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Abstract. This paper presents two fast generalized eigen-
value solvers for sparse symmetric matrices that arise when
electromagnetic cavity resonances are investigated using the
higher-order finite element method (FEM). To find a few low-
order resonances, the locally optimal block preconditioned
conjugate gradient (LOBPCG) algorithm with null-space de-
flation is applied. The computations are expedited by using
one or two graphical processing units (GPUs) as acceler-
ators. The performance of the solver is tested for single
and dual GPU hardware setups, making use of two types
of GPU: NVIDIA Kepler K40s and NVIDIA Pascal P100s.
The speed of the GPU-accelerated solvers is compared to
a multithreaded implementation of the same algorithm using
amulticore central processing unit (CPU, Intel XeonE5-2680
v3 with twelve cores). It was found that, even for the least
efficient setups, the GPU-accelerated code is approximately
twice as fast as a parallel CPU-only implementation.

Keywords
FEM, generalized eigenvalue problem, GPU,Maxwell’s
equations, resonators

1. Introduction
Computational electromagnetics (CEM) concerns the

design and implementation of fast and accurate solvers of
Maxwell’s equations. The ultimate goal is to solve com-
plex problems in the shortest possible time. To achieve this
goal, algorithms have to be considered in the context of the
hardware they will be implemented on. As hardware evolves,
known numerical techniques need to be reexamined andmod-
ified in order to take advantage of the possibilities offered
by new hardware. GPU-computing is an emerging trend in
computational electromagnetics. Initially, GPU-acceleration

was considered for the finite-difference time-domain (FDTD)
method [1–4]. In recent years, some effort has also been de-
voted to taking advantage of the processing power of graph-
ics accelerators for other techniques, such as the method of
moments [5–7], the multilevel fast multipole (MFML) algo-
rithm [8], and the discontinuous Galekin (DG) method [9],
as well as other techniques [10]. In this paper, we consider
GPU-acceleration of the finite element Method—one of the
most powerful and versatile numerical techniques, which is
often applied to the solution of boundary value problems that
arise in electromagnetics. To date, most publications on FEM
in the context of electromagnets have been related to the solu-
tion of a linear system of equations [11–13] and FEMmatrix
generation and assembly [13–15]. In this paper, we concen-
trate on finding the solution of the generalized eigenvalue
problems that emerge when FEM is applied to simulate the
free oscillation of microwave cavities. GPU-acceleration of
eigenvalue solvers is less frequently disused in the literature,
and in most cases standard, rather than generalized, eigen-
value problems are considered [16–19]. Solvers for standard
eigenvalue problems are not suitable for FEM analysis, so
we focus on generalized eigenvalue problems, extending our
recent work on this topic [20].

2. Finite Element Method
Let us consider a lossless dielectric-loaded electromag-

netic cavityΩ enclosed by a perfect electric conductor bound-
ary S. The behavior of the electric field inside Ω and the
frequencies of free oscillations inside are determined by the
vector Helmholtz equation:

∇ × ∇ × ®E − k2
0εr
®E = 0 (1)

where ®E is the electric field, k0 = ω/c is the wavenumber,
εr is the relative permittivity, ω is the angular frequency, and
c is the speed of light in vacuum. The nonzero frequencies for
which the above equation has a nontrivial solution determine
the resonances of the cavity.
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To solve the vector Helmholtz equation in 3D, we use
the finite-elementmethodwith a tetrahedral mesh and higher-
order basis functions [21], [22]. To this end, we work with
the weak formulation of (1):

∫
Ω

(
∇ × ®w · ∇ × ®E − k2

0 ®w · εr
®E
)

dΩ = 0 (2)

where ®w is a vector testing function. We then use theGalerkin
methodwith hierarchical vector basis functions up to the third
order [23], arriving at:

(K − k2
0M) e = 0 (3)

whereK,M ∈ Rn×n are large and sparse real-valued stiffness
and mass matrices, respectively, e ∈ Rn is a vector of expan-
sion coefficients for the basis functions, and n is the number
of degrees of freedom (DoF). Additionally, the matrix M is
positive definite. Equation (3) defines the generalized eigen-
value problems. Since matrices are real and symmetric, and
one of them is positive definite, the eigenvalues are real and
nonnegative.

