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Abstract. Partial discharge (PD) source location using 
acoustic emission (AE) is widely utilized by many trans-
former manufacturers and power utility engineers in rou-
tine and critical situation for optimal operation of the 
electrical power system as well as further risk management 
and repair planning. The PD detection is not enough to 
take solution, so identification of PD source is essential to 
restore apparatus condition. This work aim is to localize 
the defect geometrically by means of TDOA (time differ-
ence of arrival) signals from the sensors fixed on the power 
transformer. The solution for PD source location is ac-
quired by making these nonlinear equations as optimiza-
tion problem. In this technique, the inertia weight is effec-
tively regulated by using 49 and 9 simple IF-THEN fuzzy 
rules to improve the global optimal solution and impairs 
the local convergence problem and improves the accuracy 
in estimating the PD source location. The simulation re-
sults reveal that PD location accuracy with minimum of 
maximum deviation error, absolute error and relative 
error is better when compared to other constant parameter 
intelligent methods which were reported in the literature. 
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particle swarm optimization, fuzzy rules, source 
localization 

1. Introduction 
Partial discharges are the initial root cause of insula-

tion degradation in any high voltage power apparatus. Its 
accurate detection and diagnosis in time is essential other-
wise simultaneously the degradation of insulation may 
happen progressively and discharge level increases drasti-
cally. It may lead to a catastrophic failure and results in 
outage and penalty costs. Therefore, the identification and 
diagnosis of PD’s is prerequisite at inception stage where 
the unexpected failures and further losses can be dimin-
ished [1–3]. PD generates acoustic waves which transmit 

inside the transformer tank. The acoustic sensors are fixed 
on the transformer tank’s external side to detect the propa-
gation of acoustic signals from the PD source [4–6]. This 
acoustic method is an indirect method and has distinct 
merits compared to direct electrical methods. They are non-
invasive, easier installation and non-interference. The 
TDOA (Time Difference of Arrival) method [7], [8] is 
widely used by many researchers for accurate PD source 
localization. In this paper, the TDOA method is used for 
time differences of AE signals from a reference sensor to 
remaining sensors thus PD source location is detected. 

Lu et al. demonstrated the pattern recognition ap-
proach for PD source location in the simulated oil filled 
transformer tank by partitioning into small modules. The 
PD source is located with high location error by calculating 
the minimum distance between the standard and its unde-
termined pattern vectors of the total tank. Thereby, this 
approach is inaccurate for the onsite measurement [5]. 
Markalous et al. [7] utilized pseudo time approach in 
global position system (GPS) algorithm for PD source 
localization detected by acoustic sensors but its drawback 
is sometimes it gives confused solution. Veloso et al. [9], 
[10] compared the least square (LS) method and genetic 
algorithm for localization of PD source and it is located 
accurately with large population size and iterations by 
genetic method whereas iterative LS method located with 
inaccurate manner. Tang et al. [11] compared iterative LS 
method and PSO method for localization of PD source, 
when compared to LS method, PSO method gives better 
location results. Kundu et al. [12] illustrated a non-iterative 
method for localization of PD source and its demerit is, it 
also yields two different solutions similar to GPS algorithm 
and in that only one solution is true. The obtained location 
error is also high, Kill et al. has demonstrated 2-D co-ordi-
nate system using three acoustic sensors and located the 
PD source with 1% error in laboratory prototype model 
[13]. Kuo et al. [14] used combined PSO-ANN (artificial 
neural network) for PD defects recognition under noisy and 
noiseless conditions with 80% success rate. Bozcar et al. 
[15] used artificial neural network for recognition of PD 
defects in paper oil insulation damaged by aging action. 
H. L. Liu et al. [16] applied sequential quadratic program-
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ming-genetic algorithm for PD source location with more 
population size. H. L. Liu et al. [17] employed quantum 
genetic algorithm for PD source location with more popu-
lation and iterations. 

Z. Hasirci et al. [18] applied PSO algorithm to opti-
mize frequency dependent model parameters for different 
bus bar distribution systems (630, 1250 and 2000 A) and 
these bus bars functioning as a power line communication 
at 3–148.5 kHz band were analyzed for frequency and 
phase shift keying modulations to distinct network align-
ments. C. Han et al. [19] applied Feedback PSO (FPSO) 
algorithm to minimize the peak side lobe on both digital 
position shift method and digital position shift with optimal 
amplitude methods, but the optimized results of both meth-
ods shown inferior with other methods reported in the 
literature particularly steering direction near to end fire 
direction. E. Tugcu et al. [20] used PSO method for blind 
verification of channel matched filter (CMF) coefficients 
and shown better performance in terms of bit error rate and 
mean square error of frequency selective channels with 
other conventional blind training methods. L. Song et al. 
[21] implemented box particle cardinalized probability 
hypothesis density filter for tracking multiple targets and 
shown superior performance: particularly detection proba-
bility decreases and more clutter appears compared to box 
particle cardinalized probability hypothesis density (BP-
CPHD) filter and sequential monte Carlo cardinalized 
probability hypothesis density (SMC-CPHD) filter. 
F. Gunes et al. [22] proposed honey bee mating optimiza-
tion (HBMO) in designing an ultra-wide band low noise 
amplifier for delivering maximum power and required 
noise. This HBMO method shown better results than other 
methods published in the literature. O. Cakir et al. [23] 
investigated the performance of PSO with time difference 
of arrival average (TDOAA) method for emitter location 
and the location results shown better position accuracy 
than other classical methods. 

