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Abstract. This paper describes the application of the
theory of characteristic modes to excite a conducting cylin-
der representing the chassis of a rocket. Mode excitation is
achieved by cutting H-shaped slots on the cylinder at specific
locations where the maximum of modal current distribution
occurs. The L-matching network is designed to match the
impedance of the slots to the input coaxial cable. Finally,
the proposed concept is verified during manufacturing and
measurement. It is shown that the measured results are in
excellent agreement with the simulation.
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1. Introduction
The development of antennas for rocket communica-

tion systems offers interesting research opportunities in the
field of antennas because it is crucial that the transmission
of telemetry data from the rocket reaches the ground station.
There are several experiments in the designing of antennas
for rockets that have been conducted where different types of
antennas have been discovered, e.g. printed broadband [1],
microstrip [2] and blade [3] antennas. However, it is also
essential to ensure that the antenna shape should not disturb
the aerodynamics of the rocket [4].

In a rocket application, directional antennas are gener-
ally mounted in arrays around the body of a rocket [5] or
a wrap-around antenna is used [6] in order to obtain an om-
nidirectional radiation pattern. Instead of mounting antenna
arrays on the rocket, we can use its body as the antenna di-
rectly. The inspiration comes from the technology of mobile
phones which use the chassis of a printed circuit board (PCB)
as the main radiating element [7], [8]. Similarly, the authors
use the vehicle body as the main radiator in [9], [10]. To the

best of our knowledge, the use of the rocket body as a radiator
has not been conducted. Hence, this paper demonstrates the
proposed concept of how a rocket chassis (essentially mod-
elled as a perfectly conducting cylinder) can be excited while
also acting as an effective radiator. The theory of character-
istic modes (CM) is used to find the resonant modes of the
rocket chassis [11–15]. Since the modes have orthogonal ra-
diation patterns, several frequencies related to the resonance
of the modes can be used simultaneously in the telemetry
system of the rocket.

In this paper, the model of the rocket represented as
a conducting cylinder has been simulated using CST’s CM
solver [16] to obtain the characteristic modes. Then the first
two modes are studied and excited by utilizing the inductive
coupling elements implemented by cutting H-shaped slots
on the cylinder. CST’s time-domain solver is used for this
purpose. Both of the modes, especially the first, are suitable
to be applied to the rocket due to a simple current distribu-
tion and radiation pattern as well as in the use of fewer slots
for excitation. A matching network is designed to match
the impedance of the slots to the input 50Ω coaxial cable.
Finally, the measured results of a fabricated structure with
the first mode excited shows excellent agreement with the
simulation.

2. The CMs of a Conducting Cylinder
The theory of characteristic modes was originally de-

veloped by Garbacz [11] and later refined by Harrington
and Mautz [12]. The method of moments [17] complex
impedance matrix Z = R + jX is decomposed into a set of
characteristic currents Jn and characteristic numbers (eigen-
values) λn by solving the following weighted eigenvalue
equation [12]

XJn = λnRJn. (1)

Note that the characteristic currents Jn on the surface
of a perfect electric conductor (PEC) body depend only
on its shape and frequency, not on any specific excitation.
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The eigenvalues λn represent the ratio of reactive to radiated
power [18], and hence, if λn is zero, the n-th mode is in
resonance. For better dynamics of the resulting graphs, the
characteristic angle [14] is usually plotted as

αn = 180◦ − tan−1 λn (2)

where αn = 180◦ indicates the resonance of the n-th mode.
In the CST model, the rocket is modelled as a hollow pipe
(cylinder) made of PEC material with length L = 1m, and
diameter d = 0.1m. Number of surfacemeshcells in the CST
integral solver is around 1500. If the pipe is considered to be
a thin dipole, one may guess that the first two resonances are
at f1 � c0/2L = 150MHz and f2 � c0/L = 300MHz, where
c0 is the velocity of light in a free space. In this case, where
a relatively thick pipe with L/d = 10 is used, the frequencies
are lowered slightly to 129MHz and 276MHz, respectively,
as shown in Fig. 1.

The characteristic currents of PEC cylinder together
with their radiation patterns are shown in Fig. 2. The ar-
rows schematically show the direction of the currents and the
black rectangles indicate the position of the inductive cou-
plers, which are discussed later. Obviously, the first mode
has a sinusoidal in-phase shape, while the second has two
opposite-phase currents resulting in two lobes.
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Fig. 1. Variation of the characteristic angle with frequency for
the first two characteristic modes of the conducting cylin-
der.
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Fig. 2. The first two characteristic currents and directivity
patterns at their resonant frequencies (129MHz and
276MHz) of the conducting cylinder.

3. Excitation of CMs
The excitation of modes can be conducted by using

inductive coupling elements (ICE). Based on investigations
in [7], [8], ICEs are created by cutting small slots at locations
where the maximum of characteristic current distributions
occur. Therefore, mode 1 can be excited by an inductive
coupler at the centre of the cylinder. On the other hand, the
characteristic currents of mode 2 flow in opposite directions
with two specific maximums. In this case, the mode can be
excited by two inductive couplers with a 180◦ phase shift.
The position of the couplers is schematically shown as black
rectangles in Fig. 2.