3. Finding Small Nonzero Eigenvalues
The system matrix that emerges from FEM using

higher-order basis functions is large and sparse. This means
that direct solution methods for eigenproblems cannot be
applied. The only way to find the resonances and modal
fields is to use iterative techniques. In practice, we are in-
terested in a few low-order resonances that correspond to
eigenvalues with small magnitudes. One algorithm recom-
mended for finding a few algebraically smallest eigenvalues
of symmetric positive definite matrix pencils is the locally
optimal block preconditioned conjugate gradient (LOBPCG)
method proposed by Knyazev [24]. With a good precon-
ditioner, this method converges rapidly. Moreover, it does
not require any matrix factorization and, because it involves
a three-term recurrence, its memory requirements are rela-
tively low. Finally, the basic operation in the algorithm is
a sparse matrix–vector product. These features are desirable
from the point of view of efficiently using the massive par-
allelization capabilities offered by state-of-the-art graphics
processing units. The LOBPCG algorithm cannot be ap-
plied directly to the FEM problems resulting from the weak
form (2), as the ∇ × ∇ × (·) operator yields zero when ap-
plied to the gradient of any scalar function. As a result,
the eigenproblem (3) has multiple zero eigenvalues. Such
eigenvalues would be found by LOBPCG, but they are of
no interest, since they are not physical solutions fulfilling
Maxwell’s equations. More precisely, the model field associ-
ated with each zero eigenvalue does not fulfill the condition
that ∇· εt ®E = 0 . To get rid of these spurious solutions, a zero
divergence condition can be imposed on the vectors produced

during each iteration of LOBPCG [25]. This process can be
called null-space filtering, as imposing the divergence-free
condition is, in practice, implemented as in a deflation us-
ing a projector that ensures that the projected vectors are
M-orthogonal to the null-space. The projected vectors thus
have no components from the null-space, and are then used
to construct model fields (eigenvectors) that correspond to
nonzero eigenvalues and fulfill ∇ · εt ®E = 0.

The LOBPCG method with null-space filtration is
shown in Algorithm 1. The null-space filtering is applied in
lines 2 and 13. In practice, this is implemented as a solution
of a relatively small system of sparse equations with multiple
right-hand sides. The system matrix for null-space filtration
is identical to the system matrix obtained when solving the
Poisson equation with the Lagrange finite elements. The ma-
trix is given by YTMY), with Y being a discrete gradient op-
erator with only two nonzero elements per row (1 or -1) [25].
To solve the Poisson equation, we use the conjugate gradient
method with a hierarchical multilevel preconditioner operat-
ing in a V-cycle (Algorithm 2 [22]. The hierarchical mul-
tilevel preconditioner (Hie-ML) is shown in lines P.1–P.11
of Algorithm 2. The preconditioner takes advantage of
the hierarchy of the basis functions used in FEM. In our
case, the basis functions up to the third order are considered
(QTCuN) [23], so we used three levels in a V-cycle. On
the lowest level (P.4), the direct solution of a linear system
is needed. However, since on this level only the first-order
basis functions are involved, the system is very small and
its solution does not pose any problem, For the smoothing
that is performed when transfers between levels occur during
restriction and prolongation (lines P.6–P.10), we used a few
weighted Jacobi iterations.

Another important element is the precondi-
tioner P used in the LOBPCG (Algorithm 1, line 12).
In this paper, we employ for this a sequence of operations
approximately equal to the inverse of the matrixA = K− κM,
on a vector or a block of vectors (κ is a real scalar chosen to
be smaller than, but close to, the smallest nonzero eigenvalue
of the matrix pencil (K,M). This is implemented as a few
iterations of the preconditioned conjugate gradient method
(PCG-V)—the same method used for null-space filtering. In
other words, in Step 12 of the LOPCG algorithm, instead of
computing Hk = P−1Rk , we used an approximate solution
of the matrix system (K − κM)Hk = Rk .