K. N. Abdulrani et al. [24] proposed the modified 
cuckoo search (MCS) algorithm for synthesizing linear 
array geometry symmetrically with low level of side lobe 
and its performance is slightly better than PSO and GA 
methods. A. Akubulut et al. [25] demonstrated the channel 
state transition probabilities as unknown by secondary 
users with PSO method and the obtained results shown 
better even in transient conditions. Zhonghun Ma et al. [26] 
applied PSO method on two different wide band medium 
gain antenna arrays design and instructed to employ fitness 
function based on realized gain. V. Sedenka et al. [27] 
implemented multi objective PSO and non-dominated 
sorting genetic algorithms (NSGA-II) on a cavity micro-
wave resonator synthesis and the multi objective PSO 
method obtained better results than NSGA-II method. 
J. Lacik et al. [28] demonstrated the multi criterion optimi-
zation for bow tie antenna using PSO with time domain 
multi objective function for designing broadband antennas. 
V. Raptis et al. [29] investigated the different parameters 
such as antenna height, additional variable capacitance and 

varactor voltage for a planar inverted F antenna. These 
antennas are equipped in modern telecommunication sys-
tems to operate in different frequency bands. J. Kracek et 
al. [30] evaluated maximal power delivered to appliance by 
reference levels of electric and magnetic field strengths 
fulfilment with the help of two simple examples. P. Kadlec 
et al. [31] compared least square and sliding correlator 
methods for pilot symbol embedded channel estimation. 
Simulation results shown by least square estimation are 
best for precise CIR findings even in terms of computa-
tional demands. S. K. Chronopoulos et al. [32] used PCCC 
technique in turbo coded OFDM system under different 
noise scenarios. 

Many authors used iterative and metaheuristic meth-
ods [33] in their domain of research. It has been confirmed 
that no algorithm can perform best for different research 
problems till now. The conventional methods i.e. iterative 
and non-iterative methods take more computation and time 
to produce the better results and the iterative method de-
pends on correct starting guess values. The optimization 
algorithms also take large number of population and itera-
tions for getting better results. Hence, hybridization of 
optimization method with other methods may enhance the 
search space to balance the overall exploration and exploi-
tation ability, convergence speed, and ability of searching 
global optimum, less computation time and better results 
when compared to conventional and optimization methods. 
PSO is one of the most widely used evolutionary algo-
rithms in hybrid methods due to its simplicity. Some works 
reported in the literature [34] which have been controlling 
either inertia weight or acceleration parameters of PSO 
methods targeted to reduce the trapping probability of local 
minimum. In view of above, the FAPSO has been adopted 
in the present work for improving the accuracy of PD 
source localization. 

2. Formulation of PD Source Problem 
The PD source and the sensor positions placement on 

the transformer tank is shown in Fig. 1. The P(x, y, z) is the 
estimated PD source and the sensors positions are S1 (xa, ya, za), 
S2 (xb, yb, zb), S3 (xc, yc, zc) and so on Sn (xn, yn, zn). The 
sensor S1 is considered as the reference sensor to activate 
the further sensors. 

2.1 Objective Function 

The aim of this localization of PD source is to 
minimize the location error. 

      2 2 2

a a a ,g x x y y z z      (1) 

      2 2 2

a 21b b b ,p g vx x y y z z         (2) 

      2 2 2

a 31c c c ,q g vx x y y z z           (3) 
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Fig. 1.  PD Source and sensors placement on the transformer 

tank. 

      2 2 2

a 41d d d ,r g vx x y y z z          (4) 

      2 2 2

a 51e e e ,s g vx x y y z z         (5) 

    2 2 2 2
f amin D , , , .x y z v p q r s     (6) 

In (1), (x, y, z) is the PD source position, S1 (xa, ya, za) 
is the first sensor fixed position on the transformer tank. In 
(2), (x, y, z) is the PD source position, S2 (xb, yb, zb) is the 
second sensor fixed position on the transformer tank, τ21 is 
the time difference between sensor 2 and sensor 1. In (3), 
(x, y, z) is the PD source position, S3 (xc, yc, zc) is the third 
sensor fixed position on the transformer tank, τ31 is the time 
difference between sensor 3 and sensor 1. In (4), (x, y, z) is 
the PD source position, S4 (xd, yd, zd) is the fourth sensor 
fixed position on the transformer tank, τ41 is the time dif-
ference between sensor 4 and sensor 1. In (5), (x, y, z) is 
the PD source position, S5 (xe, ye, ze) is the fifth sensor 
fixed position on the transformer tank, τ51 is the time 
difference between sensor 5 and sensor 1. In (6),  
min {Df (x, y, z, va)} is minimization of the objective 
function with constraints length (min < x< max) mm, width 
(min < y < max) mm, height (min < z < max) mm and 
acoustic velocity (1200 < va < 1500) m/s of the transformer 
tank considered. 

