. Edge strength from Sobel operator (Fig. 2b) after 
simple thresholding with threshold = 0.1 (a) and after 
morphological thinning (b).  

The triangle method [15] is based on the geometric shape 
of the edge strength histogram, but most methods are based 
on the statistical properties of the histogram. Some statisti-
cal methods for threshold determining are based on mini-
mizing of the certain edge-histogram parameter, e.g. the 
overall entropy [16]. In another method optimal threshold 
maximize the separability of the resultant classes in gray 
levels. [17]. Sometimes, the thresholding is based on the 
specific features of the image to be processed (e.g. the 
radar image) [18]. The above-mentioned procedures pro-
duce a threshold value which is valid for the whole image. 
Sometimes it is more appropriate to use adaptive methods 
in which the image is divided into several smaller parts 
[19] or a small neighborhood is chosen for each point to 
calculate the threshold [20]. 

2.3.2 Non-maximum Suppression 

Then non-maximum suppression (NMS) is used to get 
edges with a one-pixel width. It was proposed by Canny 
[21] as part of his edge detector operator but in principle it 
may be used with gradient operators that produce two edge 
parameters - edge strength and direction.  

The pixel (x,y) is denoted M and two adjacent points 
perpendicular to the direction h of the edge (in the gradient 
direction u) are designated U and D (Fig. 6). U has coordi-
nates (x,y + 1), (x – 1,y), (x – 1,y + 1) or (x + 1,y + 1),  
D has coordinates (x,y – 1), (x + 1,y), (x + 1,y – 1) or  
(x – 1,y – 1). If the edge strength at point U or D is greater 
than the edge strength at point M, then the point M is not 
considered as an edge point and the value of the output 
image function (edge map) at the point is set to the 
background value. Figure 7 shows two examples of using 
NMS. 

Three-module strategy [22] is based on a similar prin-
ciple  as  the non-maximum  suppression. The  first  module 

 
Fig. 6. Determination of points M, U, D for NMS. 

     
a)                                                           b) 

Fig. 7. Edge map obtained by NMS within Canny operator. 
Hysteresis thresholding values are tu = 0.14 a td = 0.06, 
Filter parameters are sigma = 0.6 (a) and sigma = 1 (b). 

computes local edge strength and direction, so any gradient 
operator that produces these two edge parameters can be 
used. The last module is a sequential process tracking 
edges. The originality of the method resides in the second 
module, which can be seen as a generalization of the non-
maximum suppression algorithm. 

2.4 Zero-crossing Edge Detection 

In the zero-crossing edge detectors, edges are de-
tected as the location where the second derivative of the 
(usually smoothed) image crosses zero. The approxima-
tions of the second derivative are more sensitive to noise 
than the first derivative approximations. A sufficiently 
robust solution to this problem is the convolution of the 
image with a suitable filter [23], for example, whose con-
volutional mask corresponds to the Gaussian function 
G(x,y). Then Laplacian 2 is applied to the filtered image. 
Due to the linearity of derivation and convolution, the 
sequence of operations can be changed 
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Operator that includes the second derivation as well 
as Gaussian filter is denoted Laplacian of Gaussian (LoG) 
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Elements h(x,y) of the convolutional mask can be 
calculated 
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where c is a normalization constant. In practice, the ap-
proximation of the LoG by this convolutional mask is often 
used 
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a)                                                           b) 

Fig. 8. Response of 5  5 LoG convolutional mask (a) and 
corresponding edge map (b).  

Response of LoG is not processed by thresholding but 
it is inspected whether the sign has changed within the 
mask of 2  2 pixels around the examined point. Figure 8a 
shows the response of the above-mentioned 5  5 LoG 
convolutional mask applying for image Lena. The mid 
brightness value (gray points) represents a zero response, 
high brightness values correspond to positive response 
values and a low brightness values to negative response 
values. The resulting map of the edges (detected zero 
crossings) is in Fig. 8b. 

2.5 Other Edge Detectors 

So far, many methods for edge detection have been 
published, and not all can be described here in details. 
However, some methods should be described briefly, at 
least.  

