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Abstract. Based on Particle Swarm Optimization (PSO) 
and Second-Order Cone Programming (SOCP) algorithm, 
this paper proposes a hybrid optimization method to sup-
press the grating lobes of sparse arrays and improve the 
robustness of array layout. With the peak side-lobe level 
(PSLL) as the objective function, the paper adopts the 
particle swarm optimization as a global optimization algo-
rithm to optimize the elements’ positions, the convex opti-
mization as a local optimization algorithm to optimize the 
elements’ weights. The effectiveness of the grating lobes 
suppression (as low as –32.13 dB) by this method is illus-
trated through its application to the sparse linear array 
when the actual steering vector is known. To enhance the 
robustness of the optimized array, a rebuilt robust convex 
optimization model is adopted in the optimization of both 
array excitations and layout. When the array manifold 
mismatch error is 1 cm, the PSLL by the robust algorithm 
can be compressed to –27 dB, compared to that of –24 dB 
by the ordinary optimization. Results of a set of representa-
tive numerical experiments show that the algorithm pro-
posed in this paper can obtain a more robust array layout 
and matched elements’ weight coefficients to avoid the 
huge degradation of the array pattern performance in the 
presence of array manifold mismatch errors. The good 
performance of pattern synthesis demonstrates the effec-
tiveness of the proposed robust algorithm. 
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1. Introduction 
In recent years, array antennas have been widely used 

in wireless mobile communication, radar, navigation of 

aircraft and many other fields. However, the number of the 
array elements and array size limitation often result in the 
complexity and high cost of antenna system. Therefore, 
sparse array antenna is developed to solve these problems. 
Sparse array refers to non-uniformly-spaced array where 
both the spacing and the position of the array elements are 
distributed irregularly and randomly within a certain range. 
Compared to conventional arrays, sparse arrays have the 
advantages of narrower beam width, lower cost and higher 
resolution [1–3]. However, the defects of the sparse arrays 
such as the grating lobes and the high side-lobe level, are 
the critical issues to be solved in the research of sparse 
array [4], [5]. Moreover, in practical application, the jitter 
of array elements and mutual coupling between adjacent 
elements often cause array manifold mismatch, which leads 
to an unavoidable degradation of the array performance. 
Thus, designing a robust array against manifold mismatch 
has become a key technical issue in the research of sparse 
array in recent years [6], [7]. 

Much research has been done to solve the high side-
lobe level (SLL) problem created by sparse arrays and the 
relevant studies can be divided into two main broad catego-
ries: intelligent algorithms and convex optimization. 

With regard to intelligent optimization algorithms, ge-
netic algorithm (GA) and particle swarm optimization 
(PSO) have been widely used in the design of sparse array. 
To suppress the peak side-lobe level (PSLL) of sparse 
concentric ring arrays, a modified real genetic algorithm 
(MGA) was proposed to optimize the grid ring radii in [8], 
which made an effort to improve the searching ability. The 
simulations of 6 grid rings and 8 grid rings illustrated the 
effectiveness of MGA, but only improved 0.51 dB in PSLL 
compared to [9]. Jiang et al. presented an improved integer 
genetic algorithm (IIGA) to meet the needs of sparse array 
design with thousands of array elements [10]. The modi-
fied algorithm had a PSLL of 0.75 dB improvement com-
pared to WD method [11], while the array elements were 
reduced by 6.85%. However, this approach was time-con-
suming for large arrays. Matthew et al. used a genetic algo-
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rithm to optimize the locations of antennas in a linear 
sparse array under the constraint of their physical size [12], 
[13]. The coefficients of elements and positions of the 
array were the decision variables in [14], [15] to achieve 
a lower side-lobe level. GA-based optimization and dy-
namic constrained multi-objective evolutionary algorithm 
(DCMOEA) were designed for planar arrays and linear 
sparse arrays respectively. The PSLL of sparse linear array 
of 19 elements with an overall aperture of 18.66λ (λ is the 
wavelength) could be reduced to –14.01 dB. However, the 
array pattern obtained by these methods mentioned above 
is far from the best because of the defect that the single 
evolutionary algorithms always plunged into the local 
optimal solution. In order to suppress the grating lobes of 
sparse arrays, PSO was used to obtain array layout under 
the constraint of minimum and maximum spacing of the 
adjacent elements [16]. Although the performance of the 
optimized array pattern is fine, the convergence speed was 
poor. The same idea was used in [17], [18], in which only 
the positions of array elements were optimized. These 
methods were effective to obtain the lowest PSLL as well 
as a narrower beam width, but the pattern synthesis of the 
whole space was not allowed, which limited the extensive 
use of them. Li et al. considered using genetic algorithm to 
optimize the phase and amplitude distribution of the theo-
retical linear array [19], but the positions of the array ele-
ments were obtained in the global optimization. Similarly, 
in the studies of [20], [21], PSO and a modified adaptive 
PSO algorithm (MPSO) were used for the design of the 
sparse array without the consideration of the complete 
match of the elements’ positions and weights. 