3. Proposed Method 
PSO is based on the evolution of birds flocking 

closely to swarming intelligence and it was proposed by 
Kennedy and Eberhart in 1995. This approach includes in 
such a way that at each iteration, upgrading the velocity 
and position of every particle, each particle moves in the 
direction of its Pbest position based on memory and gbest 
position based on information of (7), (8) respectively. 

   1
1 1 best 2 2 best ,t t t t

k k k kw c rand c rand     v v p x g x (7) 

 1 1.t t t
k k k
  x x v    (8) 

In (7), w is the inertia weight, vk
t is the current particle 

velocity, vk
t+1 is the new velocity vector, t is the iteration 

count, c1 and c2 are learning parameters, rand1 and rand2  

are random numbers, pbest and gbest are local best solution 
and global best solution, xk

t is the current particle solution. 
In (8), xk

t+1 is the new position vector, xk
t is the current 

particle position vector, vk
t+1 is the new velocity vector. 

Normally, PSO velocity contains three segments, i.e. 
the momentum segment, the cognitive learning segment 
and the social learning segment. The PSO performance is 
improved by the equilibrium among these segments, i.e., 
which controls the local and global searching abilities. In 
PSO, the inertia weight is utilized to balance the global and 
local searching abilities. A huge inertia weight accelerates 
a global search while a little inertia weight accelerates 
a local search. The searching abilities will be dynamically 
improved by tuning the inertia weight effectively. 

The searching procedure of PSO is a non-linear and 
difficult approach. The sequential or straight line declining 
inertia weight process has a linear progression capability 
from global to local search and has not shown the effective 
searching process for obtaining the optimum solution. 
Hence, the inertia weight should be changed nonlinearly 
and dynamically for improvement in the performance and 
equilibrium between global and local searching abilities. 
Conveniently with some ideas of PSO searching procedure 
is assembled and linguistic relation of the searching 
procedure for localization of PD source is attainable. This 
idea and linguistic relation formulate a fuzzy interference 
system for adjustment of PSO inertia weight dynamically 
to solve the localization of PD source problem. The 
remaining part of this paper explains modelling a fuzzy 
system and adapting inertia weight effectively for 
localization of PD source problem. The simple IF-THEN 
fuzzy rules in Tab. 1 and (9)–(12) are utilized for the 
proposed methods, i.e., FAPSO-I consists of 49 fuzzy rules 
listed in Tab. 1 and FAPSO consists of 9 fuzzy rules. 

In Figs. 2–4, triangular membership functions are 
considered and they are represented by seven linguistic 
elements (NL, NM, NS, Z, PS, PM and PH) for negative 
large, negative medium, negative small, zero, positive 
small, positive medium and positive high respectively are 
used for fuzzification of every input and output. The fuzzy 
logic block diagram with two inputs and one output is 
shown in Fig. 5. In this fuzzy logic system, fuzzification 
block converts crisp value to fuzzy value, fuzzy interfer-
ence engine has the capability of simulating human deci-
sion making based on fuzzy rules of inference in fuzzy 
logic and the defuzzifier block converts fuzzy value to 
crisp value using centroid method. 

3.1 Formulation of Fuzzy System   

A fuzzy rule base design is developed using inertia 
weight of the PSO algorithm to get better accuracy in the 
PD location results.  The fuzzy logic  system contains three 
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Fig. 2.  Representation of Triangular Membership functions 

for Normalized Fitness Input. 

 
Fig. 3.   Representation of Triangular Membership functions 

for Inertia Weight Input. 

 
Fig. 4.  Representation of Triangular Membership functions 

for Change in Inertia Weight Output. 

 
Fig. 5.  Fuzzy Logic System with two inputs and one output. 

main segments, i.e., fuzzification, inference system and 
defuzzification. To find a good inertia weight in the fuzzy 
domain, inputs of the fuzzy system are normalized fitness 
and the inertia weight while the output is inertia weight. In 

order to establish a crisp mathematical model for the adap-
tive PSO, it is very hard to actively modify the inertia 
weight parameters. Therefore, easily understanding IF-
THEN rules are appropriate to compute the some portion 
of inertia weight modification in the fuzzy adaptive PSO 
procedure to locate the PD source.      

Normalized fitness: The current solution fitness is 
very crucial to guess the inertia weight for the correct 
choice of the velocity. In general, normalized fitness lies in 
between 0 and 1 and it is given by 

 gbest gbestold
normalise

gbestold

.
10

f f
Fit

f





   (9) 

In (9), fgbest is the global best fitness value for considered 
iterations and fgbestold is the old global best fitness value for 
the first iteration from (8). 