3.1 Excitation of CMs using H-Shaped Slots
To avoid disturbing the distribution of characteristic

modes and to maintain the mechanical stability of the design,
the ICEs (slots) should be small. In turn, such slots will have
low input impedance resulting in problems with matching
to 50Ω. In the CST simulations, slots with various shapes
were investigated and, based on the results, the H-shaped slot
was found to be the preferable solution from an impedance
and compactness point of view, see Fig. 3 left. Mode 1 is
excited using two in-phase fed H-shaped slots mounted in the
middle of the cylinder on its opposite sides (see Fig. 3 right),
which helps to obtain a radiation pattern with good azimuthal
symmetry.

Mode 2 is excited using two opposite H-shaped slots in
the upper part and two opposite H-shaped slots in the lower
part of the cylinder. The current distribution and radiation
pattern for both properly excited modes is shown in Fig. 4.
Calculated maximum directivies are 1.9 dBi and 2.7 dBi for
mode 1 and 2, respectively. By comparing with Fig. 2 it
is seen that the slots have negligible effect on the far field
pattern.
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Fig. 3. Dimensions of the H-shaped slot and their location for
excitation of mode 1.
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The excitation mechanism of a modal current is seen in
Fig. 5. The currents flowing around the left and right parts
of the H-shaped slot have opposite directions and thus do not
contribute to the far field. It is dominantly the current in the
middle that effectively turns on the mode.

The length and width of the vertical arms of the
H-shaped slots are Lv = 100mm and Wv = 23.2mm, those
of the horizontal arms are Lh = 72.4mm and Wh = 4 mm,
and La = 48mm. The longer the length of either Lv or
Lh, the higher the impedance. The wider the width Wv,
the higher the impedance as well. In contrast, narrowing
Wh results in higher impedance, which explains why Wh is
designed to be very thin. Particularly, the impedance of
the slots at resonant frequencies of mode 1 and mode 2 are
Zmode1 = 2.69 + j44.36Ω and Zmode2 = 17.39 + j129.22Ω,
respectively. The driven simulation is performed by using
the time-domain CST solver with number of mesh cells of
around two million.
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Fig. 4. Current distribution and directivity patterns for excited
modes 1 (left) and 2 (right). The arrows schematically
show the direction of currents. Mode 1 is excited using
two in-phase slots, while mode 2 is excited using two
pairs of out-of-phase slots (notice the signs +/- represent-
ing the phase of the feeding ports).

Fig. 5. Dashed arrows represents currents that cancel each other
out while the solid arrow is the dominant path that turns
on the modal distribution.

For simplicity of design and ease of manufacturing, we
further consider the feeding of only mode 1. By CM analysis,
it is confirmed that the slot has very little effect on the res-
onant frequency of the cylinder1, as shown in Fig. 6 where
the resonant frequency is 125MHz with slots, compared to
129MHz for the whole pipe.

3.2 Matching the Slots
Considering the excitation of mode 1, there are two

slots which have to be connected in parallel to feed them in-
phase. There are several possibilities as to how to construct
the matching network [19]. In our design we use shunt and
series capacitors together with RG58C/U phasing cables as
shown in Fig. 7.

The length of the cables was set to 200mm and the val-
ues of the capacitors were optimized using a schematic tool
in CST Studio with the final (rounded) valuesC1 = 12 pF in
series and C2 = 15 pF in parallel. The mechanical arrange-
ment is shown in Fig. 8. For simplicity of construction, we
have not used symmetrization like in [20].
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Fig. 6. Characteristic angles of mode 1 with and without slots.

Fig. 7. Matching circuit consisting of shunt and series capaci-
tor and phasing cables (two yellow blocks). The ports
1 and 2 corresponds to that in Fig. 3 right.

1Resonant frequency is essentialy given by the length of the cylinder.
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Fig. 8. Detailed view of the matching circuit with capacitors,
cables and input SMA connector.

4. Measurement
S-parameters at the input SMA connector were mea-

sured in an anechoic chamber by the Rohde & Schwarz
ZVA 40 [21] vector network analyzer. Despite the hand-
made design, the simulated and measured input return loss
agree very well, as shown in Fig. 9. In particular, there is
a 20 dB return loss at the resonant frequency of the first mode
(125MHz from Fig. 6). It is noted that there is another small
peak around 470MHz, which is likely caused by additional
resonance caused by the wires connecting the capacitors.

Unfortunately, the frequency of design is too low to
measure the radiation pattern in such a chamber. On the other
hand, we had to choose an operating frequency accordingly
to the pipe length and diameter routinely found in the market
place. Taking into account the agreement between simulated
and measured matching, one can also expect agreement for
the radiation pattern.
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Fig. 9. Simulated and measured S-parameters.

5. Conclusions
The excitation of a conducting cylinder using inductive

couplers has been presented in this paper. The investigation
of the excitation of a rocket chassis as an effective radiator
is conducted by the theory of characteristic modes. It was
shown that properly designed slots have negligible effect on
resonant frequency and current distribution. Although the
rocket is modeled in a very simple manner, the presented
proof-of-concept indicates that this method can be used in
more complex real designs.
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