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Abstract. This paper proposes two types of defected 
ground structures (DGSs) for achieving the mutual 
coupling (MC) reduction and the antenna cross-polariza-
tion (XP) suppression respectively in a MIMO (multiple 
input multiple output) wireless communication system. The 
novel periodic fractal DGS (PFDGS) are presented to 
reduce the MC between antenna elements. About 20 dB 
MC reduction is achieved, which contributes to improve 
the antenna efficiency and increases the MIMO system 
channel capacity. However, the method of using DGS or 
other decoupling structures for MC reduction will degrade 
the antenna XP level unnecessarily. For solving this prob-
lem, another arc-shaped DGS is etched under each patch 
to suppress the antenna XP level. In this way, the XP level 
is suppressed from −10 dB to −34.6 dB in the boresight 
direction. Moreover, the arc-shaped DGS will not degrade 
the MC reduction performance. 

Keywords 
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1. Introduction 
Microstrip antennas are popularly used in civil and 

military applications for the advantages like inexpensive to 
manufacture, compact in size, the ability to create high gain 
arrays in a low-profile. The high antenna isolation is one of 
the key merits in many applications, especially for the 
multiple input multiple output (MIMO) wireless communi-
cation system. The correlated received signals in different 
antennas may reduce the system corresponding capacity. 
Therefore, the MC suppression is very important for the 
MIMO communication system. 

Using the special band-gap structures is one of the ef-
ficient ways to increase antenna isolation. The DGS filter-

ing characteristic has been used to decouple the microstrip 
antenna elements [1], [2]. The DGS, which consists of 
concentric circular rings [3], is developed to reduce the 
MC between two microstrip antenna elements. About 5 dB 
isolation improvement is revealed by suppressing the sur-
face waves. Two different folded split-ring resonators are 
proposed in [4], which are etched in the ground plane. 
More than 30 dB antenna isolation improvement is ob-
tained. A compact and simple DGS, which consists of two 
U-shape DGS units, is presented to reduce the MC level 
[5], in which about 10 dB MC suppression is achieved. The 
DGS structure, which is based on complementary split-ring 
resonator, is presented to suppress MC (about 10 dB) be-
tween microstrip antenna elements [6]. When designing the 
band-gap DGS filter, the minimal dimensions of the equiv-
alent circuit are desired. The fractal structures help us to 
generate longer equivalent current line on a small surface 
[7]. Thus, the dimension of the DGS is suppressed when 
the fractals are inserted. A Minkowski fractal DGS is used 
to decrease the MC in a compact array in [8]. About 7 dB 
MC suppression is realized. The novel fractal structure in 
[9] achieves more than 35 dB MC suppression, but it 
degrades the XP performances. This paper presents the 
method to keep the XP in a low level when achieving MC 
suppression. The PFDGS in this paper is completely 
different with the DGSs in reference [9]. 

Since the antenna elements isolation is very important 
for the MIMO systems [10], the MC suppression using 
DGS in the MIMO wireless communication system has 
been studied. A T-shape slot impedance transformer is 
presented to suppress the MC between closely placed 
PIFAs for MIMO wireless terminals [11]. The MIMO 
antenna element with high isolation is achieved. The pre-
sented PIFA array provides better channel capacity perfor-
mance. With a DGS in the ground plane, the high isolation 
(which is below −25 dB) of the printed antenna elements 
and the good MIMO channel capacity performance are 
achieved [12]. The high isolation using DGS in a MIMO 
system is presented in [13]. The isolation of the antenna 
elements is 28 dB.  
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By utilizing the strong MC between two dipoles in 
[14], the high isolation and the cross-polarization is less 
than −34 dB. In [15], the planar arrangement of the Vivaldi 
elements is preferred over stacked ones for the MC reduc-
tion and XP suppression. However, the techniques dis-
cussed in reference [14] and [15] are not designed for mi-
crostrip antennas. Both the MC reduction and the XP sup-
pression in a microstrip antenna array are achieved in [16] 
by the parasitic isolator and the circular DGS, respectively. 
However, the DGS for XP suppression degrades the MC 
reduction performance.  

From the previous research works, the DGS can re-
duce the MC between microstrip antennas efficiently, but it 
is also criticized for increasing the antenna XP level unnec-
essarily.  For  solving the increased  XP level  problem, two 
 

papers 
Decoupling 

structure 
Maximum MC 

reduction 
Improved 
XP level 

Antenna 
performance 

[4] Periodic DGSs 41 dB No Degradation 

[5] U-shaped DGS 10 dB No Improvement 
[9] Fractal DGS 35 dB No Improvement 

[13] 
Rectangular 

DGS 
28 dB No Improvement 

[14] Dielectric post N. G. Yes Improvement 

[15] 
Stacked 

arrangement 
10 dB Yes Improvement 

[16] 
Parasitic 
isolator 

20.9 dB Yes Improvement 

proposed 
U-shaped and 

arc-shaped 
DGSs 

20 dB Yes Improvement 

Tab. 1. Comparison of the proposed DGSs and other 
structures. 