Inertia Weight: Its value lies in between 0.4 and 1 for 
this problem. 

Change in Inertia Weight: In this paper, its value is 
placed in between –0.1 and 0.1.  

IF-THEN rules and defuzzification: For FAPSO, 
forty nine rules are constructed using seven linguistic val-
ues for every input element. The simple IF-THEN rules are 
shown in Tab. 1. The arithmetic product operator is used as 
conjunction for the input and output elements in the for-
mulation of individual rules. For every rule, output element 
will be scaled based on degree of membership (DOM). 

3.2 Fuzzy Adaptive PSO Formulation: 

The velocity and position computations for the 
proposed fuzzy adaptive PSO are as follows 

 1 ,t t t
k k kw w w    (10)  

   1 1
1 1 2 2 ,t t t t t

k k k best k best kw c rand c rand     v v p x g x (11) 

 1 1.t t t
k k k
  x x v   (12) 

In (10), wk
t+1 is the new adaptive weight, t is the iteration 

count, wt
k is the kth particle weight, ∆wt

k is the change in 
weight value. In (11), vk

t+1 is the new velocity vector, vk
t is 

the kth particle velocity, t is the iteration count, wk
t+1 is the 

adaptive inertia weight, c1 and c2 are learning parameters, 
rand1 and rand2 are random numbers, pbest and gbest are local 
best solution and global best solution, xk

t is the current 
particle solution. In (12), xk

t+1 is the new position vector 
and other terms are the same as in (11). 

4. Results and Discussions 
The simulations are performed on the same experi-

ment measurements data but the population size is reduced 
from 50 to 20 and total iterations are reduced from 200 to 
100. The  calculated  location of PD source results obtained 
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Rule 
Number 

Antecedent Consequent 

NFV W ∆W 
1 NL NL NL
2 NM NL NL
3 NS NL NL
4 Z NL NL
5 PS NL NM
6 PM NL NS
7 PL NL Z
8 NL NM NL
9 NM NM NL
10 NS NM NL
11 Z NM NM
12 PS NM NS
13 PM NM Z
14 PL NM PS
15 NL NS NL
16 NM NS NL
17 NS NS NM
18 Z NS NS
19 PS NS Z
20 PM NS PS
21 PL NS PM
22 NL Z NL
23 NM Z NM
24 NS Z NS
25 Z Z Z
26 PS Z PS
27 PM Z PM
28 PL Z PL
29 NL PS NM
30 NM PS NS
31 NS PS Z
32 Z PS PS
33 PS PS PM
34 PM PS PL
35 PL PS PL
36 NL PM NS
37 NM PM Z
38 NS PM PS
39 Z PM PM
40 PS PM PL
41 PM PM PL
42 PL PM PL
43 NL PL NL
44 NM PL NM
45 NS PL NS
46 Z PL Z
47 PS PL PS
48 PM PL PM
49 PL PL PL

Tab. 1.  Fuzzy rules for FAPSO-I.  

from 20 iterations in the case study. The simulation param-
eters of the FAPSO-I and FAPSO for PD source location 
are swarm population is 20, maximum number of iterations 
is 100, learning parameters c1, c2 = 2. Location Error in 
millimetres can be determined by 

2 2 2
actual calculated actual calculated actual calculated(x x ) (y y ) (z z )     . 

Maximum deviation maxDeviation  of coordinates can be 

estimated by 

  
actual calculated

max actual calculated

actual calculated

max .

x x

Deviation y y

z z

 
   
  

  

 
Fig. 6.  Flow chart of FAPSO and FAPSO-I. 

where xactual, yactual, zactual is actual PD location and xcalculated, 
ycalculated, zcalculated is calculated PD location. The Relative 
Error can be calculated as (Location Error/Tank Diagonal)  100. 

Tank Diagonal is 2 2 2x y z  where x is the length, y is the 

width, z is the height of the transformer tank in mm. 

4.1 Case Study of Field Data 

The onsite measurement data is collected from [15], 
[16] which is measured data on power transformer. In (5), 
five sensors are used in this case study and Table 2 shows 
the calculated PD location results. The actual PD coordi-
nates are (XPD, YPD, ZPD) = (4500, 2600, 3700) mm. The 
final results for different algorithms are the best values of 
the PD location solutions. Table 2 shows the comparison of 
final PD source solution obtained with the proposed 
FAPSO-I and FAPSO algorithms with five algorithms in 
the existing literature. Table 3 shows the comparison of 
error analysis with the proposed FAPSO-I and FAPSO 
algorithms with different methods in the reported literature 
with reference to the tank diagonal (Dtank = 7071.07 mm). 