Note that, except for the direct solution on the low-
est level (Algorithm 2, line P.4), almost all other steps
in the LOBPCG algorithm can be expressed in terms of
a matrix-times-vector operation or simple BLAS1-type op-
erations. Also, the preconditioned conjugate-gradient algo-
rithm involves a sparse matrix–vector product (SpMV). This
is typical of all iterative techniques based on Krylov-spaces.
In order to execute the iterations rapidly, the performance of
the sparse matrix–times vector product should be increased.
SpMV multiplication can be executed much more rapidly on
GPUs than on multicore Central Processing Units (CPUs).
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Algorithm 1 Stabilized LOBPCG for real symmetric problems. Inputs: K and M are sparse real-valued symmetric n × n
matrices, ε is the assumed accuracy, P is a preconditioner, Y is a basis in the nullspace, X0 is the initial block vector of size
n × (q + 1), q is the number of eigenvalues to be computed, and MaxIter is the maximum number of iterations. γ is the shift
value used in the sorting algorithm. The outputs of the LOBPCGmethod are the q smallest nonzero eigenvalues {σ1, . . . , σq},
stored in a diagonal matrix Σoutput, and a dense block vector Xoutput of size n × q consisting of the q respective eigenvectors.
In this algorithm, σ is the eigenvalue corresponding to k2

0 from (3).

1: Initialize P̃0 = P0 = []

2: X0← X0 − Y (YTMY)−1((MY)TX0) BMake X0
M-orthogonal to the nullspace

3: M-orthogonalize columns of X0

4: Compute (XT
0KX0)S̃0 = S̃0Σ̃0,

where Σ̃0 = diag(σ1, . . . , σq+1) B Spectral decompo-
sition

5: (Σ0, S0) ← Eigenpairs (σi ,S̃0ei) sorted by |σi−γ | in
ascending order.

6: X0← X0S0

7: for k = 0 : (MaxIter − 1) do
8: Compute residuals R̃k = KXk −MXkΣk

9: Find D =
{
i : ‖R̃kei ‖2 > ε

}
, q̃ = size of D

10: if (q̃ = 1 AND i=q+1)OR (q̃ = 0) thenBConvergence
check
.............exit
........end if

11: Let Rk = [R̃k(:, j)]j∈D

12: Apply preconditioner Hk =P−1Rk

13: Hk ← (I − Y(YTMY)−1((MY)T)Hk B Filtering out
nullspace components

14: Hk ← Hk − Xk((MXk)
THk)B Orthogonalization vs.

eigenvector approximations
15: If P̃k nonempty, set Pk = [P̃k(:, j)]j∈D
16: Compute K̃ = [Xk ,Hk ,Pk]

TK[Xk,Hk,Pk],
M̃ = [Xk ,Hk ,Pk]

TM[Xk,Hk,Pk]

17: Compute K̃S̃k = M̃S̃kΣ̃k , where
Σ̃k = diag(σ1, . . . , σ(q+1)+2q̃) B Spectral decompo-

sition
18: (Σk, S̃k)← Eigenpairs (σi ,S̃kei) sorted by |σi−γ | in

ascending order.
19: Sk = S̃k[e1, . . . , eq+1], Σ = Σk(1 : q + 1, 1 : q + 1)
20: P̃k = [RkPk]Sk(q + 1 : (q + 1 + 2q̃), :)
21: Xk ← XkSk(1 : q + 1, :) + P̃k

22: end for
23: Eigenpairs: Xoutput = X(1 : n, 1 : q) and

Σoutput = Σ(1 : q, 1 : q).

Algorithm 2 Preconditioned conjugate gradient method (PCG-V) with hierarchical multilevel preconditioner (Hie-ML) oper-
ating with a single V-cycle. The algorithm solves the system of equations Ax = b. Matrices Ai, j, i, j = 1, 2, 3 are blocks of A
corresponding to various orders of basis and testing functions.

