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Abstract. A new class of filter functions with pass-band
ripple which derives its origin from a method of determining
the chained function lowpass filters described by Guglielmi
andConnor is introduced. The closed form expressions of the
characteristic functions of these filters are derived by using
orthogonal Jacobi polynomial. Since the Jacobi polynomials
can not be used directly as filtering function, these polynomi-
als have been adapted by using the parity relation for Jacobi
polynomials in order to be used as a filter approximating
function. The obtained magnitude response of these filters
is more general than the magnitude response of published
Chebyshev and Legendre chained function filter, because two
additional parameters of modified Jacobi polynomials as two
additional degrees of freedom are available. It is shown that
proposed modified Jacobi chained function filters approxi-
mation also includes the Chebyshev chained function filters,
the Legendre chained function filter, and many other types of
filter approximations, as its special cases.

Keywords
Chained functions, lowpass filters, modified Jacobi
polynomials, return loss, LC ladder network

1. Introduction
It has been about 20 years since the class of filter trans-

fer functions, called chained-function filter, was published
by Guglielmi and Conor [1]. With chained-functions, one
may define a new polynomial characteristic function that is
given by the product of a combination of low degree classical
Chebyshev polynomials, called seed functions. The chained
function as product of lower degree Legendre polynomials
was recently published in the paper [2].

The chained-function concept is provided with a vari-
ety of transfer functions, having the same degree but different
steady-state response, transient-state response and practical
implementation especially with microwave structure charac-
teristics. When compared to the conventional approximation,
chained-function concept offers: reduced sensitivity to man-
ufacturing errors, lower resonator unloaded-Q requirements
and, consequently, lower filter insertion and return losses.
This can be achieved by selecting the appropriate seed func-
tion combination for a given implementation on microwave
structure technology. This is the results of a tradeoff between
passband ripples and out-of-band rejection levels ranging
from those associated with Butterworth to the conventional
Chebyshev filters.

In this paper, we describe a new family of chained func-
tion filters, referred to as the modified Jacobi Chained Func-
tion (mJCF) filters. A simple modification of the Jacobi poly-
nomials, which have two parameters, is performed to obtain
a new filter approximating function. It is shown that these
additional two parameters may be used to obtain a response
having either less pass-band ripple level or sharper cutoff
than the Chebyshev or Legendre response. The mJCF filter
is shown to include as special cases the Chebyshev Chained
Function filter, Legendre Chained Function filters, and a filter
developed utilizing ultraspherical (Gegenbauer) orthogonal
polynomials [3] as seed function. Theoretical and experi-
mental comparisons modified Jacobi chained function filters
with the known Chebyshev and Legendre chained function
filter’s characteristics is not necessary since they are special
cases of proposed chained function filters.

1.1 Chained Functions
There are two methods which can be used to synthesize

passive filters. First is known as the image parameter method
and the second is the insertion-loss method. The first method
provides a design that can pass or stop a certain frequency
band, but its frequency response cannot be adjusted. The
second method is more powerful in the sense that it provides
ways to shape the frequency response of the filters.
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A chained-function filter design using insertion loss
method is presented in the paper. In a doubly terminated
two port lossless network driven by voltage source arrange-
ment such as shown in Fig. 1, the power-loss ratio is de-
fined as the ratio of the maximum power available from the
source Pmax = V2

G/(4RG) to the power delivered to the load
PL = V2

o /RL

PLR =
Pmax
PL
=

RL
4RG

���VG
VO

���2 = 1
1 − |Γ(jω)|2

(1)

where |Γ(jω)| is input reflection coefficient. The insertion
loss (IL) in dB is IL = 10 log10 PLR.

The squared modulus of the transfer coefficient
|Hn(jω)|2 = 1/PLR which approximates to the normalized
lowpass response can be expressed as follows

|Hn(jω)|2 =
1

1 + ε2K2
n(ω)

(2)

where ε < 1 is a constant, passband edge ripple factor, that
controls the power-loss ratio at its pass-band edge, the func-
tion Kn(ω), the characteristic or generating function, is a
polynomial of degree n.

