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Abstract. A fifth-order bandpass filter (BPF) with super 
high selectivity using three pairs of coupled lines and two 
open stubs is proposed. Twelve transmission zeros (TZs) 
from 0 to 2f0 (f0 denotes center frequency of the passband) 
and five transmission poles (TPs) in the passband can be 
obtained to realize good out-of-band suppression and 
sharp roll-off skirts. For demonstration, a simple BPF 
prototype centered at 2.04 GHz is designed, fabricated with 
measured 3-dB fractional bandwidth of 18% and very high 
transition band roll-off rates of over 567 dB/GHz. Good 
agreement between the simulations and measurements 
validates the design method. 
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1. Introduction 
High-selectivity bandpass filters (BPFs) with low in-

sertion loss in the passband and high rejection in the stop-
band are drawing increasing attentions to meet the require-
ment of the modern wireless communication systems [1]. 
Recently, some works have been reported on introducing 
transmission zeros (TZs) to improve the out-of-band sup-
pression of BPFs [2–13]. In [2–4], signal interference tech-
niques have been invented for the generation of multiple 
TZs due to the construction of multiple transmission paths. 
In [5], a new source-load cross coupling type with both 
capacitive and inductive coupling is introduced to obtain 
multiple TZs for suppressing the undesired harmonics. 
Moreover, the concept of TZ resonator pair is proposed in 
[6], where four TZs are located at the resonant frequency 
points of the two resonator pairs. However, the lower stop-
band cannot reject very well because of its intrinsic limita-
tion of the scheme. In [7], a BPF with four TZs using two 
open coupled lines and several stubs is proposed, where 
two TZs can be introduced with the help of the two shorted 
stubs to improve the frequency selectivity. 

In this paper, a super high-selectivity fifth-order BPF 
using three pairs of coupled lines and two open stubs is 
proposed. Based on our previously reported work [8], two 
half-wavelength open stubs are loaded on the first and third 
pairs of coupled lines, respectively, to generate four more 
TZs at the out-of-band. Thus, the total number of TZs is 
increased to 12 at the frequency range from 0 to 2f0 (f0 is 
the required center frequency), which is the most number in 
the previously reported literature to the best of our 
knowledge. For demonstration, a filter example with center 
frequency of 2.04 GHz is fabricated, whose simulated and 
measured results are in good agreement to validate the 
design idea. 

2. Design and Analysis of the Proposed 
BPF 

2.1 Proposed BPF Design 

The ideal circuits of the proposed fifth-order BPF 
with twelve TZs, which consists of three pairs of coupled 
lines and two open stubs, is shown in Fig. 1. The middle 
(second) pair of λg/4 coupled lines (even/odd-mode charac- 
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Fig. 1. Ideal circuit of the BPF with twelve TZs. 



RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 1039 

 

 
(a) 

 
(b) 

Fig. 2. Simulated results of the proposed ideal filter circuit: 
(a) S21, (b) S11, where θ = 90°, Z0 = 50 Ω, Z1 = 90 Ω, 
Z0e1 = 158 Ω, Z0o1 = 60 Ω, Z0e2 = 109 Ω, Z0o2 = 65 Ω. 

teristic impedance Z0e2, Z0o2, electrical length θ) are con-
nected to the first and third pairs of 3λg/4 coupled lines 
(even/odd-mode characteristic impedance Z0e1, Z0o1, electri-
cal length 3θ), and two λg/2 open stubs are loaded on the 
first and third pairs of coupled lines, respectively. 

Figure 2 shows the simulated S-parameter compari-
sons between the proposed BPF (i.e., BPF with open stubs) 
and the BPF in [8] (i.e., BPF without open stubs). As seen 
in Fig. 2(a), four more TZs (ftz2, ftz5, ftz8, ftz11) can be intro-
duced by adding the two open stubs, and their positions are 
mainly determined by the characteristic impedance of the 
open stubs Z1. For the previously generated eight TZs, the 
four TZs ftz1, ftz4, ftz9 and ftz12 keep unchanged whose posi-
tions can be expressed as 

 
tz1 tz4 0 tz9 0 tz12 0

2 4
0, , , 2 .

3 3
f f f f f f f      (1) 

More importantly, the positions of the two TZs ftz6 and ftz7 
are closer to the passband than the ones of BPF without 
open stubs. Thus, the roll-off skirt of the passband will 
become sharper to further improve frequency selectivity. 

2.2 Analysis of the Proposed BPF 

This filter circuit can also be analyzed by using im-
pedance matrix deduction similarly to the method in [8]. 
From Fig. 1, we can obtain that V2 = V5, I2 = –I5, V3 = V8, 
I3 = –I8, V6 = V9, I6 = –I9, V7 = V12, I7 = –I12, and I4 = I11=  
–j tan(2θ)·V4/Z1. [Z]a and [Z]b denote the impedance matri-
ces of the 3λg/4 and λg/4 parallel-coupled lines, respec-
tively. The overall impedance matrix [Z]’ and TZs of the 
filter can be calculated as 
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Finally, twelve finite TZs in the stopband at the frequency 
range from 0 to 2f0 can be obtained through calculation by 
setting transmission coefficient S21 = 0, where S21 is 
expressed as 
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For transmission poles (TPs), they can be calculated 
by setting reflection coefficient S11 = 0, where S11 can be 
expressed as 
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Through calculation, five TPs can be obtained, as illus-
trated below 
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The positions of these five TPs are the same as those of the 
BPF without open stubs. This result can also be verified 
from the simulation comparison as shown in Fig. 2(b). 