The location of PD source results with the proposed 
methods and available literature are shown in Tab. 2. The 
proposed methods FAPSO-I and FAPSO locate the PD 
source within 58.47 and 62.83 mm of PD source location 
error and maximum deviation error of 45.1 and 58.3 mm in 
Tab 3. From Tab. 3, it is observed that the maximum devi-
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ation error and relative error of the proposed algorithm is 
insignificant when compared to other methods in the avail-
able literature. The convergence characteristics comparison 
of FAPSO-I and FAPSO algorithm for this case study is 
shown in Fig. 7, the FAPSO-I algorithm takes less number 
of iterations to locate accurate PD source compared to 
FAPSO algorithm. 

The proposed FAPSO-I gives minimum location 
error, maximum deviation error and relative error with less 
 

Methods 
Co- 

ordinates 
X(mm) Y(mm) Z(mm) 

Actual Coordinates 4500 2600 3700.0 

FAPSO-I 4465.9 2554.9 3714.9 

FAPSO 4485.6 2541.7 3718.5 

QGA  [16] 4394.77 2475.98 3656.17 

GA     [16] 4223.76 2391.73 3503.04 

SA      [15] 4387.78 2470.01 3666.64 

PSO   [15] 4383.32 2470.53 3649.16 

LPSO  [15] 4382.14 2469.99 3648.11 

Tab. 2. Comparison of field PD location results with proposed 
methods and different methods in available literature. 

 

Methods Errors 
Location 

Error (mm) 

Maximum 
Deviation 

Error (mm) 

Relative 
Error 
(%E) 

FAPSO - I 58.47 45.1 0.83 
FAPSO    62.83 58.3 0.89 
QGA  [16] 124.02 168.45 1.75 
GA     [16] 276.24 398.10 3.91 
SA      [15] 129.99 174.94 1.84 
PSO   [15] 129.47 181.55 1.83 
LPSO  [15] 130.01 182.99 1.84 

Tab. 3. Comparison of field data error analysis of different 
methods in literature with the proposed methods. 

 

Fig. 7.  Comparison of convergence characteristics of  
FAPSO-I and FAPSO algorithm of case study. 

 
Fig. 8.   Adjustment of inertia weight by FAPSO-I. 

execution time when compared to other methods. Figure 8 
shows the inertia weight variation for a randomly chosen 
length and the convergence characteristic of the fuzzy 
adaptive PSO. The straight segment of the curve specifies 
that there is no change in the weight tuning of PSO. 

4.2 Case Study Laboratory Data 

The laboratory experimental related data is taken 
from [10] for PD source localization. The actual PD source 
position was fixed for four different time differences 
measured by moving the pin-plate electrode for four times. 
The sensors are located at S1(800, 820, 0), S2(1000, 420, 346), 
S3(345, 782, 800) and S4(0, 468, 386). Table 4 shows the 
comparison of PD location and its error results with the 
proposed methods and different methods published in 
literature obtained for each set up (i.e. for each PD source 
and its TDOA measurements). 

It is observed from Tab. 4 that the location error of 
PD source is lower for accurate time delay measurements 
from the sensors and higher for inaccurate time delay 
measurements from the sensors and it is also observed that 
the proposed algorithm gives minimum PD location error 
compared with PSO and LS methods. It is observed from 
Tab. 5 that the PD source maximum deviation error is 
significantly lower for accurate time delay measurements 
from the sensors and higher for inaccurate time delay 
measurements from the sensors. It can also be found that 
PD source location by the proposed method is much better 
when compared with the available literature results. The 
relative error obtained by the proposed method is also 
lower when compared to other methods as shown in 
Tab. 5. 

It is also revealed that the PD source location by the 
proposed method is much better for both laboratory and 
field experimental data when compared with the available 
literature results. Thereby, the proposed method has shown 
its capability to localize the PD source with good accuracy. 

5. Conclusion 
In this paper, fuzzy adaptive PSO (FAPSO-I & 

FAPSO) has proposed to obtain search capabilities of the 
particles. The PSO result greatly influences on inertia 
weight (w) and learning factors (c1 & c2) and it may trap 
into local premature convergence problem. To prevail over 
this problem, inertia weight is tuned dynamically by using 
conditional IF-THEN statements in order to obtain the 
global best solution. From the output results, it is noticed 
that the proposed FAPSO-I method converge to global 
optimum solution owing to inertia weight fuzzification. To 
analyze the fuzzy adaptive PSO correctly, the good choice 
of inertia weight and learning factors results in such a way 
that all the particles tend to move in the direction of global 
optimum location compared to PSO. Thus, the proposed 
FAPSO-I takes very less time owing to inertia weight has 
been  tuned  dynamically  using  fuzzy rules. This FAPSO-I 
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PD source 
position 
No 

Actual PD 
coordinates 
(mm) 

PD location 
results of LS 
(mm) [10] 

PD location 
results of PSO 
(mm) [10] 

PD location 
results of 
FAPSO (mm)  

PD location 
results of 
FAPSO-I (mm)

Location 
error of LS 
(mm)  [10]  