1: r = b - Ax
2: d = R−1 r
3: δnew = rT d
4: while ||r|| > εPCG−V

5: d = Ad
6: α = δnew

rTd
7: x = x + αx
8: r = r - αq
9: s = R−1 r
10: δnew = δold

11: δnew = rT s
12: β = δnew

δold

13: d = s + βd
14: end while

Hierarchical preconditioner z = R−1 r:

P.1: z = Hie-ML(r,i)
P.2: z = 0
P.3: if i == 1 then
P.4: z = A−1

11 r //solve the lowest level
P.5: else
P.6: smoothing(z, r) //the highest level
P.7: ri−1 = r − Ai−1,i z
P.8: zi−1 = Hie-ML(r,i-1)
P.9: ri = r − Ai,i−1 zi−1

P.10: smoothing(z, r) //the highest level
P.11: end if
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4. Implementation
Two GPU-accelerated implementations of the

LOBPCGG algorithm were developed. The first was in-
tended for a single-GPU operation. In the single-GPU
version, we applied preconditioning and null-space filtering
to the GPU-accelerated PCG-V solvers developed previ-
ously [11], [12]. In the PCG-V with hierarchical multilevel
preconditioner solvers, a direct solution of a sparse system
of equations is needed on the lowest level of the V-cycle.
This step is executed on a CPU, and we employed a shared-
memory multiprocessing parallel direct sparse solver, Intel
MKL PARDISO. For BLAS-like operations on a GPU, we
used CUDA and cuSPARSE (v8.0). One exception was the
sparse-matrix vector product (SpMV). As explained above,
this operation is crucial for all iterative solvers based on
Krylov spaces, and should be optimized for the hardware
architecture that is used. The performance of this computa-
tional kernel depends on a sparsematrix storage format. Here
we used the Sliced ELLR-T format that we designed [26]
specifically for accelerating the iterative solution of large
sparse real-valued and complex-valued systems of equations.
In this format, the sparse matrix is first permuted according
to the number of nonzero elements, and is then divided into
submatrices (slices) consisting of a certain (fixed) number
of adjacent rows. Next, the rows in which the number of
nonzero entries is not a multiple of 16 are padded with
zeros. The goal of this padding is to obtain coalesced and
aligned access to global memory. When SpMV is performed,
multiple threads are assigned to each row. The number of
threads per operation on a particular row depends on the
average number of nonzero entries in the rows of the sparse
matrix. For the real-valued FEM matrices used in our code,
Sliced ELLR-T performs at 36.6GFlop/s with SpMV on
the P100 GPU, while the CSR format used by the SpMV
in NVIDIA’s original cuSPARSE library (v. 8.0) achieves
21.2GFlop/s for the same operation.

The second GPU-accelerated implementation uses two
GPUs to perform preconditioning in Step 12 of the algorithm.
For this implementation, we used our dual-GPU PCG-V
solver [27]. All operations other than Step 12 were carried
out on one GPU. It is crucial to the efficiency here to split
the system matrix between two GPUs so that computations
performed by each GPU are balanced and so data transfer be-
tween accelerators in each PCG-V iteration isminimized. It is
also essential for the Hie-ML preconditioner that thematrices
on each GPU can be split into a nine-block structure, with
each block corresponding the order of the basis and testing
function. The data distribution technique proposed in [27]
first splits tetrahedra into two sets, with approximately the
same number of tetrahedra in each set. Each set corresponds
to one GPU. To this end, a mesh is represented as a graph
and a graph partitioning algorithm is employed; this chooses
the tetrahedra for the two sets in such a way that the number
of common edges for the subgraphs belonging to both sets
is minimal. Based on the subgraphs, the mass and stiffness
matrices are generated separately for each GPU [14]. This

guarantees that the block structure of these matrices preserve
the hierarchy of the basis and testing functions. After this
step, each GPU contains its local data plus a small number
of rows that are common to both sets (typically 1%–2% of
the total number of rows). The matrices are then converted
to Sliced ELLR-T format. When the SpMV product is eval-
uated, each GPU uses its local data, also on common rows.
Once this has been done, synchronization is enforced and
the results of multiplication on common rows are exchanged
between GPUs.