For Chained Function filters Guglielmi and Connor [1]
have defined newclass of characteristic functionwhereKn(ω)
is given by the product of functions Kni (ω), called seed func-
tions, obtaining

Kn(ω) =

k∏
i=1

Kni (ω) (3)

and where the overall degree, n, of the filter is given by the
sum of the degrees, ni , of the constituent seed functions:
n =

∑k
i=1 ni . For the seed function, lower degree general-

ized Chebyshev functions [1] or Zolotarev polynomials [4]
can be used, and chained function Kn(ω) contains transfer
function transmission zeros. When all transmission zeros in
every seed function approach infinity, the seed functions de-
generate to the conventional Chebyshev polynomial [5]. The
synthesis of Legendre Chained Function filters was reported
in recently published paper [2].

Fig. 1. A doubly terminated two port lossless network driven by
voltage source.

2. A Mathematical Background for
Modified-Jacobi Polynomials
By using the well known parity relation for classical or-

thogonal Jacobi polynomials, P(α,β)n (−x) = (−1)nP(β,α)n (x),
we present the characteristic of a novel class of lowpass fil-
ters, which can be conveniently referred to as the modified
Jacobi polynomials, based on the summation of two Jacobi
orthogonal polynomials which have the same degree n, as

Π
(α,β)
n (x) =

[
P(α,β)n (x) + P(β,α)n (x)

] 1
C(α,β)n

(4)

where constant C(α,β)n = P(α,β)n (1) + P(β,α)n (1), or in closed
form

C(α,β)n =
1

Γ(n + 1)

[
Γ(n + α + 1)
Γ(α + 1)

+
Γ(n + β + 1)
Γ(β + 1)

]
(5)

is chosen in a way that normalization criterion Π(α,β)n (1) = 1
is satisfied. The resulting modified Jacobi polynomials (4)
of degree n are pure odd or pure even polynomials in x, and
hence the approximation of the lowpass filters if modified Ja-
cobi polynomial used as characteristic function is possible as
in the case of Chebyshev or Legendre polynomials. Modified
Jacobi polynomials are symmetrical in relation to the orders
α and β, i.e. Π(α,β)n (x) = Π(β,α)n (x).

In Tab. 1 modified Jacobi polynomials of degrees up to
ten for α = −0.5 and β = 0.5, which are generated by the
MATLAB symbolic software package, are given.

Plot of the first five modified Jacobi polynomials is il-
lustrated in Fig. 2 for x in (−1, 1) and n = 0, 1, . . . , 5. They
satisfy the following relationships: for |x | < 1, the charac-
teristic polynomial oscillates around zero and these ripples
are bounded by ±1 for α, β ≥ −0.5. Further, Π(α,β)n (0) , 0
for n even and Π(α,β)n (0) = 0 for n odd. For |x | > 1, the
polynomials magnitude increases (decreases) monotonically.

n Π
(α,β)
n (x) = [P(α,β)n (x) + P(β,α)n (x)]/C(α,β)n

0 1
1 x
2 4 x2

3 −
1
3

3 2 x3 − x
4 16 x4

5 − 12 x2

5 + 1
5

5 16 x5

3 − 16 x3

3 + x

6 64 x6

7 − 80 x4

7 + 24 x2

7 − 1
7

7 16 x7 − 24 x5 + 10 x3 − x
8 256 x8

9 − 448 x6

9 + 80 x4

3 − 40 x2

9 + 1
9

9 256 x9

5 − 512 x7

5 + 336 x5

5 − 16 x3 + x

10 1024 x10

11 − 2304 x8

11 + 1792 x6

11 − 560 x4

11 + 60 x2

11 −
1
11

Tab. 1. The modified orthogonal Jacobi polynomials Π(α,β)n (x)
for α = −0.5, β = 0.5, and n = 0, 1, . . . , 10.
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Fig. 2. Plot of the first five modified Jacobi polynomials for
α = −0.5, β = 0.5, and n = 0, 1, . . . , 5.

One can easily show that modified Jacobi polynomial
(4) is not orthogonal polynomial except in the case when
β = α is. For β = α = λ, one can obtain the orthogonal ultra-
spherical polynomials (symmetric Jacobi polynomials) [6].

Many of the orthogonal polynomials, which are used
as filter characteristic function, are special cases of modified
Jacobi polynomials. For α = β = ∓1/2, the Chebyshev poly-
nomials of first and second kinds, respectively. Further, for
α = β = 0, one can obtain the Legendre polynomials. For
the two important special cases α = −β±1/2, the Chebyshev
polynomials of third and fourth kinds are also obtained.

