
1100 D. CERNY, J. DOBES, S. BANAS, EFFICIENT PROCEDURE IMPROVING PRECISION OF . . .

Efficient Procedure Improving Precision of High
Conditioned Matrices in Electronic Circuits Analysis

David CERNY, Josef DOBES, Stanislav BANAS

Dept. of Radioelectronics, Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic

{cernyd1, dobes, banassta}@fel.cvut.cz

Submitted September 22, 2017 / Accepted August 30, 2018

Abstract. In this article, we propose several improvements
that could be done to SPICE simulator. The first is based on
a functional implementation of device models. The advan-
tages of functional implementation are demonstrated on ba-
sic Shichman-Hodges model of MOS transistor. It starts with
a description of primary algorithms used in SPICE simulator
for the solution of circuits with nonlinear devices and iden-
tify the problems that can occur during simulations. Main
part of the article is devoted to improved factorization proce-
dure for simulation of the nonlinear electronic circuits. The
primary intention of the proposed method is to increase fi-
nal precision of the result in a case of high condition linear
systems. The procedure is based on a use of the iterative
methods for solution of nonlinear and linear equations. Util-
izing those methods for one iterative process helps to reduce
memory consumption during simulation computation, and it
can significantly improve simulation precision. The proce-
dure allows to use enumeration with definable precision in
a very efficient way.

Keywords
SPICE simulator, functional programming, Lisp, itera-
tive methods, factorization procedures, conditionality
of linear systems, simulation precision

1. Introduction
Recent development of the simulation of electronic cir-

cuits can be divided into several directions. The first is
focused mainly on improving device models of the program
SPICE. They go from enhancing possibilities given by stan-
dard models, through implementing entirely new ones to
constructing new macro-models formed by standard models.
From the recent publications, we can point out the following
articles [1–9] that are entirely or partly focused on model
improvement in the SPICE simulators. The second direc-
tion of the development is targeted to algorithms used during
simulation. It can be divided into the two subsections. The
first subsection is dedicated to concrete simulation type or
simulation problem where standard simulation core could
not be used because given device models or simulation prob-

lem is not applicable to SPICE computation procedure. The
most often it is the simulation of various DC-DC circuits,
but many other articles have been published for enhancing
core to simulate magnetic features or another circuit behav-
ior and effects. From recent works focused on strengthening
simulation core we can mention [10–17]. It could be seen
this is very active field of development. The second sub-
section is focused to SPICE core algorithm performance or
performance of an entire simulation process. SPICE core
wasn’t changed much since it was first developed; therefore
it is interesting to adapt it to present hardware or software,
mainly with an intention of improving simulator performance
or accuracy of the results. From recent publications in this
area we recommend [18–20]. Moreover, new (and often un-
usual) modes of analysis and optimization have recently been
implemented to the SPICE-family programs that are very de-
manding to the precision of the algorithms [21–27]. This
article belongs to the last mentioned subsection with one im-
portant note that it does try to enhance standard simulation
procedure but it completely redefine the process with the
new one where standard procedure is replaced with recursive
and factorization free evaluation algorithms and as suitable
programming tool is used functional language Lisp. It can re-
duce memory requirements, computation time and add a new
factor of variability not only during device modeling but also
during specification of the simulation. The idea originates
from adaptive environment for solving of extra large datasets
and combines advantages from today’s use of functional and
aspect-oriented languages [28–31].

2. Models and Virtual Representation
The real electronic devices such as resistors, capacitors,

diodes, or MOS transistors are represented in the simula-
tion programs by its software models. Those models are
interpreted in the simulation core as a set of mathematical
equations with the purpose of accurately approximating de-
vice behavior in a particular region of operation. It is a fact
that device models become not very reliable when simulation
gets out of assumed operation bounds. It is mainly caused by
the developers’ intent to keep models equations simple and
efficient with fast convergence behavior while they are still
precise within their operation point bounds [32], [33]. If we

DOI: 10.13164/re.2018.1100 CIRCUITS

RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 1101

assume that simulation takes place within the device’s model
bounds, and there is no error in circuit design the next stage of
device modeling is a rate of affection by simulation changes.
Device models are usually defined as closed structures that
enter a simulation by calling its extern functions. This leads
to a situation where models are only particular part of the
simulation and can be affected only as much as arguments of
their functions allow. They can be enhanced when we stop
taking model devices as closed structures that can return only
numeric values and rewrite them in a functional form.

3. Functional Device Models
In order to demonstrate the functional device modeling

(FDM), let us start with the very simple (Shichman-Hodges)
model of MOS transistor used in SPICE as described in [34].
The drain-source current IDS of an n-channel device is then

IDS =

0 for VGS 5 VTH,

βfV2
ONXλ for 0 < VON 5 VDS,

βfVDS(2VON − VDS)Xλ for 0 < VDS < VON

(1)

where each case defines different region of an operation cut-
off, saturation, and linear. Variables VON and Xλ are sub-
stitutions defined as VON = VGS − VTH and Xλ = 1 + λVDS.
Parameter βf (for a forward transconductance) is substitution

βf =
K
2

W
LEFF

(2)

where LEFF = L − 2LD is effective channel length corrected
for the lateral diffusion, LD, of the drain and source, and

VTH = VTH0 + γ
(√
φ − VBS −

√
φ
)

(3)

is the threshold voltage in the presence of a bulk-gate bias,
VBS < 0. Parameters VTH0, K , γ, φ and λ are the electric pa-
rameters of the MOSFET model, representing the zero-bias
threshold voltage, transconductance factor, bulk threshold
parameter, surface potential, and output conductance factor
in saturation, respectively. In our simulations, we are going
to use the n-channel devices only with bulk connected to
source. Therefore, we can simplify the model putting VTH to
a constant value.

The variables VDS, VGS depend on circuit definition and
current state. At the time of model definition, those vari-
ables remain unknown and will be evaluable at the moment
of circuit simulation. Also, from the point of view of the
simulation core, it is not clear how many unknown variables
each model introduce to a circuit. One possible solution is
to a make generic get/set function returning values by their
reference. Better implementation can be done utilizing a two
or more stage self-redefinition mechanism denoted as “func-
tional chaining”. In the first stage model functions returns, as
a result, another function with internal variables adapted to
simulation unknowns as voltages, currents or temperature. In
the second stage through the chaining procedure, all unknown
variables will evaluate itself according to simulation state.