The image often contains complex information in the 
sense that it contains small objects visible only in close-up 
view and, on the other hand, large objects that are evident 
when viewed from a greater distance and whose contours 
do not have such sharp edges (compared to small details). 
Therefore, some authors apply multiscale approach to edge 
detection. A few multiscale methods are based on mor-
phological edge detectors. One method [11] applies the 
same morphological edge detector to compute edge 
strength Gn

d(k,l) at various scales. The resulting edge 
strength Gd (k,l) is calculated by 
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where N1, N2 is the range of used scales and wn are the 
weighing coefficients chosen by the user. This edge detec-
tor was slightly improved by removing the short edges in 
individual scales before the final summation [24]. Other 
multiscale detection method [25] combines Canny's detec-
tor and scale multiplication. 

A truly comprehensive tool for multiscale edge de-
tection is wavelet transformation [26], [27]. Mallat [26] has 
shown that a multiscale Canny edge detection is equivalent 
to finding the local maxima of a wavelet transform with 
smoothing function equal to Gaussian function. Multiscale 
approach combines local maxima of a wavelet transform 

found at various scales to get the resulting edge map [28] 
or multiplies the wavelet coefficients at two adjacent scales 
[29]. 

Edge detectors for color images form a specific cate-
gory and can be divided into three groups: methods with 
outputs fusion, methods based on color vector and multi-
dimensional gradient detector. Methods based on output 
fusion apply a suitable edge detector to each color compo-
nent separately, creating three component edge maps. 
These maps are then combined into the resulting edge map, 
most often using logical sum [30], [31]. Multidimensional 
gradient methods calculate gradients for individual color 
components, combining them into the resulting function 
representing edge strength. Koschan [32] uses Sobel oper-
ator to compute gradients for each color component. Then 
for each pixel mean value of color gradients is computed 
and thresholded to get final edge map. The main problem 
of the above-mentioned two groups of edge detectors for 
color images is how to combine edge maps or gradients of 
color components. Vector methods do not have this prob-
lem and appear to be optimal for detecting edges in color 
images. The most commonly used vector methods [33], 
[34] are based on vector order statistics (VOS). 

3. Edge Detection Performance 
To compare the various edge detection techniques, it 

is necessary to design some quantitative criteria for the 
edge detection performance. Peli and Malah [35] have 
proposed a number of quantitative measures to study the 
performance of the edge detectors: percentage of edge 
points detected on the ideal (desired) edge, number of edge 
points that do not coincide with the ideal edge (normalized 
by the number of points on the edge), noise-to-signal ratio 
and mean width of a detected edge. If all the points of the 
detected edges create a set Wd with a number of points Id , 
and the actual edge points create a set Wi  with a number of 
points Ii, then the correctly detected edge points form a set 
(Wd ∩ Wi) with a number of points Ic and incorrectly de-
tected edge points form a set (Wd – Wi) with a number of 
points Ie = Id – Ic. Percentage CA of edge points detected on 
the ideal (desired) edge is defined 
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Percentage CE of edge points that do not coincide 
with the ideal edge (normalized by the number of points on 
the edge) is computed by 
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Mean width of a detected edge Cw is 
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The above parameters do not include the shift of the 
detected edge with respect the actual one. So Pratt has 
introduced a figure of merit FoM [9] that balances above 
mentioned three measures (excluding noise-to-signal ratio)  
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where δ is a scale constant (usually 1/9) and e(k) is the 
pixel-miss distance of the k-th edge point. It is clear that 
0 ≤ FoM ≤ 1. The more the detected edges match the real 
edges, the closer the value of FoM is to 1. If FoM = 1, then 
two compared binary images (edge maps) are the same. 
Binary image with real edges is often referred to as 
a ground truth.  

4. Berkeley Segmentation Data Set 
In order to correctly evaluate the edge detector per-

formance, it is necessary to have real edges for compari-
son. It is not a problem in the case of artificially created 
images. However, edge detection is mainly used to process 
natural images. In 2001, Martin et al. have introduced The 
Berkeley Segmentation Database (BSD) [36], a large data-
set of natural images that have been manually segmented. 
The human annotations serve as a ground truth for com-
paring different segmentation and boundary detection 
algorithms. A few years later, Martin et al. presented 
BSDS300, the collection of 300 pictures with their manual 
segmentations [37]. The images are divided into a training 
set of 200 images, and a test set of 100 images. For the 
researchers proposing new methods, the authors of 
BSDS300 have prepared a guideline. All the learning, 
parameter tuning, etc. should be done exclusively on the 
train set. After training, the proposed algorithm should be 
run only once with fixed parameters on the set of testing 
images. The pictures and ground-truths of the test set can-
not be used for tuning parameters of the proposed algo-
rithm. 