Location 
error of 
PSO (mm) 
[10]  

Location 
error of 
FAPSO 
(mm) 

Location 
error of 
FAPSO-I 
(mm) 

1-1 

(392,700,490) 

(529,590,501) (384,719,492) (383,698,487) (388,702,489) 176.04 20.01 9.69 4.58 

1-2 (661,1012,672) (379,712,516) (394,694,486) (386,704,488) 450.37 31.45 7.46 8.25 

1-3 (682,793,872) (383,691,495) (388,698,486) (389,701,488) 488.54 13.67 6 3.74 

1-4 (485,936,647) (380,701,483) (389,697,485) (389,702,487) 298.31 13.93 6.56 4.69 

2-1 

(510,700,410) 

(694,918,491) (512,716,421) (506,706,408) (508,702,408) 296.55 19.52 7.48 3.46 

2-2 (625,625,275) (520,715,422) (507,701,412) (509,701,409) 192.54 21.66 3.46 1.73 

2-3 (650,768,515) (513,703,424) (508,702,406) (508,699,409) 187.75 14.63 4.89 2.45 

2-4 (646,895,585) (510,712,412) (511,695,405) (507,701,408) 295.21 12.17 7.14 3.74 

3-1 

(883,700,690) 

(952,1112,763) (877,706,707) (887,701,693) (880,698,688) 424.07 19.00 5.09 4.12 

3-2 (968,1027,592) (882,708,702) (880,695,688) (881,697,686) 351.79 14.45 6.16 5.39 

3-3 (799,582,833) (881,701,703) (880,696,685) (880,696,687) 203.54 13.19 7.07 5.83 

3-4 (785,592,796) (895,706,693) (882,700,684) (881,702,691) 180.29 13.75 6.08 3 

Tab. 4.  Comparison of laboratory PD source location results among available literature with proposed methods. 
 

PD 
source 

position 
No 

Actual 
coordinates (mm) 

Maximum 
deviation 

error of LS 
(mm) 

Maximum 
deviation 
error of 

PSO (mm) 

Maximum 
deviation 
error of 
FAPSO 
(mm) 

Maximum 
deviation 
error of 

FAPSO-I 
(mm) 

Relative 
error of 
LS (%) 

Relative 
error of 

PSO (%) 

Relative 
error of 
FAPSO 

(%) 

Relative 
error of 

FAPSO-I 
(%) 

1-1 

(392,700,490) 

200 19 9 4 10.03 1.14 0.55 0.26 
1-2 312 26 6 6 25.66 1.79 0.43 0.47 
1-3 382 9 4 3 27.84 0.78 0.34 0.21 
1-4 236 12 5 3 16.99 0.79 0.37 0.27 
2-1 

(510,700,410) 

218 16 6 2 16.89 1.11 0.43 0.2 
2-2 135 15 3 1 10.97 1.23 0.19 0.1 
2-3 140 14 4 2 10.69 0.84 0.28 0.14 
2-4 195 12 5 3 16.82 0.69 0.41 0.21 
3-1 

(883,700,690) 

412 17 4 3 24.16 1.08 0.29 0.23 
3-2 327 12 5 4 20.05 0.82 0.35 0.31 
3-3 143 13 5 4 11.59 0.75 0.40 0.33 
3-4 108 12 6 2 10.27 0.78 0.35 0.17 

Tab. 5.  Error analysis comparison of laboratory PD source among available literature with the proposed methods. 

method is more superior in terms of minimum location 
error and maximum deviation error for the accurate PD 
source localization in giving global best solution in com-
parison to FAPSO, LS, PSO, SA, LPSO, QGA and GA. 

Finally, this proposed method has shown good im-
plementation and appropriateness for localization of PD 
source and the output results of the proposed method when 
compared to other methods reported in the literature at-
tained desired better results. In future this FAPSO method 
can also be applied to radars and channel estimation areas 
for evaluating better results when compared to iterative and 
optimization methods.  

References 

[1] HOWELLS, E., NORTON, E. T. Location of partial discharge 
sites in on-line transformers. IEEE Transactions on Power 

Apparatus and Systems, 1981, vol. 100, no. 1, p. 158–161. DOI: 
10.1109/TPAS.1981.316872 

[2] LUNDGAARD, L. E. Partial discharge XIII. Acoustic partial 
discharge detection fundamental considerations. IEEE Electric 
Insulation Magazine, 1992, vol. 8, no. 4, p. 25–31. DOI: 
10.1109/57.145095 

[3] LUNDGAARD, L. E. Partial discharge XIV: Acoustic partial 
discharge detection – practical application. IEEE Electrical 
Insulation Magazine, 1995, vol. 8, no. 5, p. 34–43. DOI: 
10.1109/57.156943 

[4] ELEFTHERION, P. M. Partial discharge XXI: Acoustic emission-
based PD source location in transformer. IEEE Electrical 
Insulation Magazine, 1995, vol. 11, no. 6, p. 22–26. DOI: 
10.1109/57.475905 