Functions defined through this mechanism can be
treated as values despite that they are unknown. That allows
computation core to save execution time and handle those
functions, referred as functionals, as any normal number and
store them in vectors, matrices or sparse matrix systems. As
a demonstration of the previous statement, a complete defi-
nition of previously mentioned equations for a simple model
of the MOS transistor in functional language Lisp follows:

(defmethod mos_ c u r r e n t _ d r a i n
((mos c lass−mos) vg vs vd)
’ (lambda ()

(l e t ∗
((v_gs (− (eva l vg) (eva l vs)))
(v_ds (− (eva l vd) (eva l vs)))
(v_on (− v_gs (VTH mos)))
(x_lambda

(+ 1 (∗ (LAMBDA mos) v_ds))))
(cond

((< vgs (VTH mos)) 0)
((and (< 0 v_ds) (< v_ds v_on))

(∗
(BETA mos) v_ds x_lambda
(− (∗ 2 v_on) v_ds)))

((and
(< 0 v_on)
(< v_on v_ds))
(∗ (BETA mos) x_lambda

(expt v_on 2)))))))

The method denoted as “mos_current_drain” is a wrap-
per (a symbolic representation) for the inner functional defi-
nition (see amore detailed description of functionals in [35]):

(defmethod mos_ c u r r e n t _ d r a i n
((mos c lass−mos) vg vs vd)
’ (lambda ()

Specifically, it is defined without any parameters, but the
wrapper function, which, on its call, will set up all internal
variables of the device model to references passed through
the input argument list. Those arguments vg, vs, and vd are
simulation variables and will be set to circuit voltages con-
cerning a location where the device is placed in a circuit. It
is done by calling “eval” function during the enumeration:

(vgs (− (eva l vg) (eva l vs)))

For completeness, we need to note that for each non-
linear model there have to be defined all derivatives for all
nonlinear functions and time dependent parameters. They
will be used for the generation of Jacobian matrix that is
required by Newton-Raphson algorithm. In our case, it has
to be the two partial derivatives that will result in additional
functions wrapping their functionals:

(defmethod mos−cu r r en t−dra in−dvgs)
(defmethod mos−cu r r en t−dra in−dvds)

1102 D. CERNY, J. DOBES, S. BANAS, EFFICIENT PROCEDURE IMPROVING PRECISION OF . . .

1M Operations Addition Multiplication Division Division by Constant
C Double (ms) 3.1 2.8 24.3 1.9
C Arbitrary (ms) 31.9 69.8 137.0 139.0
Lisp Double (ms) 1126.5 1143.3 1127.4 1103.2
Lisp Rationals (ms) 1778.3 1431.3 1514.0 1471.5

Tab. 1. Differences between run times of one million operations in C and Lisp languages.

The full definition requires derivation for each nodal
voltage direction. It will result in growing of Jacobian ma-
trix during evaluation. More information about the concepts
of functional programming can be found in [36]. Compre-
hensive definition of nonlinear device modeling in Lisp with
explanation of further steps can be found in [37] and [38].

It should be noted that functional language can be very
beneficial from a point of view of simulation variability and
definition. It can improve experience of the users during
simulation, device model definition and creation. On the
other hand it will be very inappropriate to use it for de-
manding numerical operations that are required by simula-
tion analysis. It is still very difficult to get any closer with any
other languages to performance of optimized code written in
Fortran or C language. In Tab. 1 (it is expanded version
of [35]), there is a comparison between performance of basic
operations in the C and Lisp programming languages.

4. Device Models and Simulation

For each simulation type, there is a need to perform
certain steps to obtain correct results. Basic DC simulation
includes solving a linear system compiled by modified nodal
formulation (MNF). It is a fundamental part of any other
type of simulation and the essential starting point of transient
analysis. Transient simulation characterizes device behavior,
mostly nonlinear, with respect to time. It includes solving
sets of nonlinear equations. The procedure that is commonly
used is presented in the Algorithm 1.

Algorithm 1. Standard Simulation Procedure

for TIMELINE do
INITIAL ENUMERATION
LINEAR SYSTEM (LU Factorization)
repeat {NONLINEAR SYSTEM (Newton-Raphson)}
JACOBIAN MATRIX (LU Factorization)
NEXT ESTIMATE (vector-matrix product)
RESIDUAL (vector norm)

until STOPPING CRITERIA
if not (CONVERGENCE) then
return CONVERGENCE PROBLEM

end if
end for

From the point of view of the memory handling and
computation stability, it is very fast and efficient procedure.
The resulting sparse matrix after LU factorization introduces
very small amount of new fill-ins, and accompanied with for-
ward elimination & back substitution, it produces result in
very short time. However, there are some special cases when
usage of supplementary algorithm can be required to improve
stability of simulation or precision of the result. For instance,
settings of the circuit devices can significantly increase con-
dition number of matrix produced by MNF. It can introduce
to already complicated problem additional complexity, low
density of sparse matrix together with high matrix condi-
tion number can cause numerical errors during floating point
operations followed by substantial decrease in final precision.

5. LU Factorization
The LU factorization (LUF) is an efficient algorithm

able to find a solution of linear system defined by highly
sparse matrices. It was implemented into SPICE and other
simulation programs [39]. It can be briefly defined as

Ax = b→ A = LU (4)

whereU (upper) andL (lower) are two triangular submatrices
that lead to a solution of a linear system as

Ax = LUx→ Ly = b, Ux = y. (5)

The problematic fact about the LU factorization is that
it is a very demanding operation consuming much mem-
ory and computation time. Even though there have been
published many articles on an optimization of LU factori-
zation [40–42], they do not solve the main problem that we
believe lies in the condition number of the factorized matrix.
High condition number can affect final precision of direct
factorization method. In Tab. 2, a dependency is presented
of the total number of required operations needed for matrix
factorization on given dimension. It additionally shows the
development of the number of required iterations of the algo-
rithm and matrix sparsity. The visual comparison is shown
in Fig. 1. LUF method is usually performed by the Newton-
Raphson iterative algorithm. It can be performedmany times
before algorithm finds a solution of a nonlinear system. It is
obvious that obtaining final solution is very time demanding
process and should not be repeated. Also once the solution
of final LUF is done the precision of the result cannot be
improved by LUF algorithm in other way that recomputing it
again with higher (or even arbitrary) precision numbers.

RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 1103

Dim. Matrix Density
100 90 Diff 90 80 Diff 80 70 Diff 70 60 Diff 60 50 Diff 50

50 8.45E+04 8.34E+04 1.65E+03 8.28E+04 1.65E+03 8.08E+04 3.64E+03 8.08E+04 3.69E+03 8.04E+04 4.06E+03
100 7.55E+05 7.50E+05 7.96E+03 7.47E+05 7.96E+03 7.33E+05 2.28E+04 7.39E+05 1.67E+04 7.34E+05 2.12E+04
150 3.02E+06 3.00E+06 2.28E+04 2.99E+06 2.28E+04 2.94E+06 7.12E+04 2.97E+06 4.85E+04 2.95E+06 6.13E+04
200 8.36E+06 8.33E+06 5.02E+04 8.31E+06 5.02E+04 8.21E+06 1.56E+05 8.26E+06 1.05E+05 8.23E+06 1.33E+05
250 1.88E+07 1.87E+07 1.32E+05 1.87E+07 1.32E+05 1.85E+07 2.84E+05 1.86E+07 1.95E+05 1.86E+07 2.44E+05
300 3.68E+07 3.67E+07 2.74E+05 3.66E+07 2.74E+05 3.63E+07 5.20E+05 3.65E+07 3.26E+05 3.64E+07 4.07E+05
350 6.55E+07 6.53E+07 4.33E+05 6.50E+07 4.33E+05 6.47E+07 7.31E+05 6.50E+07 5.21E+05 6.48E+07 6.32E+05
400 1.08E+08 1.08E+08 6.27E+05 1.08E+08 6.27E+05 1.07E+08 1.05E+06 1.07E+08 7.73E+05 1.07E+08 1.17E+06
450 1.69E+08 1.69E+08 9.04E+05 1.68E+08 9.04E+05 1.68E+08 1.46E+06 1.68E+08 1.09E+06 1.66E+08 2.61E+06
500 2.52E+08 2.52E+08 1.25E+06 2.51E+08 1.25E+06 2.50E+08 2.20E+06 2.51E+08 1.49E+06 2.49E+08 3.82E+06
550 3.64E+08 3.63E+08 1.79E+06 3.62E+08 1.79E+06 3.61E+08 3.00E+06 3.61E+08 2.22E+06 3.58E+08 5.37E+06
600 5.08E+08 5.07E+08 2.06E+06 5.06E+08 2.06E+06 5.04E+08 3.44E+06 5.04E+08 3.65E+06 5.01E+08 6.64E+06
650 6.91E+08 6.90E+08 2.37E+06 6.89E+08 2.37E+06 6.87E+08 4.48E+06 6.87E+08 4.33E+06 6.83E+08 8.16E+06
700 9.20E+08 9.18E+08 3.19E+06 9.17E+08 3.19E+06 9.14E+08 5.81E+06 9.14E+08 6.08E+06 9.11E+08 9.11E+06
750 1.20E+09 1.20E+09 4.12E+06 1.20E+09 4.12E+06 1.19E+09 6.47E+06 1.19E+09 7.45E+06 1.19E+09 1.02E+07
800 1.54E+09 1.54E+09 5.19E+06 1.54E+09 5.19E+06 1.53E+09 8.16E+06 1.53E+09 1.03E+07 1.53E+09 1.24E+07