It is important to know where the roots of the modified
Jacobi polynomials are located because they have to be in
the interval −1 < x < 1. After numerical computation, it
can be deduced that the modified Jacobi polynomial having
degree n has n simple real zeros and n−1 local extrema in the
open interval (−1, 1). For example, the zeros of the modified
Jacobi polynomial of degree 5 with α = −0.5 and β = 0.5
are: −

√
3/2; −1/2; 0; 1/2;

√
3/2. It can be concluded, the

zeros of Π(α,β)n (x) are located symmetrically about x = 0.

Note that modified Jacobi polynomials are the only non
orthogonal polynomials which are suitable for the synthesis
of the filter function given in a closed form.

3. Filter Transfer Function
The characteristic function, used for the proposed ana-

log filter design, can be either n-the degree modified Jacobi
polynomial [7] or a chained-function formed as the product of
ν lower degree modified Jacobi polynomials, called modified
Jacobi seed functions. Thus, a new family of characteristic,
or generating, functions of the same degree n, calledmodified
Jacobi chained-function (mJCF), is given by

Kn(ω) =

ν∏
i=1
Π
(αi,βi )
ni (ω) (6)

where ni is the degree of ith seed function (ν = 1 corresponds
to the modified Jacobi polynomial), Π(αi,βi )

ni (ω) is a modified

Jacobi polynomial seed function of the degree ni with pa-
rameters αi and βi , and n is filter degree. The degree of the
filter is given by the sum of the degrees of the constituent
seed functions n =

∑ν
i=1 ni . All seed functions may have the

same, or that each seed function has its own values of the
parameters α and β.

The integer partition function p(n), which can be used
for determination of number of ways a positive integer n can
be written as the sum of positive integers ni ≤ n, is defined
by simple recursion relation [8, page. 825]:

p(n) =
∑

1≤ k(3k+1)
2 ≤n

(−1)k+1p
(
n −

3k2 ± k
2

)
(7)

with p(0) = 1 and p(1) = 1. Equation (7) provides a sim-
ple way to compute the list of values p(2), p(3), · · · , p(n −
1), p(n). As an example, p(6) will be computed using (7) for
k = 1 and 2 as:

p(6) = [p(6 − 2) + p(6 − 1)] − [p(6 − 7) + p(6 − 5)]
= [5 + 7] − [0 + 1] = 11

where p(4) = 5 and p(5) = 7. There are 11 differ-
ent ways of expressing a seventh-degree modified Jacobi
Chained-Function as a product of seed functions of the fol-
lowing degrees: mJCF-6, mJCF-51, mJCF-42, mJCF-411,
mJCF-33, mJCF-321, mJCF-3111, mJCF-222, mJCF-2211,
mJCF-21111, andmJCF-111111, where each digit represents
the degree of constituent seed function ni . By convention,
partitions are usually ordered from largest to smallest. Ta-
ble 2 shows the resulting 11 mJCF polynomials for n = 6
formed with α = −0.5 and β = 0.5.

Seed mJCF polynomialfunctions

1,1,1,1,1,1 ω6

2,1,1,1,1 4ω6

3 −
ω4

3
2,2,1,1 16ω6

9 − 8ω4

9 +
ω2

9
2,2,2 64ω6

27 −
16ω4

9 + 4ω2

9 −
1
27

3,1,1,1 2ω6 − ω4

3,2,1 8ω6

3 − 2ω4 + ω2

3
3,3 4ω6 − 4ω4 + ω2

4,1,1 16ω6

5 − 12ω4

5 + ω2

5
4,2 64ω6

15 −
64ω4

15 +
16ω2

15 −
1
15

5,1 16ω6

3 − 16ω4

3 + ω2

6 64ω6

7 − 80ω4

7 + 24ω2

7 − 1
7

Tab. 2. The mJCF polynomials for n = 6, α = −0.5 and
β = 0.5.
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Having established Kn(ω), and ε, the continuous-time
lowpass transfer functions Hn(s) can be found in the usual
way: by the analytic continuation of (2) in the whole com-
plex s-plane by putting ω = −js, followed by factorisation
the denominator, 1 + ε2K2

n(−js). The left half of the s-plane
factors, (s − si), i = 1, 2, . . . , n, correspond to the desired de-
nominator of linear, time invariant, realizable allpole mJCF
filter transfer function as

Hn(s) =
h0

n∏
i=1
(s − si)

=
h0

n+1∑
i=1

aisn−i+1
=

1
n+1∑
i=1

disn−i+1
(8)

where the leading coefficient a1 is equal to one,
h0 = an+1/[1 + ε2K2

n(0)]1/2 is just a reference level, i.e. con-
stant that ensures that magnitude |Hn(jω)| is bounded above
by unity, and di = ai/h0. If there is at least one of the
constituent seed functions that is an odd function, the char-
acteristic function is equal to zero at the zero frequency, i.e.
Hn(0) = 1, which gives h0 = an+1 and dn+1 = 1.