 
                    (a)                                   (b)                                (c) 

Fig. 1. The proposed fractal DGS: (a) the zeroth iteration,  
(b) the first iteration, (c) the second iteration. 

 
Fig. 2. The geometries of the proposed PFDGS and antenna 

elements. 

types of the DGSs are proposed in this paper for realizing 
the MC reduction and the XP suppression respectively. 
Some key results of the proposed DGSs and other decou-
pling structures are summarized in Tab. 1. The method in 
this paper achieves MC reduction and XP suppression by 
the DGSs at the same time. Moreover, the application of 
the DGS for XP suppression will not degrade the MC 
reduction performance. 

2. Geometries and Improved 
Performances 
The proposed fractal structure, as shown in Fig. 1, is 

evolved from the classic U-shaped structure. Adding two 
diminutive U-shaped slots at the two endpoints of a basic 
U-shaped slot turns the zeroth iterative fractal structure 
into the first iterative fractal structure, as drawn in Fig. 1(b). 
The third iterative fractal structure is evolved from the the 
second iterative fractal structure by adding four U-shaped 
slots at the endpoints. By repeating this process, the high 
level iterative fractal structures are designed. 

The model of the first iterative PFDGS and the mi-
crostrip antennas in a MIMO wireless communication 
system are shown in Fig. 2. Two horizontally polarized 
microstrip antenna elements are placed on the x-axis. The 
antennas resonate in the same band with center frequency 
3 GHz. They have center-to-center distance d1 = 50 mm 
(equals to 0.5 free-space wavelength). The substrate dielec-
tric constant is 4 with thickness 3.18 mm. The outline di-
mension of antenna element is 30  30  3.18 mm3, the 
length of the rectangular patch l is 23 mm. The proposed 
PFDGS consists of two periodic FDGS etched away from 
the blank space between microstrip antennas. This de-
signed FDGS unit is evolved from the first iterative fractal 
structure, as drawn in Fig. 1(b), expanding the first itera-
tive fractal structure with width g, and etching the struc-
tures from the ground plane. In this way, the proposed 
PFDGS is designed. The center-to-center distance between 
the FDGS units is d2 = 21.5 mm. 

To study the frequency characteristic of the proposed 
FDGS unit, a microstirp line is settled on a vacuum box 
above the FDGS unit in ground plane. The parameter stud-
ies are carried out to analyze the FDGS unit. There are two 
factors greatly affecting the FDGS band-gap characteristic, 
namely the slot length and slot width. The optimized pa-
rameters are: l1 = 13 mm, l2 = 9.75 mm, l3 = 7.5 mm, 
l4 = 8.5 mm and g = 2.5 mm. 

In Fig. 3 there is the transmission coefficient of the 
transmission ports with different slot length l4 from 7.5 mm 
to 9 mm with step 0.5 mm when slot width g = 2.5 mm. 
The increased slot length will decrease the resonant fre-
quency as shown in Fig. 3. The same conclusion can be got 
when tuning the other FDGS unit length. In Fig. 4, the slot 
width g is changed from 1.5 mm to 3.0 mm when l4 = 
8.5 mm. As the etched slot width decreases, the operative 
frequency moves to lower frequency as shown in Fig. 4. In 
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general, the increased FDGS dimension will decrease the 
FDGS resonant frequency.  

The comparison of transmission coefficient between 
the zero and first iterative fractal structures are plotted in 

 
Fig. 3. The transmission coefficients of transmission ports 

when tuning slot length l4. 

 
Fig. 4. The transmission coefficients of transmission ports 

with difference slot width g. 

 
Fig. 5. Transmission coefficient with zero and first iterative 

fractal structures. 

 
Fig. 6. Mutual coupling suppression with the PFDGS. 

 
Fig. 7. The array envelope correlation with and without the 

PFDGS. 

Fig. 5. These two structures have the equal outline dimen-
sion. When the fractal is inserted, the resonant frequency of 
the first iterative fractal structure is decreased compared to 
that of the structure with zero iterative fractal. The first 
iterative fractal structure is 19.6% smaller than the zero 
iterative fractal structure when they have the same resonant 
frequency. 