Tab. 2. Number of operations of LUF for different dimensions and densities.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 50 100 150 200 250 300 350 400 450 500
 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

C
o
u
n
t
o
f
L
U

 o
p
e
ra

ti
o
n
s

T
im

e
 L

U
F

 (
s
)

Matrix Dimension

Operations
Time

Fig. 1. Base count of LU operations vs matrix dimension.

Therefore, we decided to add the algorithm improving
the solution of nonlinear equations with one iteration of New-
ton algorithm for computing of eigenvalues of linear system.
Even it was originally developed as iterative algorithm for in-
version matrix it can be applied on system of linear equations
in very efficient way.

6. Matrix-Inversion Iterative Methods
Iterative methods refer to techniques that use succes-

sive approximations to obtain a more accurate solution of
the linear system at each step. There are so-called stationary
methods and the non-stationary methods based on the idea
of sequences of orthogonal vectors. Stationary methods per-
form in each step a same operation on the current values. In
the non-stationary method, iterations depend on coefficients.
From stationary methods, it can be point out following ones:

• The Jacobi Method (JACOBI)
• The Gauss-Seidel Method (GS)
• The Successive Overrelaxation Method (SOR)

From the non-stationary methods (sometimes referred
as Krylov subspace methods), it could be pointed out the
following methods:

• Conjugate Gradient Method (CG)
• Generalized Minimal Residual (GMRES)
• Conjugate Gradient Squared Method (CGS)
• BiConjugate Gradient Stabilized (BICGStab)
• BiConjugate Gradient (BICG)
• Quasi-Minimal Residual (QMR)

The original Newton iteration algorithm [43–45] was
enhanced for implementation into the core of an electronic
circuit simulator. Denoting Jacobian matrix as J and identity
matrix as I, for inverted Jacobian matrix J−1 we can write

J−1 = J−1(2I − I) = J−1(2I − JJ−1). (6)

For an arbitrary real matrix, J, the above statement al-
lows for each iteration step n to define a generalized inverse
(pseudo inverse) denoted as Xn

Xn = J−1 + εn ⇒ Xn+1 = J−1 + εn+1 (7)

where εn is an error matrix. From that we get to

J−1 + εn+1 = (J−1 + εn)(2I − J(J−1 + εn)). (8)

The above form can be rewritten using Xn and Xn+1 to
a more readable form

Xn+1 = Xn (2I − JXn) . (9)

It is obvious that previous equation will iterate to the
solution if

0 < ‖2I − JXn‖ < 1. (10)

It is correct but very impractical for a real implementa-
tion. To become a full replacement for standard LUF proce-
dure we need to define an algorithm for obtaining appropriate

1104 D. CERNY, J. DOBES, S. BANAS, EFFICIENT PROCEDURE IMPROVING PRECISION OF . . .

initial starting values otherwise the iterationwill not converge
to a solution.

6.1 Starting Values
The algorithm uses results from the LUF method as

a starting value. The conversion of this result to higher preci-
sion numbers is relatively fast operation involving one matrix
vector product. Alternatively, the algorithm can recompute
solution with own guess based on (11). This relatively slow
procedure can be useful in a case of problematic errors caused
by floating point arithmetics.

The result considered here is a special case of a more
general and well known Newton iteration method which
concerns the iterative computation of pseudo-inverses. Let
A ∈ Rn×n be a non-singular matrix and define the sequence
{Xn}n=0 of matrices as follows:X0 = αJT, α ∈

(
0, 2

e0(JJT)

)
,

Xn+1 = Xn (2I − JXn)
(11)

where e0 stands for the highest value of the eigenvalue vec-
tor e of the matrix J. Then, Xn → J−1 as n→∞.

This mathematically rigorous definition, unfortunately,
requires evaluating eigenvalues. It is not a simple task, and it
is very impractical especially in the situation when we want
to avoid any factorization method. As a possible solution
proved to be reducing the entire definition can be used

X0 = βJT (12)

where β simply belongs to interval (0, 1). If some iteration
does not converge, then simulation restarts with a smaller
β value. It turned out that best value for β is somewhere in
the interval (10−8, 10−5) (for double floating point precision
on 64-bit operating system).

6.2 Residual and Stopping Criteria
After each iteration, the algorithm needs to evaluate

residual to review convergence. The easiest way to do it is to
check whether the vector norms of the current and previous
solutions show a decreasing trend, i.e.,

‖ f (Xn+1)‖ 5 ‖ f (Xn)‖ (13)

where
f (Xn) = 2I − JXn. (14)

The stopping criteria should be defined by at least two
different mechanisms; the first by setting a maximum num-
ber of iteration loops to protect from an infinite loop (usually
maximum 30 iterations), and also by checking a change be-
tween the two consecutive iterations steps. It can be mathe-
matically defined in the following way:

‖ f (Xn+1)‖ − ‖ f (Xn)‖ 5 ε (15)

where ε is a measure of iteration step size, and depending on
required precision should be set to at least 10−6.

7. Iterative Method for Linear System
Sticking to the previous notation, a system of linear

equations written as a matrix equation can be denoted as

Ax = y→ x = A−1y (16)

where A is (in general case) an m × n matrix, A−1 is a sym-
bol of matrix inverse and x and y are column vectors with
m and n entries, respectively. As we need to avoid factoriza-
tion methods, again, some iterative algorithm must be used.
The simplest solution is to implement well known Gauss-
Seidel method [46] for solution of the presented linear system

xi =
ci −

∑n
j=i ai j xj

aii
, i , j (17)

where stopping criteria can be defined similarly to Newton
iteration algorithm as

‖x − x0‖ < ε . (18)

Usage of the whole algorithm would be impractical and
(very) time demanding. Each iteration adds to the simulation
additional number of matrix multiplications. Therefore, we
use the algorithm only in one iteration as precision booster
of the simulation. In other words, the maximum number of
iteration loops is limited to one.