[5] LU, Y., TAN, X., HU, X. PD detection and localization by 
acoustic measurement in an oil-filled transformer. IEE Proc 
Science Measurement Technology, 2000, vol. 147, no. 2, p. 81–85. 
DOI: 10.1049/ip-smt: 20000223 

[6] IEEE STD. C57.127-2007. IEEE guide for the detection and 
location of acoustic emissions from partial discharges in oil-



1126 K. C. MEKA, A. V. GIRIDHAR, D. V. S. S. SIVA SARMA, PD SOURCE LOCATION UTILIZING ACOUSTIC TDOA SIGNALS … 

 

immersed power transformers and reactors. DOI: 
10.1109/IEEESTD.2007.4293265 

[7] MARKALOUS, S. M., TENBOHLEN, S., FESER, K. New robust 
non-iterative algorithms for acoustic PD-localization in oil/paper-
insulated transformers. In 14th International Symposium on High 
Voltage Engineering. Beijing (China), 2005, p. 1–6. 

[8] MARKALOUS, S. M., TENBOHLEN, S., FESER, K. Detection 
and location of partial discharges in power transformers using 
acoustic and electromagnetic signal. IEEE Transaction on 
Dielectrics and Electrical Insulation, 2008, vol. 15, no. 6,  
p. 1576–1583. DOI: 10.1109/TDEI.2008.4712660 

[9] VELOSO, G. F. C., BORGES DA SILVA, L. E., LAMBERT-
TORRES, G., et al. Localization of partial discharges in 
transformers by the analysis of the acoustic emission. In IEEE 
International Symposium on Industrial Electronics. Montreal 
(Quebec, Canada), 2006. p. 537–541. DOI: 
10.1109/ISIE.2006.295515  

[10] VELOSO, G. F. C., BORGES DA SILVA, L. E., LAMBERT-
TORRES, G., et al. A strategy to locate partial discharges in power 
transformers using acoustic emission. In International Conference 
on Renewable Energies and Power Quality (ICREPQ 2007). 
Seville (Spain), 2007. DOI: 10.13140/RG.2.1.2181.4001 

[11] TANG, L., LUO, R., DENG, M., SU, J. Study of partial discharge 
localization using ultrasonic in power transformer based on 
particle swarm optimization. IEEE Transaction on Dielectrics and 
Electrical Insulation, 2008, vol. 15, no. 2, p. 492–495. DOI: 
10.1109/TDEI.2008.4483469 

[12] KUNDU, P., KISHORE, N. K., SINHA, A. K. A non-iterative 
partial discharge source location method for transformers 
employing acoustic emission technique. Applied Acoustics, 2009, 
vol. 70, no. 11–12, p. 1378–1383. DOI: 
10.1016/j.apacoust.2009.07.001 

[13] KIL, G. S., KIM, I. K., PARK, D. W.,  et al. Measurements and 
analysis of the acoustic signals produced by partial discharges in 
insulation oil. Current Applied Physics, 2009, vol. 9, no. 2,  
p. 296–300. DOI: 10.1016/j.cap.2008.01.018 

[14] KUO, C. C. Artificial recognition system for defective types of 
transformers by acoustic emission. Expert Systems Applications, 
2009, vol. 36, no. 7, p. 10304–10311. DOI: 
10.1016/j.eswa.2009.01.046 

[15] BOCZAR, T., BORUCKI, S., CICHOD, A., et al. Application 
possibilities of artificial neural networks for recognizing partial 
discharges measured by the acoustic emission method. IEEE 
Transaction on Dielectrics and Electrical Insulation, 2009, 
vol. 16, no. 1, p. 214–223. DOI: 10.1109/TDEI.2009.4784570 

[16] LIU, H. L., LIU, H. D. Partial discharge localization in power 
transformers based on the sequential quadratic programming-
genetic algorithm adopting acoustic emission techniques. 
European Physics Journal Applied Physics, 2014, vol. 68, no. 1,  
p. 1–16. DOI: 10.1051/epjap /2014140318 

[17] LIU, H. L. Acoustic partial discharge localization methodology in 
power transformers employing the quantum genetic algorithm. 
Applied Acoustics, 2016, vol. 102, p. 71–78. DOI: 
10.1016/j.apacoust.2015.08.011 

[18] HASIRCI, Z., CAVDAR, I. H., OZTURK, M. Modelling and link 
performance analysis of bus bar distribution systems for 
narrowband PLC. Radioengineering, 2017, vol. 26, no. 2,  
p. 611–620. DOI: 10.13164/re.2017.0611 

[19] HAN, C., WANG, L. Array pattern synthesis using a digital 
position shift method. Radioengineering, 2016, vol. 25, no. 3,  
p. 573–580. DOI: 10.13164/re.2016.0573 

[20] TAGCU, E, KAYA, I., YAZCAN, A. CMF-DFE based adaptive 
blind equalization using particle swarm optimization. 