The optimized parameter values of the first iterative 
fractal DGS unit are: l1 = 13 mm, l2 = 9.75 mm, l3 = 
7.5 mm, l4 = 8.5 mm and g = 2.5 mm. Figure 6 shows the 
S11 (return loss) and S12 (mutual coupling) of the antennas 
without and with the presented PFDGS when d1 = 50 mm, 
where d1 equals to 0.5 free-space wavelength. The mutual 
coupling between antenna elements is suppressed from 
−16 dB to −36 dB after the PFDGS is etched. About 20 dB 
antenna isolation improvement is obtained. Note that the 
antenna resonant frequency shifts a little to higher fre-
quency band when the PFDGS is inserted. Because the 
microstrip antenna working frequency can be shifted by 
adjusting the patch dimension, this method is effective in 
application. 

The envelope correlation of antenna array is a key 
parameter for the MIMO wireless communication system, 
because the MC high level may degrade the system corre-
sponding capacity performance. For two elements antenna 
array in the MIMO communication system, the envelope 
correlation equation is given by [17]: 
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Equation (1) is used for calculation of the envelope 
correlation of the MIMO system in this paper. Figure 7 

  
                                (a)                                                     (b) 

Fig. 8. Radiation pattern on (a) E-plane and (b) H-plane.  
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Fig. 9. Surface current vectors of coupled antenna element 

without PFDGS. 

 
Fig. 10.  Surface current vectors of coupled antenna with 

PFDGS. 

 
Fig. 11. The geometry of the arc-shaped DGS. 

shows the comparisons of the array envelope correlation 
with and without the proposed PFDGS. Using the designed 
PFDGS, the envelope correlation value is decreased. The 
envelope correlation suppression helps to enlarge the 
MIMO system corresponding capacity. That is to say, high 
antenna isolation indicates better corresponding capacity 
performance for the MIMO communication system. 

Figure 8 depicts the main polarization and cross-po-
larization radiation patterns with and without the proposed 
PFDGS, when only antenna element 2 is excited and the 
other one is 50Ω loaded. There is no significant difference 
between the main radiation patterns in the upper-sphere 
space on both E-plane and H-plane. However, the antenna 
XP level with this proposed PFDGS gets greater than that 
without PFDGS. The antenna XP level on the E-plane 

without the PFDGS is less than -40 dB, which cannot be 
plotted in Fig. 8(a). 

The surface current vector graphs of antenna element 
2 without PFDGS at time T = 0, π/2, π and 3π/2 are shown 
in Fig. 9, when antenna element 1 is excited and the other 
one is 50Ω loaded. The coupled polarization of element 2 
from element 1 is horizontal linear polarization. In addition, 
element 2 is linear polarized at horizontal direction. There-
fore, the received energy of element 2 is a high level, 
which is radiated by element 1. 

The surface current vector graphs of antenna element 
2 with PFDGS at time T = 0, π/2, π and 3π/2 are shown 
from Fig. 10(a) to Fig. 10(d). Antenna element 1 is excited 
and the other one is 50Ω loaded. It can be seen that the 
coupled polarization of element 2 rotates 90 deg from the 
horizontal linear polarization to vertical linear polarization 
using the proposed PFDGS. Thus, the received energy of 
element 2, which is radiated by element 1, is reduced com-
pared to that without PFDGS. In this way, the antenna 
isolation is improved and XP level is increased. The same 
conclusion can be got when only antenna element 2 is 
excited and the other one is 50Ω loaded. 

3. XP Improvement by Arc-shaped 
DGS 
The decoupling DGS or other structures may degrade 

the antenna XP performance when achieving MC reduction, 
which can be found in many other research works. In order 
to achieve the antenna XP suppression, the DGSs have 
been reported in the design [18], [19]. However, only few 
papers study the DGS for XP suppression in a MC reduc-
tion antenna array. For solving the increased XP level 
problem, another arc-shaped DGS is inserted in the ground 
plane. The fractal U-shaped DGS and the arc-shaped DGS 
achieve the MC reduction and the XP suppression respec-
tively. 

As shown in Fig. 11, two pairs of the arc-shaped 
DGSs are etched in the ground plane, each of them are 
symmetrically located under the antenna patch. The DGS 
under the patch works for XP suppression of this element. 
The arc-shaped DGSs have outside diameter R, inside 
diameter r and angular width w. Relative changes in XP 
values have been studied theoretically by varying the val-
ues of R, r and w. The optimized parameter values are 
R = 9 mm, r = 7 mm, Φ = 6 mm and w = 5 mm. It is found 
that the angular width w is the key parameter that affects 
the XP suppression performance. 