Like the chained function filters based on the Cheby-
shev and Legendre polynomials, the modified Jacobi chained
function filters also have the ripples of the return loss in the
region of orthogonality of the Jacobi polynomials, but the
values of those ripples and position of return loss zeros in the
in-band response can be controlled by parameters αi and βi .

Comparison of mJCF filters’ cutoff slopes requires cal-
culation of the slope of the magnitude-frequency response
function at the passband edge frequency (ω = 1), as obtained
from (2) and (6) is equal to

S =
d

dω
|Hn(jω)|

����
ω=1
= −

ε2(
ε2 + 1

)3/2
d

dω
Kn(ω)

����
ω=1

(9)

where

d
dω

Kn(ω)

����
ω=1
=

ν∑
i=1

d
d ω
Π
(αi,βi )
ni (ω)

����
ω=1

=

ν∑
i=1

ni(ni + αi + βi + 1)
[
Γ(αi+ni+1)
Γ(αi+2) +

Γ(βi+ni+1)
Γ(βi+2)

]
2
[
Γ(αi+ni+1)
Γ(αi+1) +

Γ(βi+ni+1)
Γ(βi+1)

] (10)

is the rejection-slope of the characteristic function at cut-
off frequency, which is hereafter called the rejection Slope
Factor (SF).

It is known that one, and only one, complex pole pair
pc = σc ± jωc, whose Q factor = 0.5

√
σ2

c + ω
2
c/σc is much

higher than that of the other pole pairs. This pole pair is
called the critical pole pair [9] and its Q factor is denoted
by Qc. The realization of the filters, whose Qc-factors are
high, is difficult and expensive because it is necessary to use
components with high stability and to manufacture circuits

with good accuracy. In other word, the most sensitive trans-
fer function is the one that has the highest Qc factor, then it
is favourable from an implementation point of view to have
as low Qc factors as possible.

Employing the energy conservation formula for
the lossless two-port network given in Fig. 1,
|Hn(jω)|2 + |Γn(jω)|2 = 1, the magnitude-squared input re-
flection coefficient can be expressed as:

|Γn(jω)|2 =
ε2K2

n(ω)

1 + ε2K2
n(ω)

≤ 1 (11)

where Kn(ω) is the filter characteristic function given
by equation (6). Input return loss in dB defined as
RL = 20 log10 |Γn(jω)| quantifies the amount of impedance
matching at the input port. The reflection coefficient is more
sensitive to tuning variation and obtaining good return loss
provides better system performance and nearly always guar-
antees good insertion loss result. The maximal return loss
level in the passband can be controled with the edge-ripple
factor (ε). An insertion loss level of IL = 0.0436 dB at
the passband edge frequency (ε = 0.1005) is equivalent
to a return loss level of RL = −20 dB at the pass-band
edge frequency.

4. Results of Approximation
The preceding information on the filter transfer func-

tion Hn(s) is enough for the design of such filters to meet
a prescribed cutoff slope and insertion loss as well as return
loss tolerances.

An illustration of the proposed approximation in Fig. 3
is given, which shows steady state responses of the three
tenth-degree mJCF lowpass filters, mJCF-442, mJCF-811,
mJCF-721, with parameters αi = −0.5 and βi = 0.35, for
i = 1, 2 and 3. The denominator coefficients di of the low
pass prototype transfer function (8) given in Tab. 3, are the
counterparts of filters’ steady responses given in Fig. 3. The
corresponding crtical pole Q factor (Qc), rejection slope
factors (SF) and return loss maximal values (RL) are pre-
sented in the last three rows in Tab. 3. Wen the degree of the
chained function filter keeps constant and the degree of one
seed function increases, then the slope factor and critical pole
Q-factor increase. On the other hand, the return loss values
can be adjusted with the proper degrees of the seed functions,
as it was done for the mJCF-442 in the first column of Tab. 3.