Radioengineering, 2016, vol. 25, no. 1, p. 124–131. DOI: 
10.13164/re.2016.0124 

[21] SONG, L., LIANG, M., JI, H. Box-particle implementation and 
comparison of cardinalized probability hypothesis density filter. 
Radioengineering, 2016, vol. 25, no. 1, p. 177–186. DOI: 
10.13164/re.2016.0177 

[22] GUNES, F., DEMIREL, S., MAHOUTI, P. Design of a front–end 
amplifier for the maximum power delivery and required noise by 
HBMO with support vector micro strip model. Radioengineering, 
2014, vol. 23, no. 1, p. 134–143. ISSN: 1210-2512 

[23] CAKIR, O., KAYA, H., YAZGAN, A., et al. Emitter location 
finding using particle swarm optimization. Radioengineering, 
2014, vol. 23, no. 1, p. 252–258. ISSN: 1210-2512 

[24] ABDUL RANI, K. N., ABD MALEK, M. F., SIEW CHIN, N. 
Nature-inspired cuckoo search algorithm for side lobe suppression 
in a symmetric linear antenna array. Radioengineering, 2012, 
vol. 21, no. 3, p. 865–874. ISSN: 1210-2512 

[25] ADIGUZEL, T., AKBULET, A., YILMAZ, A. E. Estimation of 
time-varying channel state transition probabilities for cognitive 
radio systems by means of particle swarm optimization. Radio-
engineering, 2012, vol. 21, no. 1, p. 104–109. ISSN: 1210-2512 

[26] ZHONGKUN MA, VAN DEN BOSCH, G. A. E. Comparison of 
weighted sum fitness functions for PSO optimization of wideband 
medium-gain antennas. Radioengineering, 2012, vol. 21, no. 1,  
p. 504–511. ISSN: 1210-2512 

[27] SEDENKA, V., RAIDA, Z. Critical comparison of multi-objective 
optimization methods: Genetic algorithms versus swarm 
intelligence. Radioengineering, 2010, vol. 19, no. 3, p. 369–377. 
ISSN: 1210-2512 

[28] LACIK, J., LAGER, I. E., Z., RAIDA, Z. Multi criteria 
optimization of antennas in time domain. Radioengineering, 2010, 
vol. 19, no. 1, p. 105–110. ISSN: 1210-2512 

[29] RAPTIS, V., TATIS, G., CHRONOPOULOS, S. K., et al. 
Development and experimental measurements of a tunable 
antenna. Communications and Network, 2013, vol. 5, no. 3,  
p. 220–224. DOI: 10.4236/cn.2013.53026 

[30] KRACEK, J., MAZANEK, M. Wireless power transmission for 
power supply: State of art. Radioengineering, 2011, vol. 20, no. 2, 
p. 457–463. ISSN: 1210-2512 

[31] KADLEC, P., KEJIK, P., RAIDA, Z. Comparison of pilot symbol 
embedded channel estimation algorithms. Radioengineering, 2009, 
vol. 18, no. 4, p. 485–490. ISSN: 1210-2512 

[32] CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., TATSIS, G., 
et al. Performance of turbo coded OFDM under the presence of 
various noise types. Wireless Personal Communication, 2016, 
vol. 87, p. 1319–-1336. DOI: 10.1007/s 11277-015-3055-1 

[33] YANG XIN-SHE. Nature-Inspired Metaheuristic Algorithms. 2nd 
ed. United Kingdom, L University Press, 2010. ISBN: 
9781905986286 

[34] BAJPAI, P., SINGH, S. N. Fuzzy adaptive particle swarm 
optimization for bidding strategy in uniform price spot market.  
IEEE Transactions on Power Systems, 2007, vol. 22, no. 4,  
p. 2152–2160. DOI: 10.1109/TPWRS.2007.907445 

About the Authors … 
Kalyan Chakravarthi MEKA is currently a Ph.D. student 
in the Department of Electrical Engineering, NIT 
Warangal. He received his M Tech from AN University in 



RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 1127 

 

2010. His research interests include condition monitoring 
on power transformers. 

GIRIDHAR A V received his doctorate degree from the 
Indian Institute of Technology, Madras in 2011. He joined 
the National Institute of Technology, Warangal, India in 
2012. Presently, he is an Assistant Professor in the De-
partment of Electrical Engineering. His research area in-
cludes high voltage engineering, condition monitoring and 
diagnosis of high voltage power apparatus. 

SIVA SARMA D V S S received his B. Tech. in EEE and 
M.Tech. in Power Systems from JNTU College of Engi-
neering, Anantapur in 1986 and 1988, respectively. He 
received his doctorate degree from the Indian Institute of 
Technology, Madras in 1993. He joined the National In-
stitute of Technology, Warangal, India in 1992. Presently, 
he is a Professor in the Department of Electrical Engineer-
ing. His areas of interest include power system transients, 
power quality, protection and condition monitoring of 
power apparatus and EMTP applications. 

 