The human segmented images provide ground truth 
boundaries. Any boundary marked by a human subject can 
be considered to be valid. Since each image has multiple 
segmentations by different subjects, it is the collection of 
these human-marked boundaries that constitutes the ground 
truth, a soft boundary map with one-pixel wide boundaries, 
valued from zero to one where higher values indicate 
greater match with a boundary. Figure 9 and Figure 10 
show two images from BSDS300, their manual segmenta-
tions and ground truths. Normally, a ground truth is a bi-
nary image with real edges. In the case of BSDS, a ground 
truth is a grey scale image where high values of luminance 
signify greater confidence in the existence of a boundary. 

     
a)                                                           b) 

     
c)                                                           d) 

     
e)                                                           f) 

     
g)                                                           h) 

Fig. 9. Original image 42049.jpg (a) from BSDS300, its 
manual segmentations (b-f), ground truth (g) and 
negative of ground truth (h). 

     
a)                                                           b) 

     
c)                                                           d) 

     
e)                                                           f) 
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g)                                                           h) 

Fig. 10. Original image 253027.jpg (a) from BSDS300, its 
manual segmentations (b-f), ground truth (g) and 
negative of ground truth (h). 

A new database BSDS500 is currently available. It is 
an extension of the BSDS300, where the original 300 pic-
tures are used for training or validation and 200 new pic-
tures, with manual segmentations, are added for testing. 

Image segmentation is the process of partitioning 
a digital image into multiple segments and it is typically 
used to identify objects and boundaries in pictures. Edge 
detectors look for edge points (edgels), the pixels of 
a digital image at which the intensity changes rapidly. 
An edge is the boundary between two regions of different 
constant intensity. It means that image segmentation and 
edge detection are not the identical processes. This should 
be taken into account when evaluating the edge detector 
performance based on segmentations from BSDS500, 
especially, when the results of segmentation from different 
people vary considerably (Fig. 10e). 

5. Edge Detection in Matlab 
Matlab software is a very useful tool for image pro-

cessing. There is a special Matlab function edge which can 
be directly used for edge detection. The syntaxes for this 
function are [14]:  

BW = edge(I) , 

BW = edge(I,method) , 

BW = edge(I,method,) , 

BW = edge(I,method,thr,dir) , 

BW = edge(___,'nothinning') , 

BW = edge(I,method,thr,sigma) , 

BW = edge(I,method,thr,h) , 

[BW,thrOut] = edge(___) , 

[BW,thrOut,Gv,Gh] = edge(___)  

where BW = edge(I) returns a binary image BW (edge map) 
of the input image I. By default, the function uses the Sobel 
edge detection method. BW = edge(I,method) detects edges 
in image I using the specified edge detection algorithm: 
'Sobel', 'Prewitt', 'Roberts', 'Canny', 'approxcanny', 'zero-
cross' and 'log'. 

For gradient edge detectors Matlab function edge uses 
thresholding to get the final edge map. Users can set 
threshold values manually with function syntax BW = 
edge(I,method,thr). If threshold parameter thr is missing, 
function calculates its value automatically. To get this 

calculated threshold value, users can apply syntax 
[BW,thrOut] = edge(___). For Sobel, Prewitt and Roberts 
methods it is possible to get the directional gradient mag-
nitudes by syntax [BW,thrOut,Gv,Gh] = edge(___). For 
the Sobel and Prewitt operators, Gv and Gh correspond to 
the vertical and horizontal gradients, for the Roberts oper-
ator, Gv and Gh are the gradients at angles of 45° and 135° 
from horizontal direction. 

The Sobel and Prewitt detector can identify edges in 
the horizontal direction or vertical direction (or both). The 
Roberts detector can find edges at angles of 45° from hori-
zontal, 135° from horizontal, or both. Users can apply 
syntax BW = edge(I,method,thr,dir) to specify the orienta-
tion dir of detected edges. For Sobel, Prewitt and Roberts 
detector it is possible to skip the step of edge thinning by 
syntax BW = edge(___,'nothinning'). The syntax BW = 
edge(I,method,thr,sigma) specifies the standard deviation 
sigma of the filter used in LoG or Canny edge detectors. 