The degree of the constituent seed function has an ef-
fect on both the passband response, the rejection-slope and
group delay of the resulting mJCF filters. If the degree
of one constituent seed function increases and the other de-
creases, keeping the degree of the filter the same, themaximal
passband attenuation, rejection-slope factor and group delay
deviation increases.
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Fig. 3. The frequency responses of the three 10th degree mJCF
filters.
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Fig. 4. The return loss characteristic of the three 10th degree
mJCF filters.

di
The mJCF filter coefficients

mJCF-442 mJCF-811 mJCF-721

d1 18.250855 35.164439 27.159793
d2 57.957774 96.53012 79.157249
d3 126.25761 195.77369 165.16355
d4 189.92166 274.42777 237.7827
d5 220.95359 300.33103 266.7143
d6 199.25519 256.3061 232.40188
d7 140.64633 171.48168 158.80439
d8 75.835444 87.927797 83.01784
d9 29.853402 32.925898 31.696307

d10 7.7260096 8.1149119 7.9619479
d11 1.0003661 1.0 1.0

Qc 6.4084576 9.9818556 8.4768397
SF 20.204406 31.606103 27.048216

RLmax −31.356009 −13.30707 −16.056504

Tab. 3. The coefficients of the denominator polynomials of the
three tenth degree mJCF filters with three seed functions
with parameters α = −0.5 and β = 0.35 each.

As mentioned earlier, the mJCF filters corresponding to
the conventional Chebyshev chained function (CCF) filters if
α = β = −0.5 which have −3dB input return loss ripple level
in the passband. In general, this input return loss ripple level
is undesirable, but a value less than −20 dB is acceptable in
many applications. For this reason, the CCFs require the use
the edge ripple factor, ε, for input return loss control.

If α = −0.5 and β increases, the ripples in the pass-
band decrease smoothly to be unequal and smaller in mag-
nitude. For β > 1.5 the passband response is nearly mono-
tonic [7], but the rejection slope factor is much steeper than
a Butterworth filter cutoff slope. On the other hand, for
−1 < β < −0.5 the passband ripples are unequal, but in
magnitude are larger than 1. These values of β (also for α)
have no practical significance. It is shown that the passband
ripple can be adjusted to improve the linearity of the phase
response at the lower part of the pass band.

In Fig. 4 the input return loss responses of thementioned
three tenth-degree mJCF filters are shown. The return loss of
all filters is characterized by a number of lobes. The return
loss level of the mJCF-811 and mJCF-721 filters have a max-
imally value of −13.3071 dB and −16.0565 dB, respectively.
Both filters are of odd degree, then the return loss level of such
filters is −∞ at the origin. However, the mJCF-442 filter is of
even degree, then the return loss at origin has finite value and
maximally value of the return loss level is −31.356009 dB.

The frequencies at which the return loss poles of the
mJCF-811 and mJCF-721 filters occur are very close to the
pass-band edge, but their maximum return loss level is much
higher, compared to the mJCF-441 filter.

The most convenient design approach of continuous-
time filters, and also microwave filters [10], [11], is to syn-
thesize first a lossless LC ladder lowpass prototype filter
having the desired insertion loss response and rejection slope
factor. In the case of microwave filters, the second step is
to calculate the resonator and coupling parameters that will
yield the same insertion loss response on a transformed fre-
quency scale. Return loss (reflection) zeroes can be used for
tuning the pass-band response of the filter.

4.1 Doubly Terminated LC Ladder Synthesis
Filters are usually required to have a frequency response

with low sensitivity with respect to the non-exact component
values. To achieve the lowest sensitivity LC filter network
a doubly terminated ladder, as illustrated in Fig. 5, should be
used. In this circuit, gi , i = 1, 2, . . . , n are LC impedances or
admittances (collectively called immittance).

Fig. 5. Doubly terminated low-pass LC ladder network of the
even degree.
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A powerful method for designing the doubly terminated
LC ladder two port networks is the Darlington method [12].
The starting point is to obtain the input driving impedance
of the network from a magnitude squared transfer function.
Since reflection coefficient |Γn(jω)|2 is known (11), it is pos-
sible to determine an appropriate value for Γn(s) by using
the analytic continuation, as in the case of continuous-time
transfer function. The poles of the reflection coefficient and
of the transfer functions have the same position in the s-plane,
but reflection coefficient has the zeros on the imaginary axis.
Finally, the reflection coefficient is a rational function of two
monic polynomials in s of degree n.

The normalized driving-point impedance Zin(s) is given
by:

Zin(s) =
1 ± Γn(s)
1 ∓ Γn(s)

. (12)

Since all the attenuation poles are at infinity, Zin(s) can be
synthesized in the simple LC ladder network.