In addition to the intelligent algorithm mentioned 
above, a variety of antenna array pattern synthesis problem 
have been converted into convex form [22], [23], which 
can be handled by a convex problem solver such as Sedumi 
and CVX [24], [25] with great efficiency. Benjamin tried 
to minimize the number of radiating elements of sparse 
arrays under the constraint of the specified pattern require-
ments by sequential convex optimization, which included 
the transformation from a non-convex optimization prob-
lem to a sequence of essentially convex one [26]. Likewise, 
in [27–31], the optimizations of the sparse array were all 
converted into the standard convex form and solved by 
Sedumi in Matlab easily. With these methods, improved 
performance has been achieved, characterized by a final 
PSLL almost to –30 dB, with 13 array elements and an 
aperture of 9.49λ. However, the conversion mentioned 
above requires the weighted l1 –

 norm as close as to  
l0 –

 norm, which was difficult to achieve. Zhao et al. pro-
posed a combined new optimization algorithm which used 
genetic algorithm to get elements’ positions and applied 
convex method to optimize elements’ weight coefficients 
[32]. Under the constraint of main lobe width, the best 
PSLL for a 25-elements array over an aperture of 50λ was 
optimized to –13.86 dB. But this approach could only 
choose positions at specific locations and optimize the 
amplitude of the elements’ weights without consideration 
of the phase, which reduced the freedom of optimization 

variables. The locations of the array elements and the coef-
ficients were taken as joint variables to minimize the grat-
ing lobes of sparse circular array through modified genetic 
algorithm in [33], and then the second-time optimization 
was conducted via second-order cone programming 
(SOCP) to get the perfect match between these two varia-
bles, which further reduced the PSLL. The study took into 
consideration the combined characteristics of these two 
optimized variables, but their perfect match was only ap-
plied in the last step in SOCP. 

The papers mentioned above all assumed that the 
steering vector of an antenna array was definite and 
ignored the manifold mismatch. However, in practical 
application, the actual array manifold may differ from the 
ideal value due to the mutual coupling and position errors. 
To achieve the robustness of the optimized array, many 
robust optimizations have been done to enhance the robust 
performance and avoid expensive and time-consuming 
calibrations in the practical application of array antenna. 
Interval analysis (IA) was widely used in the robust adap-
tive beam forming algorithm in [34–38]. In these studies, 
given the maximum errors on the amplitude coefficients, 
IA-based tool was used to effectively achieve the ideal 
synthesis of robust antenna arrays. But the phase coeffi-
cients were not considered. Aboulnasr et al. proposed 
an iterative sequential quadratic programming (SQP) to 
handle the mismatch problem [39]. The core idea was to 
predicate the difference between the presumed and actual 
steering vectors and then use it to correct the errors of 
vectors without assuming the norm of the mismatch param-
eters. With regard to the constant constrained error, the 
worst-case performance optimization was proposed in [40] 
to enhance the robustness of the optimized conformal array 
and decrease the PSLL simultaneously. Just like [41], the 
convexity of the robust problem was fully taken into ac-
count to make the solutions simple and convenient, which 
increased the extendibility of the presented method. The 
two optimization criteria of l2 regularization and l1 regular-
ization were proposed in [42], [43] to synthesize array 
pattern with low PSLL and enhance the robustness of array 
manifold vectors. The problem of robust array pattern 
synthesis was equivalently transformed into convex form, 
which was handled by SOCP solver. However, the optimi-
zation of the array layout was not considered by the author. 
Liu et al. presented a robust sparse optimization for linear 
array against manifold vectors uncertainty, which was also 
based on the iterative convex optimization [44]. To obtain 
a robust array pattern performance, the transformation of 
non-convex constraints was widely used in the above 
methods and the reconstructed array showed the validity. 

Unfortunately, the grating lobes suppression algo-
rithm, which takes the robustness of the designed array 
against array manifold mismatch into consideration, has 
hardly been investigated. Most of the studies focus only on 
one aspect, which is not enough for the practical applica-
tions of the sparse array. 