8. Modified Simulation Algorithm
Putting it all together, we finish with a new procedure

that can be implemented to the core of the electronic circuit
simulator. The procedure comes with several changes. Apart
from special cases of steady state analysis of circuits with os-
cillators, the simulation process starts with DC analysis. The
DC analysis is newly performed by factorization method ac-
companied with iteration algorithm for the solution of the
linear system. In our case, it was simple Newton iteration
method. When the transient analysis is the next step in the
simulation then results from DC analysis are used as initial
starting values for the initial guess of Newton-Raphson al-
gorithm. There is LUF method accompanied with residual
computation and ourmodifiedNewton iterationmethod. Full
redefined algorithm is written in Algorithm 2.

The coremodification of standard algorithm can be seen
in initial Jacobian matrix estimation. If the precision of the
result is decreased, using NIM (Newton iteration method, see
also [47]) as a successive step after the factorization method
can significantly increase the accuracy of the result during
one iteration loop.

RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 1105

Algorithm 2. Modified Simulation Procedure

for TIMELINE do
INITIAL ENUMERATION
LINEAR SYSTEM
NIM (precision boost)
repeat {NONLINEAR SYSTEM (Newton-Raphson)}
JACOBIAN MATRIX INITIAL EST.
if not (MEET THE CONDITIONS) then
DECREASE BETA
GOTO: JACOBIAN MATRIX INITIAL EST.

end if
repeat {JACOBIAN MATRIX}
NEXT ESTIMATION (vector-matrix product)
RESIDUAL (vector norm)

until STOPPING CRITERIA
NIM (precision boost)
NEXT ESTIMATION (vector-matrix product)
RESIDUAL (vector norm)

until STOPPING CRITERIA
if not (CONVERGENCE) then
return CONVERGENCE PROBLEM

end if
end for

9. Blockwise Inversion
As it has been shown, the inversion of the big sparse

matrices with NIM may be inefficient. To reduce size of
the problem we can use blockwise inversion algorithm. It is
defined as[

A B
C D

]−1
=[

A−1+A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
(19)

where A, B, C and D are matrix sub-blocks of arbitrary size.
(A must be square, so that it can be inverted.) This strategy
is particularly advantageous if A is diagonal and D−CA−1B
is a small. Special property of the electronic circuit matrices
allows to reorder matrix in a such way. In that case, inver-
sion of A is trivial, and application of NIM algorithm on
a relatively small problem with matrices system D −CA−1B
increase the total performance of computation.

10. Implementing Functional Language
Full implementing of the NR algorithm with the NIM

method implemented in the Lisp functional language follows.
It was not optimized from the computation performance point
of view and should be taken as a demonstration of the first ap-
proach to implementation of the simulation procedure. Also,

it is obvious from the comparison in Tab. 1 that pure imple-
mentation of all operations in Lisp will significantly affect
the computation performance. Therefore, it is recommended
to precompute the result with a direct method and then in
a case of the decreased precision to recompute the results
with one iteration loop of the NIM method.

Listing 1. Factorisation Free Algorithm in Lisp
(l e t ∗ (

(r e s i d u a l (e v a l− f u n c t i o n− l i s t f u n c t i o n− l i s t))
(i d e n t i t y−ma t r i x

(m a k e− i d e n t i t y− l i s t (l eng th ∗ v a r s ∗))))
(loop f o r n r− i t e r from 0

wh i l e (and
(< n r− i t e r max−nr− i t e r)
(> (abs (euc l i d i an−no rm r e s i d u a l))

∗ e p s i l o n ∗))
do
(l e t ∗ (

(j a c o b i a n−ma t r i x
(e v a l− j a c o b i a n− f u n c t i o n− l i s t

j a c o b i a n− f u n c t i o n− l i s t))
(j a c o b i a n− i n v e r s i o n−ma t r i x

(mat− t im (t r a n s p o s e j a c o b i a n−ma t r i x)
∗ p r e c i s i o n ∗)))

(loop f o r n i− i t e r from 0
wh i l e (and

(< n i− i t e r max−n i− i t e r)
(>

(j a c o b i a n− r e s i d u a l
j a c o b i a n−ma t r i x
j a c o b i a n− i n v e r s i o n−ma t r i x
i d e n t i t y−ma t r i x)

∗ p r e c i s i o n ∗))
do
(s e t f j a c o b i a n− i n v e r s i o n−ma t r i x

(mul t
j a c o b i a n− i n v e r s i o n−ma t r i x
(mat r ix−minus

(mat− t im i d e n t i t y−ma t r i x 2)
(mul t

j a c o b i a n−ma t r i x
j a c o b i a n− i n v e r s i o n−ma t r i x)))))

(s e t f− v a r s ∗ v a r s ∗
(r o t a t e

(va r−mat r ix−minus (r o t a t e ∗ v a r s ∗)
(mul t

j a c o b i a n− i n v e r s i o n−ma t r i x
(r o t a t e

(e v a l− f u n c t i o n− l i s t
f u n c t i o n− l i s t))))))

(s e t f r e s i d u a l
(e v a l− f u n c t i o n− l i s t

f u n c t i o n− l i s t)))))

Implementation of some non-standard functions of the
factorization free algorithm may not be obvious. To give the
reader a brief description, we include the description of the
missing ones. “make-identity-list” will create identity ma-
trix in a form of sparse matrix-vector. “euclidian-norm” will
compute Euclidian norm for a given vector. “eval-jacobian-
function-list” will evaluate Jacobian sparse matrix, repre-
sented by the chained functionals. “transpose” will reindex
sparsematrix container according to thematrix transposition.
“jacobian-residual” will compute residual for given Jacobian
matrix. “mult” is a multiplication of two matrices. “rotate”
will reindex sparse vector container according to vector trans-

1106 D. CERNY, J. DOBES, S. BANAS, EFFICIENT PROCEDURE IMPROVING PRECISION OF . . .

Name Resistor Mesh CMOS DS Reg. Big Nonlin. Circ. Differ. Ampl. JFET Nonlin. Circ. CMOS Adder
NIM 5.760281e-12 1.017395e-14 8.445384e-12 1.333657e-14 2.780350e-17 1.893448e-15
Jacobi 8.411095e-01 3.588980e-08 1.367218e-12 x 1.068927e-04 5.441340e-18
SOR 7.675048e-01 2.205560e-15 8.197609e-05 x 8.695059e-05 6.617365e-17
GS 6.948252e-01 3.594439e-14 1.712990e-12 x 8.073145e-05 5.986490e-17
CG 2.288703e-11 x x x 5.702876e-17 6.138830e-11
PCG 1.973377e-11 x x x 5.236681e-20 1.606757e-11
PCR 9.439810e-01 4.975587e-01 x 2.589355e-02 1.354612e-12 1.535535e-03
GMRES 1.836753e-12 2.159811e-15 2.786059e-10 1.771027e-11 3.363094e-16 5.091719e-16
CGS x 7.261480e-14 1.688600e-11 1.629902e-12 1.970704e-16 5.326264e-15
BICGS 3.102960e-10 3.155781e-14 4.999930e-12 3.315573e-11 3.964052e-18 3.197256e-15
QMR 1.535572e-11 3.011353e-14 2.292361e-11 5.863678e-12 2.925510e-17 9.527075e-15
Bicg2 2.288703e-11 2.776918e-14 3.008449e-11 1.837507e-12 5.702876e-17 6.762614e-15
Original 2.550404e-12 3.245608e-06 1.155214e-12 9.103135e-16 2.781650e-17 7.116835e-05

Tab. 3. Comparison of different circuit accuracy vs different iterative methods.

position. “matrix-minus” will subtract two sparse matrices
of the same size. “mat-tim” is optimized form of multiplica-
tion of the matrix and constant number. “eval-function-list”
is core function that will evaluate all chained functionals to
known values.