The equation (12) yields two possible solution for driv-
ing point impedance, and both obtained two-port networks
are dual to each other. The driving-point impedance (12)
is a polynomial rational function of the complex variable s,
which can be expanded in a finite continued fraction around
s → ∞ starting with the greatest power of s. When the
degree of the numerator is greater than the degree of the de-
nominator, the first element’s value g1 which is obtained is
a series coil i.e.:

Zin(s) =
Nn(s)

Dn−1(s)
= g1s +

Rn−2(s)
Dn−1(s)

= g1s +
1

g2s + Rn−3(s)
Rn−2(s)

(13)

where g1s and Rn−2(s) are the quotient and remainder of the
polynomial division Nn(s)/Dn−1(s). The degree of Rn−2(s)
is less than the degree of Dn−1(s), therefore the process can
be repeated until the remainder gn+1 becomes a constant
(load resistance RL or conductance 1/RL, for n odd or even,
respectively).

The lumped element values gi for the three tenth degree
mJCF filters assume to have a cutoff frequency of 1 rad/s and
source resistance of 1Ω, with 3.0103 cutoff point, are shown
in the Tab. 4. The eleventh row in the table is the load resistor
values RL. For the mLCF-442 the characteristic function (6)
is not equal to zero at ω = 0, then the LC ladder network
is not terminated with equal resistor, and it is not symmetric
and reciprocal. Since the other two ladder networks are odd
degree, they are symmetric and reciprocal then less sensitive
to the non-exact component values in comparison with the
first network.

The ratio of the maximum-to-minimum lumped ele-
ment values gmax/gmin and the sum of the lumped element
values

∑n
i=1 gi are commonly used to compare LC ladder net-

works. In the design of the microwave filters implemented
as microstrip stub filters, line width and length increase if
element values increase, so it is desirable to keep gmax/gmin

Element The mJCF filter element’s values

mJCF-442 mJCF-811 mJCF-721

g1 0.62979834 0.72856925 0.68622376
g2 1.4178597 1.6329201 1.5280432
g3 1.7978409 1.8628213 1.8663292
g4 1.879938 1.9344207 1.9283815
g5 2.0290967 1.9561806 1.9529702
g6 1.922206 1.9561806 1.9529702
g7 1.9844783 1.9344207 1.9283815
g8 1.7031325 1.8628213 1.8663292
g9 1.4967046 1.6329201 1.5280432
g10 0.59662122 0.72856925 0.68622376

RL = g11 1.0556113 1.0 1.0

gmax/gmin 2.785043 3.2787647 2.845967∑10
i=1 gi 16.513288 17.229824 16.923896

Tab. 4. Lumped element lowpass lossless LC ladder network
resistively terminated at input and output.

and
∑n

i=1 gi as small as possible. The element maximum-to-
minimum ratio and the sum of filter elements are given in
two last row in Tab. 4.

Our general opinion is that the mJCF filters could be
a suitable candidate for the design of microwave filters. It
is known, the most widely used filters in microwave appli-
cations are band-pass filters. Using lowpass to bandpass
frequency transformation of lumped element lowpass filter,
gi , the series inductor converts to the series resonator and
parallel capacitor converts to the parallel resonator. Richards
transformation can be used to emulate the inductive and ca-
pacitive behaviour of the lumped circuit elements into dis-
tributive element consisting the transmission line sections,
and Kuroda’s identities can be used to facilitate the conver-
sion between the various transmission line realizations.

5. Conclusions
Anew class of continuous time allpole filter approxima-

tion method, based on utilization of conventional orthogonal
Jacobi polynomials, has been presented in this paper. Since
the Jacobi polynomial cannot be directly used as filter gener-
ating function, a simplemodification of Jacobi polynomials is
proposed to be use as a generating function. These polynomi-
als, called modified Jacobi polynomials, are very convenient
to use for the approximation of the chained function filter,
as a seed function. The modified Jacobi function has two
free parameters, so that the chained function concept pro-
vides a variety of transfer functions, having the same degree,
but the different frequency response, transient time response,
and implementation characteristics. The Chebyshev chained
filter and Legendre chained filters published in research pa-
pers are special cases of modified Jacobi chained function
filter.

As examples, partitioning three modified Jacobi
chained functions into three lower order seed functions, three
different responses, having the same degree, pass band and
pass band edge ripple factor, but different insertion loss and
return loss level, are discussed.
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