In addition to the TPs and TZs, the concerned BPF 
characteristics mainly include the 3-dB fractional band-
width (Δf), maximal out-of-band |S21| (Ts), maximal in-band 
|S11| (Tp) [4] and transition band roll-off rate (ξROR) [14] 
referring to the responses in Fig. 3(a). Figure 3(b), (c) and 
(d) show the corresponding variations of Δf, Ts and Tp 
against the parameters Z1, k1 and k2, respectively, where 
k1 = (Z0e1 – Z0o1)/(Z0e1 + Z0o1), k2 = (Z0e2 – Z0o2)/(Z0e2 + Z0o2). 
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As plotted in Fig. 3(b), Ts and Tp will both decrease but Δf 
will rise up when Z1 increases. The maximum Δf will be 
18.7% when Z1 increases to 180 Ω under the return loss 
condition of over 10 dB within the passband. On the other 
hand, as k1 increases in Fig. 3(c), Ts will grow up slightly 
but Tp will decrease and then rise up, while the bandwidth 
Δf will fall down directly. In contrast, as k2 increases, Ts 
will almost remain unchanged but Tp will reduce and then 
go up, while Δf will rise up simultaneously as seen in 
Fig. 3(d). 
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Fig. 3. Performance of the proposed BPF. (a) Definition of Ts 
and Tp, and 3-dB bandwidth Δf. (b) Δf, Ts and Tp 
versus Z1 (Z0e1 = 158 Ω, Z0o1 = 60 Ω, Z0e2 = 109 Ω, 
Z0o2 = 65 Ω), (c) Δf, Ts and Tp versus k1 (Z1 = 90 Ω, 
Z0e2 = 109 Ω, Z0o2 = 65 Ω), and (d) Δf, Ts and Tp versus 
k2 (Z1 = 90 Ω, Z0e1 = 158 Ω, Z0o1 = 60 Ω). 
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Fig. 4. (a) Layout of the proposed fifth-order BPF (unit: mm) 
and (b) its fabricated photograph. 

3. Implementation Results 

3.1 Simulation and Measurement 

Based on the above analysis, the final parameters of 
the designed ideal circuit model filter with center frequency 
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at 2.04 GHz are taken as: Z0 = 50 Ω, Z0e1 = 158 Ω, 
Z0o1 = 60 Ω, Z0e2 = 109 Ω, Z0o2 = 68 Ω, Z1 = 90 Ω and 
θ = 90°. Figure 4 illustrates a verified physical layout of 
this wideband BPF as well as its photograph fabricated on 
the F4B substrate with relative permittivity of 2.65 and 
thickness of 1 mm, where the loss tangent of dielectric is 
tan = 0.006, the conductivity and thickness of copper 
conductor are 5.8  107 S/m and 35 μm, respectively. 

The measured S-parameters are plotted in Fig. 5 along 
with the simulation using Ansoft HFSS for comparisons. 
The simulated lower and upper transition band roll-off rates 
are better than 567 dB/GHz, while the measured counter-
parts are also over 567 dB/GHz. Table 1 tabulates the per-
formance comparisons of the proposed BPF with some 
previous works, and it can be seen that the presented study 
has enhanced transition band roll-off skirts to realize super 
high frequency selectivity with the most number of TZs. 

 
Fig. 5. Simulated and measured S-parameters of the BPF. 

 

Ref. TPs TZs Δf 
ξROR* 
(L/U) 

(dB/GHz) 

Upper 
stopband 

(dB) 

Circuit 
size  
λg × λg 

[4]-I 5 6 61.7% 210/130 >15 (2.7f0) 0.68 × 0.45

[7] 7 4 78% 288/175 >35.1 (2.6f0) 0.56 × 0.23

[8] 5 8 19% 340/425 >18 (3f0) 0.39 × 0.28

[15]-A 5 6 70% 81/121 >21 (2.6f0) 0.53 × 0.41

[15]-B 5 6 37% 94/120 >23 (2.8f0) 0.61 × 0.55

This work 5 12 18% 567/567 >18 (3f0) 0.45 × 0.3

*Transition band roll-off rates ξROR = |δ–20dB – δ–3dB|/|f–20dB – f–3dB|, where  
δ–20/–3dB denotes the 20/3dB attenuation point, and f–20/–3dB is the 20/3dB 
passband frequency of |S21|. L and U denote lower and upper transition 
band roll-off rates, respectively. 

Tab. 1. Performance comparisons with some previous BPFs. 

3.2 Discussion 

For the ideal BPF circuit model in Fig. 1, the perfor-
mance of the passbands and lower/upper stopbands must be 
ideal with symmetrical curves as seen in Fig. 2 by using the 
theoretically mathematical calculation or commercial soft-

ware simulation (e.g., Ansoft Designer or ADS). For the 
physically realized geometry such as the layout in Fig. 4, 
however, the simulated or measured results will be deterio-
rated due to many discontinuities at the corners of two 
connected microstrip lines or meandering lines in the full-
wave electromagnetic simulation, compared with the theo-
retically calculated results. Generally, at higher frequency, 
the discrepancy between full-wave simulated results and 
theoretically calculated results will be larger than that at 
lower frequency in the circuit design as seen in Fig. 5. 
Therefore, it is reasonable that the simulated and measured 
results of the physically realized geometry are different 
with the simulation of the ideal BPF circuit model. The 
upper stopband rejection level is worse than the lower 
stopband rejection level. The work in [8] also has the same 
situation as seen in Tab. 1. 

4. Conclusion 
This paper has presented a compact super high-selec-

tivity fifth-order BPF with twelve TZs using simple circuit 
structure. The design idea and calculations on TZs and TPs 
are also provided. Due to its sharp roll-off skirts, multiple 
TPs and TZs, and ease of fabrication and integration with 
other circuits, the proposed BPF is promising in application 
of modern wireless communication systems. 
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