11. Selected Testing Simulated Circuits
We have selected six electronic circuits of various tech-

nology types for comparing the accuracy of the proposed
methods (Tab. 3):

• Resistor Mesh – a simple linear circuit interconnected
to a large mesh (Fig. 2)

• Big Nonlinear Circuit – a large LED matrix control
circuit (Fig. 3)

• A variant of the standard nonlinear circuit with JFET as
shown, e.g., in [48]

• Differential Amplifier – a differential amplifier shown
in Fig. 4

• CMOS Adder – adder constructed using MOS transis-
tors, this is a standard SPICE (PSpice) demonstration
example (called “ADDER - 4 BIT ALL-NAND-GATE
BINARY ADDER”)

• CMOS DS Regulator – a CMOS stepping regulator cir-
cuit as defined in [49]

The results of all the simulations performed with differ-
ent numerical iterative methods are shown in Tab. 3.

12. Results
In Fig. 1, the growth of the number of required opera-

tions (addition, multiplication, division) is shown vs increas-
ing size of matrix dimension (full-line and left y-axis). As
an informative comparison, it is shown together with required
computation time for LU factorization (dot-dashed line, right
y-axis). It is important to state that this implementation was
programmed as an algorithm using mathematical simulation

programMatlab with absolutely no optimization, and its pur-
pose here is to be a reference. Therefore, the presented times
here should be taken only as a comparison of a scale. Us-
ing appropriate real-world implementation, for example in C
language, would be certainly a better choice, but the primary
intention was to use unified environment.

R2

R6

R3

R7

R4

R8

R10 R11 R12

R14 R15 R16

R1

R5

R9

R13

R
22

R
21

R
20

R
17

R
18

R
19

R
25

R
24

R
23

R
26

R
27

R
28

R
31

R
30

R
29

Fig. 2. A fragment of the resistor mesh used as a large exemplary
linear circuit.

Fig. 3. A fragment of the LED matrix control circuit used as
a large exemplary nonlinear circuit.

RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 1107

Fig. 4. A differential amplifier used as an accuracy test.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 100 200 300 400 500 600 700 800
 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09
 0 200 400 600 800 1000 1200 1400 1600

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 f
o
r

fu
ll

m
a
tr

ix
 (

1
0
0
).

D
if
fe

re
n
c
e
 f
ro

m
 f
u
ll

m
a
tr

ix
 f
o
r

v
a
ri
o
u
s
 d

e
n
s
it
y
.

Matrix Dimension (Difference y-axis)

Matrix Dimension(Number y-axis)

Full Matrix
Sparse 0.8
Sparse 0.7
Sparse 0.6
Sparse 0.5

Fig. 5. Complex count of LU operations vs matrix dimension.

In Fig. 5, we present a dependency between the count of
the LU operations (full line) and matrix dimension. It should
be noted that it uses top x-axis, it goes from 0 to 800 and
together with the left y-axis. This figure additionally shows,
using bottom x-axis and right y-axis, the difference in the
number of required iterations of the LU factorization for the
matrices with different densities (dot and dash lines). In this
case, a sparse matrix system was filled with random num-
bers. They were generated to have several different non-zero
densities from full matrix density 100% to 50% density of
nonzero values. The numbers on the right y-axis represent
how much fewer operations where needed.

Figure 6 shows final accuracy received for three differ-
ent circuits of very different circuit sizes (from the point of
view of number of nonlinear device models).

-20

-18

-16

-14

-12

-10

-8

-6

 5 10 15 20 25 30 35 40 45 50

F
in

a
l
P

re
c
is

io
n
 o

f
N

I
in

 (
d
B

)
=

 l
o
g
(r

)

Count of Devices

Nonlinear Resistor
MOS
JFET

Fig. 6. Comparison of achieved accuracy for different circuits
sizes.

 0

 10

 20

 30

 40

 50

 60

1
.0

0
E

-1
2

1
.0

0
E

-1
0

1
.0

0
E

-0
8

1
.0

0
E

-0
6

1
.0

0
E

-0
4

1
.0

0
E

-0
2

1
.0

0
E

-0
1

1
.0

0
E

+
0
0

2
.0

0
E

+
0
0

3
.0

0
E

+
0
0

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

Epsilon

Nlin. R (NIM)
Nlin. R (NR)
MOS (NIM)
MOS (NR)

JFET (NIM)
JFET (NR)

Fig. 7. Comparison of minimal accuracy of NIM vs number of
iterations.

Usedmodels in this simulation have been: nonlinear re-
sistor defined as pure nonlinear voltage driven resistor, MOS
transistor defined by (1), and JFET transistor described by
a simplified model derived from original SPICE model [33].
It is presented to demonstrate that when an iterative algorithm
is used the precision of the result is limited. It is limited by
stopping criteria as well as by floating point precision. Re-
gardless of the required accuracy of the result or a maximum
number of iteration loops the accuracy of the results is given
primarily by nature of simulated nonlinear equations (device
models) and floating point implementation.

Figure 7 demonstrates interaction and influence of pre-
cision of inversion matrix on a result of NR method. The
x-axis contains different settings of the accuracy of inver-
sion matrix computed by NIM. The y-axis is the number
of iterations for different circuits. Each circuit was hold-
ing 100 devices of given type. The full-line curve stands for
NIM algorithm (evaluation of inversionmatrix). Dotted lines
represent the number of iterations needed by NR algorithm
to find a solution fulfilling stopping criteria. It is nothing

1108 D. CERNY, J. DOBES, S. BANAS, EFFICIENT PROCEDURE IMPROVING PRECISION OF . . .

new that the number of iteration loops of NIM depends on
a required accuracy of stopping criteria. An interesting ob-
servation is that stopping criterion of NIM does not need
to be as strict as in NR, and therefore, NIM algorithm can
be stopped much earlier which save some computation time.
Secondly, there is some point where stopping criteria of NIM
algorithm cause very steep growth of the required number of
iteration loops on NR algorithm or even its divergence.