5. Numerical Results
All numerical tests were executed on an Intel Xeon (E5-

2680 v3, 2.5GHz, twelve cores) with 256GB memory and
two hardware setups with one or two GPUs. The GPU ac-
celerators we used were either NVIDIA Tesla K40s (Kepler
with 2888 CUDA cores) or P100s (Pascal with 3584 CUDA
cores). Each accelerator was equipped with 12GB GPU
RAM. We also developed a reference (CPU-based) imple-
mentation based procedures from the Intel Math Kernel Li-
brary, so that the reference computation was performed in
parallel using twelve CPU cores and procedures optimized
for best performance on Intel multicore processors.

In order to investigate the performance of all solver
implementations, the problem of finding five low-order reso-
nances of a dielectric loaded resonator was considered. This
involves a cylindrical PEC cavity loaded with a dielectric
disc (εr = 37) placed on a dielectric support with εr = 2.2.
The resonator is a lossless variant of the cavity investigated
in [28]. FEM matrices were generated using the higher-
order FEM code described in [29], using the dimensions
provided in [28]. Table 2 shows the simulation parameters
forthe LOBPCG and matrices. Note that the accuracy of the
preconditioner εPCG−V is set to a high value of 10−2. Null-
space filtering was carried out by iteratively solving a small
system of equations with k = 320134 rows until the error
dropped below 10−6.

Table 3 shows the eigenvalues and resonance frequen-
cies for the first five low-order modes of the cavity calculated
with LOBPCGwith null-space filtering. The values found by
all our solvers are identical and are in very good agreement
with the resonances computed using CST software.

The times taken by the CPU-accelerated and GPU-
accelerated LOBPCG implementations for various steps of
the algorithm and hardware setups are shown in Tab. 1. Using
GPUs as accelerators involves some overhead due to the ex-
tra time needed for memory allocation and transfer in Step 1
of the algorithm. In this step, the GPU implementations
are slower than the CPU-only version. However, the time
taken by pivotal phases, such as the preconditioner (Phase
12) and the null-space filtering (Phases 2 and 13) is signif-
icantly reduced in the GPU implementations. As a result,
the time taken by the complete LOBPCG is reduced from
254 seconds to 143 and 108 seconds respectively for the K40
and P100 GPU accelerators. In the dual-GPU arrangement,
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LOBPCG Phase CPU (T1) GPU (T2) GPU (T3) GPU (T4) GPU (T5)
P = PCG-V 1 × Xeon 1 × K40 2 × K40 1 × P100 2 × P100
K,M 1 × Xeon 1 × K40 1 × K40 1 × P100 1 × P100
1 21.4 49.2 53.4 53.1 45.5
2 4.5 1.9 1.9 1.3 1.4
12 141.9 62.7 49.8 34.7 30.2
13 54.1 21.2 21.3 12.5 12.9
16 22.9 6.4 6.4 2.8 2.9

3–11,14–15,17–22 8.1 1.7 1.7 3.0 3.0
23 0.9 0.2 0.2 0.1 0.1
1–23 253.9 143.3 134.6 107.5 96.1

Tab. 1. Time (in seconds ) taken by CPU-based and GPU-based implementations of the LOBPCG algorithm for a test problem from Tab. 2.

Description LOSSLESS
problem size n 1,343,373

nonzero elements nz 110,296,368
Null-space size k 320,134

number of ev. to be found q 5
shift value (κ) in P 8800
shift value (γ) in sort 8800

Tolerance for evs. εsLOBPCG 10−4

Tolerance for precond. εPCG−V 10−2

Tolerance in NSF εNSF 10−6

Tab. 2. Test problem description

σ = k2
0 freq [GHz]

8894.458 4.500
12831.709 5.405
12955.003 5.431
15588.509 5.957
17542.564 6.320
17651.925 6.339

Tab. 3. Eigenvalues and corresponding frequencies obtained us-
ing LOBPCG for the test problem Tab. 2.