The S12 of the antenna array versus different values of 
w are illustrated in Fig. 12. As the angular width w in-
creases, the MC reduction resonant frequency shifts to the 
upper region. Note that the minimum values of the S12 are 
all below −32 dB, which indicates that using the arc-
shaped DGSs for XP suppression will not degrade the MC 
reduction performance.  
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Fig. 12.   The S12 of antenna array when tuning width w. 

 
Fig. 13.   The radiation patterns on the E-plane when tuning 

width w. 

 
Fig. 14.   The radiation patterns on the H-plane when tuning 

width w. 

Figure 13 and Figure 14 show the radiation patterns 
on the E-plane and H-plane versus different values of w 
when only one antenna element is excited. The XP level is 
about −10 dB in the boresight direction without etching the 
arc-shaped DGSs. After etching the arc-shaped DGSs in 
the ground plane, the antenna XP level is obviously sup-
pressed. When the angular width w is optimized to be 
5 mm, the antenna XP level is suppressed from −10 dB to 
−34.6 dB in the boresight direction. Moreover, there is 
a slight change with the main polarization of the radiation 
patterns. It is worthwhile to note that the XP in the other 
directions (theta from −45 deg to 45 deg) are also sup-
pressed with different values. 

4. Simulated and Measured Results  
In order to validate the MC reduction and the XP 

suppression performances of the proposed method in this 
paper, the prototype is fabricated based on the optimized 
parameters. Figure 15 shows the picture of the testing 
antennas in a microwave anechoic chamber. 

The S parameters of the fabricated antenna elements 
with and without the proposed two types of the DGSs are 
plotted in Fig. 16. The S-parameters of the fabricated an-
tennas are measured by using the Agilent E5230A network 
analyzer. The MC of the antenna array is less than −35 dB 
at the center frequency. About 20 dB MC reduction is 
achieved in both simulation and measurement. Note that 
the measured S11 and S12 are shifted to lower frequency. 
Except for the system and measuring errors, the difference 
between the measured and simulated results is caused by 
the machine error of antenna elements and the DGSs, since 
resonant frequency of the antenna array is sensitive to the 
patch dimension. 

 
Fig. 15. Picture of the testing antennas in a microwave 

anechoic chamber. 

 
Fig. 16. Simulated and measured S parameters with two types 

of DGSs.  
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Fig. 17.  The simulated and measured active reflection 

coefficient and envelope correlation of the antenna 
array. 

 
(a) 

  
(b) 

Fig. 18.   Simulated and measured radiation patterns with two 
types of DGSs on (a) E-plane and (b) H-plane. 

Both the simulated and measured active reflection co-
efficient and envelope correlation of the antenna array are 
plotted in Fig. 17. The measurements meet well with the 
simulation. The results show that the MIMO antenna array 
with the MC reduction has low outgoing power and good 
corresponding capacity performance. 

The simulated and measured main polarization and 
the cross-polarization radiation patterns of the antenna 
element 2 are depicted in Fig. 18. These results are meas-
ured in a microwave anechoic chamber when only antenna 
element 2 is excited and the other one is 50Ω loaded. The 
measured results agree well with the simulated ones. An-
tenna efficiency is improved from 76% to 83% after etch-
ing the proposed DGSs. The radiation patterns in the up-
per-sphere space have no significant difference between 
the simulation and measurement. Compared to the radia-
tion patterns of the antennas only with the proposed 

PFDGS for the MC reduction, the XP level of the antenna 
element is suppressed. The measured XP level is −31 dB in 
the boresight direction, which validates the XP suppression 
by the arc-shaped DGSs. The back-side radiation is in-
creased because of the slots in the ground plane. This prob-
lem may be solved by using the proper EBG high-imped-
ance surface structure in the bottom side of the ground 
plane. 

5. Conclusion 
Two types of DGSs are proposed in this paper for the 

MC reduction and XP suppression respectively. A novel 
PFDGS is studied to realize the MC reduction between 
antenna elements in a MIMO system. Using the proposed 
PFDGS, about 20dB MC reduction is achieved, which 
helps to improve the antenna efficiency and to increase the 
MIMO system channel capacity. However, the application 
of the DGS or other decoupling structures for MC reduc-
tion leads to increase of the antenna XP level. For solving 
this problem, the arc-shaped DGS is etched in the ground 
plane under each patch. By doing that, the XP level is sup-
pressed from −10 dB to −34.6 dB in the boresight direction 
compared to that of the antennas only with the PFDGS. 
Both the MC reduction and XP suppression using the 
DGSs are achieved in this paper. 
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