Although it proves to be very stable method, it is clearly
visible now that the real implementation suffers from one big
drawback apart from other iterative algorithms and of course
from direct LUF. It is a need of computing and storing of at
least one additional (unfortunately dense) matrix. Simplicity
of the algorithm allows compiler to optimize the code in such
a way that performance is to be rapidly increased, but with
increase of matrix dimension memory, requirements of this
method rapidly decrease performance. This can be visible
from Fig. 8. It uses the following naming conventions:

• (LUF BFS n.) LU factorization with forward elimina-
tion and back substitution

• (NIM n. -Ofast) Naive implementation of algorithm
• (LUF BFS naive -Ofast) Compiled with full support of
compiler optimization

• (LUF BFS Lapack) Algorithms were implemented us-
ing Lapack functions

• (NIM Lapack) Newton Iteration method
• (GNU Octave) Algorithm for matrix inversion imple-
mented in GNU Octave

• (Cholesky Lapack) Computation uses Choleskymethod

It can be seen from the results that “naive” implemen-
tation that represents (only) implementation of the algorithm
without respect to procesor cache and fast computation tech-
niques slows entire computation by several orders. Number
of required iterations to obtain the result with particular pre-
cision unfortunately depends on the initial estimation and
matrix dimension.

-50

-40

-30

-20

-10

 0

 10

 20

 0 100 200 300 400 500 600

T
im

e
 t
o
 s

o
lu

ti
o
n
 (

L
o
g
 S

c
a
le

)

Matrix Dimension

LUF BFS n.
NIM n. -Ofast

LUF BFS naive -Ofast	
LUF BFS	Lapack

NIM Lapack
GNU Octave	

Cholesky Lapack

Fig. 8. Comparison of performance of method implementations.

12.1 Comparing Tables of Method Accuracies
In Tab. 4, there is a comparison of the accuracy increase

with additional NIM cycle computed with arbitrary numbers
to matrix dimension. It got an additional accuracy boost
computed by NIM after each successful iteration time step.
The adapted transient analysis completed by single loop NIM
with arbitrary precision is shown in Algorithm 2. It can be
applied to the end of operating-point analysis or as a final
procedure after each time step of transient analysis.

The values in Tabs. 3 and 4 represent maximal accuracy
of the computation of RHS vector that could be achieved with
given method on the specific simulation task. The measure
of accuracy is limited by mathematical properties of given
numerical method from one side and by digital representa-
tion of floating point numbers from the other side. While
Tab. 3 gives an idea on rate of change of the accuracy levels,
Tab. 4 demonstrates possible improvement in accuracy given
by proposed method. Therefore, the values in the tables do
not represent the results of the simulations, but the inaccuracy
of the calculation from the ideal state.

Circuit Accuracy Accuracy Boost
Resistor Mesh 1.37E-10 2.20E-19
Big Nonlin. Circ. 6.32E-15 1.89E-29
JFET Nonlin. Circ. 2.14E-15 5.21E-29
Differ. Ampl. 4.03E-13 2.69E-27
CMOS Adder 1.16E-11 1.27E-24
CMOS DS Reg. 8.96E-14 5.47E-28

Tab. 4. Accuracy boost given by one iteration loop of NIM with
arbitrary precision.

13. Conclusion
Basing on the assumption that electronic device mod-

els definitions are introduced to the simulation as chained
functionals, they will autonomously evaluate themselves to
values upon call. It is evident that trying to convert those
entries to matrix system to compute matrix inversion or so-
lution of the linear system is redundant operation. It seems
to be as a solution to chain all entries to another function
that on call evaluate entire simulation. The key factor of the
implementation lies in the use of the iterative recursion. In
this article, we presented the new procedure utilizing factori-
zation free algorithm that can enhance standard computation
core of electronic circuit simulators.

Not only from the results it is evident that accuracy or
better convergence of iterative numerical methods depends
on matrix properties and also on starting values. It means
that in the case when LUF method does finish with sufficient
precision then better results can be achieved with numeri-
cal iteration (with an assumption that same numeric floating
types are used in both scenarios). The article suggests that
accuracy of the results should be presented alongside with
results and of course in a situation when the standard method
does not achieve reasonable accuracy then some iteration

RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 1109

method can be used next. The concrete method depends on
the problem and picks up could be a tricky part. We suggest
NIM approach as very universal solution, but it is of course
very memory demanding and can be very inefficient for huge
matrixes.

As it has been already said, NIMmethod supports a use
of rationals (numbers expressed as the fraction p/q where p
and q are integers and q is nonequal to zero). When iteration
utilizes computation with rationals, it is possible with NIM to
receive a more precise solution. Performing standard direct
method with rational numbers has significant drawbacks that
are for wider discussion. Mainly, standard operations with
rationals are slower than those with standard types. A large
difference has been presented between evaluating of one mil-
lion operations in C language and Lisp with a use of rationals
or with floating point numbers. The significant problem that
arises with rational numbers is a size of the numeric con-
tainer and required time to store and obtain it from computer
memory. Our tests showed that it takes 0.7 s to store the
rational number of size 101000000. Usage of one iteration
of NIM with initial starting value as a result from previous
factorization allows to use arbitrary numbers in much more
effective way and, therefore, obtain the final solution with
improved precision faster.

All computation and simulation tests were made on the
same computer machine with a processor Intel Core i3 4160
Haswell, chipset Intel H87 and RAM 8GB DDR3, with 64b
architecture and operating system.

Acknowledgments
This paper was supported by the Technology Agency

of the Czech Republic under the grant No. TE01020186, and
by the Grant Agency of the Czech Technical University in
Prague under the grant No. SGS18/079/OHK3/1T/13.

References

[1] SAIZ-VELA, A., MIRIBEL-CATALA, P., COLOMER, J., et al. Ac-
curate design of high-voltage multistage voltage doublers based on
compact mathematical model. Electronics Letters, 2007, vol. 43,
no. 15, p. 797–798. ISSN: 0013-5194. DOI: 10.1049/el:20070405

[2] SANYAL, A., RASTOGI, A., CHEN, W., et al. An efficient tech-
nique for leakage current estimation in nanoscaled CMOS circuits
incorporating self-loading effects. IEEE Transactions on Com-
puters, 2010, vol. 59, no. 7, p. 922–932. ISSN: 0018-9340.
DOI: 10.1109/TC.2010.75

[3] YANG, S., LIU, S., FENG, W., et al. SPICE circuit model
of voltage excitation fluxgate sensor. IET Science, Measurement
Technology, 2013, vol. 7, no. 3, p. 145–150. ISSN: 1751-8822.
DOI: 10.1049/iet-smt.2013.0005

[4] KUMAWAT, R., SAHULA, V., GAUR, M. Probabilistic model
for nanocell reliability evaluation in presence of transient errors.
IET Computers Digital Techniques, 2015, vol. 9, no. 4, p. 213–220.
ISSN: 1751-8601. DOI: 10.1049/iet-cdt.2014.0124

[5] VAN UFFELEN, M., GEBOERS, S., LEROUX, P., et al. SPICE
modelling of a discrete COTS SiGe HBT for digital applications
up to MGy dose levels. IEEE Transactions on Nuclear Sci-
ence, 2006, vol. 53, no. 4, p. 1945–1949. ISSN: 0018-9499.
DOI: 10.1109/TNS.2006.880949

[6] HUSZKA, Z., CHAKRAVORTY, A. Implementation of delay-time-
based nonquasi-static bipolar transistor models in circuit simula-
tors. IEEE Transactions on Electron Devices, 2014, vol. 61, no. 8,
p. 3004–3006. ISSN: 0018-9383. DOI: 10.1109/TED.2014.2327664