Phase / Acceleration T3
T2

T5
T4

T3
T1

T5
T1

P = PCG-V 1.3 1.1 2.9 4.7
LOBPCG 1.1 1.1 1.9 2.6

Tab. 4. Acceleration of the LOBPCG implementations in Tab. 1
for various computational scenarios.

this time is reduced even further, resulting in about 1.9 (K40)
and 2.6 times (P100) better performance than the reference
CPU-only implementation.

The results for all GPU implementations could be fur-
ther improved by introducing blocking. In fact, a sparse ma-
trix needs to be multiplied by several vectors in various steps
of the LOBPCG algorithm. This multiplication is executed
on a GPU faster when the vectors are blocked and collected
in a single tall and skinny matrix. To solve sparse systems
with multiple right-hand sides, we developed our own com-
putational kernels for the sparsematrix–densematrix product
(SpMM). Using the Sliced-ELLR-T format, the Pascal P100
accelerator obtained 112GFlop/s on a sparse real-valued

matrix with sixteen vectors in a block, while no more than
23GFlop/s was achievable using cuSPARSE [30]. It should
however be noted that there is an upper limit on the acceler-
ation of the PCG-V preconditioner. The performance of this
solver depends on two factors: (1) the speed of the BLAS1
and sparse matrix multiplications and (2) the direct solution
performance on the lowest level of the preconditioner. We
used a GPU to accelerate (1), but in all implementations
the direct solver is performed using Intel MKL and LU fac-
torization. According to Amdahl’s law [31], the maximum
acceleration that can be achieved for PCG-V is around 11.
The speedups for various scenarios are given in Tab. 4. It
can be seen that, with two P100s, we can achieve 4.7, which
is a decent result.

The Amdahl’s law analysis can also be applied to com-
pute the maximal speedup that can be obtained for PCG-V
using two GPUs. With two K40s and P100s performing the
computations, the upper bounds are 1.66 and 1.46, respec-
tively. Thus, the speedups of 1.3 and 1.1 obtained in our
PCG-V implementation are about 76% and 79% of the the-
oretical maximal dual-GPU performance. Adding a second
GPU gives a slight speed improvement importantly also pro-
vides extra GPU memory, allowing larger problems to be
solved.

Also, even if we somehow managed to reduce the time
taken by the most time-consuming steps of the LOBPCG
algorithm (the preconditioning in Step 12 and the null-
space filtering in Step 13) in GPU setups to zero, this
would subtract 43.1 seconds from the total LOBPCG time
for the dual P100 scenario, yielding a maximum speedup of
4.79= 253.9

(96.1−43.1) . Our current result is 2.6, or 54% of the
upper bound.

6. Conclusion
GPU-accelerated solvers for the sparse symmetric gen-

eralized eigenvalue problems arising from the FEM simu-
lation of microwave cavities have been described and their
performance has been investigated for single and dual GPU
hardware setups using two types of GPUs, K40s (NVIDIA
Kepler) and P100s (NVIDIA Pascal). The solvers are based
on the locally optimal block preconditioned conjugate gra-
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dient method (LOBPCG) with null-space filtering. We used
the conjugate gradient method with a hierarchical multilevel
preconditioner operating on a single V-cycle for the precon-
ditioning of the LOBPCG iterations and for filtration. The
speeds of the single and dual-GPU solvers for both types
of accelerators were compared to a multithreaded imple-
mentation of LOBPCG optimized for a multicore central
processing unit (CPU, Intel Xeon E5-2680 v3, twelve cores).
We found that for all the tested computational scenarios, the
use of the graphics accelerators reduces the time to solution
by a factor ranging from 1.8 to 2.6. Further speed gains are
expected by using blocking in the sparse matrix-vector mul-
tiplication and LDLT factorization of matrices on the lowest
level of the PCG-V solver.
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