Many authors of new methods for edge detection 
compare edges produced by their detectors with edge maps 
of older methods (Sobel, Prewitt, etc.) computed by Matlab 
function edge [38–43]. It seems that they have set just 
detection method and other parameters have been default. 
But there are two problems with Matlab function edge. It is 
not clear what a method is used for the threshold calcula-
tion and what an algorithm is used for thinning. And there 
is no guarantee that the automatically calculated threshold 
value results in optimal edge map for the selected method 
(maximum values of FoM). Table 1 summarizes FoM val-
ues computed from edge maps obtained by Matlab function 
edge(I,'Prewitt',thr) applied on picture 42049.jpg. The used 
threshold parameters were 1.1, 1.05, 1, 0.95 and 0.9 times 
the threshold value calculated automatically. FoM was 
computed for each threshold and for all five segmentations 
of picture 42049.jpg (Fig. 9b – Fig. 9f). The results ob-
tained for the picture 253027.jpg are in Tab. 2. From 
Tab. 1 and Tab. 2 it is clear that automatically calculated 
threshold does not guarantee optimal results. 
 

Threshold 
Segmentation number 

1 2 3 4 5 
0.1194 0.7870 0.8183 0.7676 0.7633 0.8272 
0.1140 0.7701 0.8000 0.7516 0.7466 0.8111 

0.1085* 0.7546 0.7837 0.7362 0.7321 0.7966 
0.1031 0.7389 0.7673 0.7206 0.7155 0.7781 
0.0977 0.7147 0.7422 0.6966 0.6926 0.7536 

Tab. 1. FoM computed for 42049.jpg for different threshold 
values. Automatically calculated threshold is marked 
with *. 

 

Threshold 
Segmentation number 

1 2 3 4 5 
0.1953 0.1925 0.1892 0.1905 0.6817 0.2109 
0.1864 0.1958 0.1928 0.1937 0.6978 0.2145 

0.1775* 0.1965 0.1925 0.1944 0.7138 0.2151 
0.1686 0.2029 0.1980 0.2003 0.7231 0.2205 
0.1598 0.2076 0.2015 0.2034 0.7074 0.2237 

Tab. 2. FoM computed for 253027.jpg for different threshold 
values. Automatically calculated threshold is marked 
with *. 
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6. New Trends in Edge Detection 
Over the last ten years, new approaches to edge de-

tection have been presented, for example dictionary learn-
ing [44], [45] or fuzzy logic [46], [47]. The most promising 
methods are based on fractional derivatives [3, 39, 43], 
[48–50]. Generalized form of the Grunwald-Letnikov frac-
tional derivative dαf(x) of order α is [51] 

0
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where m is an integer number and u and l are the integer 
upper and lower limits of differentiation, l < α ≤ u. Γ(z) is 
the gamma function given by [51] 

 1

0
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To get fractional derivative mask for edge detection 
the fractional derivatives α

x f(x,y) and α
y f(x,y) along x 

and y axes can be simplified as follows [39] 
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and K ≥ 3 is an integer representing the size of fractional 
derivative mask. The magnitude of the fractional gradients 
α f(x,y) is given by 

    22
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The y-directional fractional mask of three rows can be 
computed by [39] 
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and the x-directional fractional mask of three columns can 
be computed by [39] 
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Experiments have shown that the appropriate values 
of parameters α and K for edge detection are α = 1.2 and 
K = 3 [39]. Then the particular directional fractional masks 
for edge detection are 
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Similarly to classical gradient edge detectors, even for 
edge detection based on fractional derivation, it is neces-
sary to use thresholding and thinning to get edges with 
a one-pixel width. Figure 11 shows the magnitude of frac-
tional derivation (Fig. 11g) and corresponding edges after 
thresholding and thinning (Fig. 11h). Magnitude image was 
thresholded by the value of 0.4157, which was calculated by 

     
a)                                                           b) 

     
c)                                                           d) 

     
e)                                                           f) 

     
g)                                                           h) 

Fig. 11. Edge detected in image 42049.jpg by Prewitt (a), Sobel 
(b), Roberts (c), Canny (d), approxcanny (e) and LoG 
(f) edge detectors. Magnitude of fractional derivation 
(g) and corresponding edges after thresholding (h). 
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Method 
Segmentation number 

1 2 3 4 5 
Prewitt 0.7546 0.7837 0.7362 0.7321 0.7966 
Sobel 0.7552 0.7842 0.7362 0.7334 0.7967 

Roberts 0.7096 0.7227 0.6877 0.6831 0.7321 
Canny 0.4080 0.4221 0.3972 0.3940 0.4388 
Ap.can. 0.0600 0.0610 0.0580 0.0579 0.0639 

LoG 0.5188 0.5375 0.5059 0.5020 0.5550 
Fract. 0.8968 0.9109 0.8673 0.8654 0.8739 

Tab. 3. FoM computed for 42049.jpg by different edge 
detectors.  