[7] TANAKA, C., SAITOH, M., OTA, K., et al. SPICE-Based per-
formance analysis of trigate silicon nanowire CMOS circuits. IEEE
Transactions on Electron Devices, 2013, vol. 60, no. 4, p. 1451–1456.
ISSN: 0018-9383. DOI: 10.1109/TED.2013.2247607

[8] STEINER, M., SIEFER, G., BETT, A. SPICE network simulation
to calculate thermal runaway in III-V solar cells in CPV modules.
IEEE Journal of Photovoltaics, 2014, vol. 4, no. 2, p. 749–754.
ISSN: 2156-3381. DOI: 10.1109/JPHOTOV.2014.2299398

[9] LIN, J., TOH, E. H., SHEN, C., et al. Compact HSPICE model for
IMOS device. Electronics Letters, 2008, vol. 44, no. 2, p. 91–92.
ISSN: 0013-5194. DOI: 10.1049/el:20083116

[10] WONG, O. Y., WONG, H., TAM, W. S., et al. Dynamic analysis
of two-phase switched-capacitor DC-DC converters. IEEE Trans-
actions on Power Electronics, 2014, vol. 29, no. 1, p. 302–317.
ISSN: 0885-8993. DOI: 10.1109/TPEL.2013.2249594

[11] KE, H., HUBING, T., MARADEI, F. Using the LU recombination
method to extend the application of circuit-oriented finite element
methods to arbitrarily low frequencies. IEEE Transactions on Mi-
crowave Theory and Techniques, 2010, vol. 58, no. 5, p. 1189–1195.
ISSN: 0018-9480. DOI: 10.1109/TMTT.2010.2045533

[12] ACARY, V., BONNEFON, O., BROGLIATO, B. Time-stepping nu-
merical simulation of switched circuits within the nonsmooth dynam-
ical systems approach. IEEETransactions onComputer-AidedDesign
of IntegratedCircuits and Systems, 2010, vol. 29, no. 7, p. 1042–1055.
ISSN: 0278-0070. DOI: 10.1109/TCAD.2010.2049134

[13] FERREIRA, D., OLIVEIRA, J., PEDRO, J. A novel time-domain
CAD technique based on automatic time-slot division for the numer-
ical simulation of highly nonlinear RF circuits. IEEE Transactions
on Microwave Theory and Techniques, 2014, vol. 62, no. 1, p. 18–27.
ISSN: 0018-9480. DOI: 10.1109/TMTT.2013.2293481

[14] ZHANG, X., CHEN, W. H., FENG, Z. Novel SPICE com-
patible partial-element equivalent-circuit model for 3-D struc-
tures. IEEE Transactions on Microwave Theory and Tech-
niques, 2009, vol. 57, no. 11, p. 2808–2815. ISSN: 0018-9480.
DOI: 10.1109/TMTT.2009.2032462

[15] SAFAVI, S., EKMAN J. A hybrid PEEC-SPICE method for
time-domain simulation of mixed nonlinear circuits and electro-
magnetic problems. IEEE Transactions on Electromagnetic Com-
patibility, 2014, vol. 56, no. 4, p. 912–922. ISSN: 0018-9375.
DOI: 10.1109/TEMC.2014.2300372

[16] FRANCO, F., PALOMAR, C., IZQUIERDO, J., et al. SPICE simu-
lations of single event transients in bipolar analog integrated circuits
using public information and free open source tools. IEEE Trans-
actions on Nuclear Science, 2015, vol. 62, no. 4, p. 1625–1633.
ISSN: 0018-9499. DOI: 10.1109/TNS.2015.2416000

[17] TLELO CUAUTLE, E., RODRIGUEZ CHAVEZ, S. Graph-based
symbolic technique for improving sensitivity analysis in analog inte-
grated circuits. IEEELatinAmerica Transactions, 2014, vol. 12, no. 5,
p. 871–876. ISSN: 1548-0992. DOI: 10.1109/TLA.2014.6872898

1110 D. CERNY, J. DOBES, S. BANAS, EFFICIENT PROCEDURE IMPROVING PRECISION OF . . .

[18] KAPRE,N., DEHON,A. SPICE2 : Spatial processors interconnected
for concurrent execution for accelerating the SPICE circuit simula-
tor using an FPGA. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2012, vol. 31, no. 1, p. 9–22.
ISSN: 0278-0070. DOI: 10.1109/TCAD.2011.2173199

[19] CHEN, X., REN, L., WANG, Y., et al. GPU-Accelerated sparse LU
factorization for circuit simulation with performance modeling. IEEE
Transactions onParallel andDistributed Systems, 2015, vol. 26, no. 3,
p. 786–795. ISSN: 1045-9219. DOI: 10.1109/TPDS.2014.2312199

[20] ZHOU, T., LIU, H., ZHOU, D., et al. A fast analog circuit
analysis algorithm for design modification and verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2011, vol. 30, no. 2, p. 308–313. ISSN: 0278-0070.
DOI: 10.1109/TCAD.2010.2081750

[21] FAKHFAKH, M., TLELO-CUAUTLE, E., FERNÁNDEZ, F. V. De-
sign of Analog Circuits through Symbolic Analysis. Bentham Science
Publishers, 2012. ISBN: 9781608054251

[22] FAKHFAKH, M., TLELO-CUAUTLE, E., CASTRO-LOPEZ, R.
Analog/RF and Mixed-Signal Circuit Systematic Design. Berlin Hei-
delberg: Springer-Verlag, 2013. ISBN: 9783642363283

[23] DOBEŠ, J., MÍCHAL, J., BIOLKOVÁ, V. Multiobjective optimiza-
tion for electronic circuit design in time and frequency domains. Ra-
dioengineering, 2013, vol. 22, no. 1, p. 136–152. ISSN: 1210-2512

[24] STEFAŃSKI, T. P. Electromagnetic problems requiring high-
precision computation. IEEE Antennas and Propagation Mag-
azine, 2013, vol. 55, no. 2, p. 344–353. ISSN: 1045-9243.
DOI: 10.1109/MAP.2013.6529388

[25] DOBEŠ, J., ČERNÝ, D., VEJRAŽKA, F., et al. Comparing the
steady-state procedures based on epsilon-algorithm and sensitivity
analysis. In Proceedings of the IEEE International Conference on
Electronics, Circuits, and Systems (ICECS). Cairo (Egypt), 2015,
p. 1–4. DOI: 10.1109/ICECS.2015.7440388

[26] FAKHFAKH, M., TLELO-CUAUTLE, E., SIARRY, P. Com-
putational Intelligence in Analog and Mixed-Signal (AMS) and
Radio-Frequency (RF) Circuit Design. Cham: Springer, 2015.
ISBN: 9783319198712

[27] ČERNÝ, D., DOBEŠ, J. An efficient procedure for transient anal-
ysis of electronic circuits with increased precision. MATEC Web of
Conferences, EDP Sciences, 2016, vol. 76. DOI: 10.1051/matec-
conf/20167601007

[28] ELRAD, T., FILMAN, R. E., BADER, A. Aspect-oriented program-
ming: Introduction. Communications of the ACM, 2001, vol. 44,
no. 10, p. 29–32. DOI: 10.1145/383845.383853

[29] CHEN, Y., ACAR, U. A., TANGWONGSAN, K. Functional pro-
gramming for dynamic and large data with self-adjusting computa-
tion. ACM SIGPLAN Notices, 2014, vol. 49, no. 9, p. 227–240.
DOI: 10.1145/2692915.2628150

[30] ZAHARIA, M., CHOWDHURY, N. M. M., FRANKLIN, M. J.,
et al. Spark: Cluster Computing with Working Sets. Tech. Rep.
UCB/EECS-2010-53. Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, 2010.