Otsu’s method [17]. The Matlab function bwmorph(BW, 
'thin', Inf) was used for thinning. For comparison, in 
Fig. 11 there are also edges obtained by other gradient edge 
detectors. Matlab function edge with default setting was 
used for calculations (Fig. 11a-f). Table 3 summarizes FoM 
values computed from edge maps in Fig. 11 with respect to 
segmentations of picture 42049.jpg.  

The same approach was used to process 253027.jpg. 
Obtained edge maps are in Fig. 12 and corresponding FoM 
values with respect to segmentations of picture 253027.jpg 
are in Table 4. Magnitude image was thresholded by the 

     
a)                                                           b) 

     
c)                                                           d) 

     
e)                                                           f) 

     
g)                                                           h) 

Fig. 12. Edge detected in image 253027.jpg by Prewitt (a), 
Sobel (b), Roberts (c), Canny (d), approxcanny (e) and 
LoG (f) edge detectors. Magnitude of fractional 
derivation (g) and edges after thresholding (h). 

 

Method 
Segmentation number 

1 2 3 4 5 
Prewitt 0.1965 0.1925 0.1944 0.7138 0.2151 
Sobel 0.1981 0.1938 0.1956 0.7220 0.2164 

Roberts 0.2133 0.2085 0.2107 0.7000 0.2330 
Canny 0.1222 0.1182 0.1174 0.3154 0.1285 
Ap.can. 0.1795 0.1714 0.1719 0.5055 0.1896 

LoG 0.2355 0.2264 0.2267 0.6359 0.2461 
Fract. 0.2237 0.2165 0.2176 0.6467 0.2382 

Tab. 4. FoM computed for 253027.jpg by different edge 
detectors.  

value of 0.4, which was calculated by Otsu’s method [17]. 
From the result presented in Tab. 3 and Tab. 4 it is clear 
that Prewitt and Sobel edge detectors produce almost iden-
tical edges. It can be also concluded that edge detection 
based on fractional derivatives produces comparable or 
better results than older gradient methods, such as Prewitt, 
Sobel, etc.  

7. Conclusion 
The paper has four main thematic parts. In the first 

part, a brief description of the frequently applied edge 
detection methods is presented. The second part of the 
article relates to the image databases BSDS300 and 
BSDS500. They represent very useful tool for edge detec-
tors performance quantification. BSDS500 is a large data-
set of natural images that have been manually segmented 
by different subjects. Two pictures with different charac-
teristics have been chosen to illustrate results of manual 
segmentation. Picture 42049.jpg contains one simple object 
(eagle) with clear background. All segmentations of this 
picture are similar, as indicated by almost the same values 
of FoM (Tab. 1, Tab. 3). The picture 253027.jpg is not so 
easy task for manual segmentation. There are three subjects 
with texture, three zebras with white and black strips. One 
segmentation (Fig. 10e) differs significantly from others, 
because one subject understands segmentation differently 
from the others. Interestingly, this distinct segmentation 
gives the highest values of FoM (Tab. 2, Tab. 4). This is 
a proof that image segmentation and edge detection are not 
the identical processes. This should be taken into account 
when evaluating the edge detector performance based on 
segmentations from BSDS500. 

Matlab function for edge detection is often applied as 
part of a larger process or it is used by researchers to cal-
culate edge maps by older algorithms for comparison with 
their new proposed methods. Almost always this function 
is used with default settings, though there are some func-
tion parameters which can affect the results significantly. 
Table 1 and Table 2 show that the threshold value calcu-
lated automatically does not guarantee optimal edge maps. 

Over the last ten years, new approaches to edge de-
tection have been presented. The most promising methods 
are based on fractional derivatives. In the paper edge de-
tector based on simple directional fractional derivative 
masks is presented. Magnitude image obtained by these 
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masks was thresholded and thinned to get edges with 
a one-pixel width. The results presented in Tab. 3 and 
Tab. 4 show that edge detection based on fractional deriv-
atives produces comparable or better results than older 
gradient methods, such as Prewitt, Sobel, etc. 
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