[31] ACAR, U. A., BLELLOCH, G. E., HARPER, R. Adaptive func-
tional programming. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 2006, vol. 28, no. 6, p. 990–1034.
DOI: 10.1145/1186632.1186634

[32] MAWBY, P., IGIC, P., TOWERS, M. Physically based compact
device models for circuit modelling applications. Microelectronics
Journal, 2001, vol. 32, no. 5, p. 433–447. DOI: 10.1016/S0026-
2692(01)00013-1

[33] ANTOGNETTI, P., MASSOBRIO, G. Semiconductor Device
Modeling with Spice. New York: McGraw-Hill, Inc., 1993.
ISBN: 0070021538

[34] VLADIMIRESCU A. The Spice Book. New York: J. Wiley & Sons,
1994. ISBN: 0471609269

[35] ČERNÝ,D., DOBEŠ, J., NAVRÁTIL,V. Functional chainingmecha-
nism allowing definable models of electronic devices. In Proceedings
of the European Conference on Circuit Theory and Design (ECCTD).
Catania (Italy), 2017. DOI: 10.1109/ECCTD.2017.8093250

[36] JIAN, S. L., LU, K., WANG X. P. A survey on concepts and the state
of the art of functional programming languages. In Systems and Com-
puter Technology: Proceedings of the International Symposium on
Systems and Computer technology (ISSCT). Shanghai (China), 2014,
p. 71–77. ISBN: 9781138028722

[37] ČERNÝ, D., DOBEŠ, J. Common LISP as simulation program
(CLASP) of electronic circuits. Radioengineering, 2011, vol. 20,
no. 4, p. 880–889. ISSN: 1210-2512

[38] ČERNÝ, D., DOBEŠ, J. Functional programming languages in com-
puter simulation of electronics circuits. In Proceedings of the Inter-
national Conference on Computational Science and Computational
Intelligence (CSCI). Las Vegas (USA), 2014, vol. 1, p. 229–234.
DOI: 10.1109/CSCI.2014.46

[39] QUARLES, T. L. Analysis of Performance and Convergence Issues
for Circuit Simulation, Doctoral Dissertation, University of Califor-
nia, Electronics Research Lab, Berkeley, 1989.

[40] DAVIS, T. A., YEW, P. C. A nondeterministic parallel algorithm
for general unsymmetric sparse LU factorization. SIAM Journal on
Matrix Analysis and Applications, 1990, vol. 11, no. 3, p. 383–402.
DOI: 10.1137/0611028

[41] CHEN, X., WANG, Y., YANG, H. An adaptive LU factoriza-
tion algorithm for parallel circuit simulation. In Proceedings of
the 17th Asia and South Pacific Design Automation Conference
(ASP-DAC). Sydney (Australia), 2012, p. 359–364. ISSN: 2153-6961.
DOI: 10.1109/ASPDAC.2012.6164974

[42] KAPRE, N., DEHON, A. Parallelizing sparse matrix solve for SPICE
circuit simulation using FPGAs. In Proceedings of the International
Conference onField-Programmable Technology (FPT). Sydney (Aus-
tralia), 2009, p. 190–198. DOI: 10.1109/FPT.2009.5377665

[43] BEN-ISRAEL, A., GREVILLE, T. N. Generalized Inverses: The-
ory and Applications. Springer Science & Business Media, 2003.
ISBN: 0387002936

[44] BEN-ISRAEL, A. An iterative method for computing the generalized
inverse of an arbitrary matrix. Mathematics of Computation, 1965,
vol. 19, no. 91, p. 452–455. DOI: 10.2307/2003676

[45] BEN-ISRAEL, A., COHEN, D. On iterative computation of general-
ized inverses and associated projections. SIAM Journal on Numerical
Analysis, 1966, vol. 3, no. 3, p. 410–419. DOI: 10.1137/0703035

[46] HAGEMAN, L. A., YOUNG, D. M. Applied Iterative Methods.
Courier Corporation, 2012. ISBN: 048643477X

[47] KOROVKIN, N. V., CHECHURIN, V. L., HAYAKAWA, M. In-
verse Problems in Electric Circuits and Electromagnetics. NewYork:
Springer Science+Business Media, 2007. ISBN: 9780387335247

[48] WOLFF, F. G. Spice Amplifier Tutorial. In Spice3/Bandwidth/Slew
Notes. VLSI CAD Group, EECS department, Case Western Reserve
University. [Online]. Available at: http://www2.eng.cam.ac.uk/~
dmh/ptialcd/jfet/tut_spice3_jfet_bias.html. Cited 2018-06-21.

[49] SCHWEBER, B. Understanding the Advantages and Disadvantages
of Linear Regulators. Digi-Key’s North American Editors, Sep. 2017.
[Online] Cited 2018-06-21. Available at: https://www.digikey.com/
en/articles/techzone/2017/sep/understanding-the-advantages-and-dis
advantages-of-linear-regulators.

RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 1111

About the Authors . . .

DavidČERNÝwas born in Prague, CzechRepublic, in 1985.
He received his M.Sc. degree in 2009 from the Faculty of
Electrical Engineering of the Czech Technical University in
Prague. He finished his Ph.D. study at the Department of
Radioelectronics at Czech Technical University in Prague
in 2017 and received Ph.D. degree. His research interests
include simulation of high frequency circuits, physical mod-
eling of electrical devices, and very large-scale integrated
circuit analysis.

Josef DOBEŠ received the Ph.D. degree in Microelectron-
ics from the Czech Technical University in Prague in 1986.
From 1986 to 1992, he was a researcher of TESLA Re-
search Institute. He is currently with the Department of Ra-
dioelectronics of the Czech Technical University in Prague.
His current research interests include physical modeling of

elements of electronic circuits, especially radio-frequency
and microwave transistors and transmission lines, creating
or improving special algorithms for circuit analysis and op-
timization such as time- and frequency-domain sensitivity,
poles-zeros or steady-state analyses, and creating a CAD tool
for analysis and optimization of radio-frequency circuits.

Stanislav BANÁŠ was born in 1970. He received his M.Sc.
degree in Electrical Engineering from the Technical Univer-
sity in Brno in 1994. Last year of his study he spent in schol-
arship inCNRS institute inGrenoble, where hewas interested
in optoelectronic properties of hydrogenated amorphous sili-
con. From 1996 he works as a modeling and characterization
engineer in Motorola Czech Design Center in Roznov, later
transferred to ON Semiconductor SCG Czech Design Center
in Roznov. From 2012 he studies for Ph.D. in Technical Uni-
versity in Prague. His research interests include themodeling
of high-voltage semiconductor components.