In this research, a robust hybrid optimization method 
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of PSO and SOCP against array manifold mismatch is 
proposed for suppressing the grating lobes of the sparse 
array, with full consideration of the advantages and disad-
vantages of the algorithms mentioned above, where PSO is 
adopted to optimize the elements’ positions and convex 
optimization is used for the weights to guarantee the com-
plete match of these two variables. Compared with GA, 
PSO has some advantages such as simple operation and 
easy implementation. Besides, with the unique feature of 
SOCP that a local optimal solution is the same as the global 
optimal, a combination of PSO and SOCP is proposed. 
Because the perturbations of the elements’ positions affect 
the array manifold and the performance of the grating lobes 
suppression is particularly sensitive to the array manifold 
mismatch, it is urgent to improve the robustness of the 
optimized array. To solve this problem, array manifold 
mismatch errors are introduced in local optimization algo-
rithm and the robust convex cone models are rebuilt in this 
research. Several simulation results prove the correctness 
and effectiveness of the proposed hybrid algorithm. 

This paper is composed of five sections. Some key 
studies in the field of sparse arrays are reviewed in Sec. 1 
and the question to be addressed by the present study is 
pointed out. The model of optimization and the fundamen-
tal formula deduction are provided in Sec. 2. In Sec. 3, the 
optimization algorithm is presented, in which the form of 
robust convex cone is an improved version of a general 
form, taking the array manifold mismatch errors into con-
sideration. In Sec. 4, the effectiveness of this hybrid algo-
rithm is shown by detailed simulation results. Finally, Sec-
tion 5 presents the conclusions. 

2. Optimization Model 
Consider a sparse linear array of N isotropic elements, 

as shown in Fig. 1, the distance between the nth element 
and the origin of the reference coordinate system is defined 
as dn for n = 1,2,…,N. To keep the array aperture fixed as 
L, the first and last element are located at d1 = 0 and dL = L, 
respectively. The total electric field intensity of far field is 
given by the following expression 
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where wn is the nth element’s complex weight coefficient, 
(·)* is the complex conjugate operator, k = 2π/λ is the prop-
agation coefficient of the free space with the wavelength λ, 
and  is the angular direction with respect to the array axis. 

Given the constraint of PSLL, the objective function 
can be expressed as 
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where  PSLL is defined as  PSLL = maxE(m)/max E(), 
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Fig. 1. Diagram of a sparse linear array. 

E(0) and E(m), for m = 1,…, M, are the electric field 
intensity in the direction of the main radiation direction 0 
and mth side-lobe angle m in side-lobe region S, respec-
tively. xi = di + 1 for i = 1,…, N – 2 is the element positions 
waiting to be optimized.  

When the array layout is fixed, Equation (2) can be 
expressed as 
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where w = [w1, …, wN]T is the complex excitation vector of 
the antenna array, and bm =b(m) = [1, exp(jkx1sin),…, 
exp(jkxN – 2sin), exp(jkLsin)]T, m = 0, 1,…,M is the 
steering vector. (·)T, (·)H are the transpose operator and 
conjugate transpose operator, respectively. 

3. PSO-SOCP/RSOCP Algorithm 
The problem of (3) is a high dimensional non-linear 

problem, including the optimization of the array elements’ 
positions and complex excitation weights, which can be 
optimized by PSO. But the high dimension of the problem 
will make the algorithm fall into a local optimal solution as 
well as a time-consuming graint. However, with the char-
acteristic that a local optimal solution is the same as the 
global optimal solution, convex optimization can solve the 
problem perfectly. Thus, a hybrid method combining PSO 
algorithm and SOCP algorithm is proposed to get better 
optimal performance by reducing the dimension of parti-
cles to obtain the best solution for every particle. With this 
hybrid method, PSO is set as the global optimization algo-
rithm to optimize the positions, and SOCP is set as the 
local optimization algorithm to optimize the complex 
weights with fixed array layout, respectively. 

3.1 SOCP Algorithm for the Fixed Array 
Layout 

Assume that the array element layout is fixed, 
dn, n  {1,…,N} and xi, i  {1,…,N – 2} are constants. 
For the mth side-lobe region angle m, the steering vector 
bm is a constant vector. Then, the problem in (3) can be 
converted to a SOCP problem 
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where α is a real and nonnegative variable. The constraints 
in (4) are equal to 
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if y = (α w1 … wN)T. Then Equation (4) can be expressed as 
the standard SOCP form [23] 
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with  and  being the set of real and complex scalars (or 

matrix), respectively. 

With the excitation vector w optimized by SOCP opti-
mization, PSO is applied to obtain the best position vector 
of the array elements by updating the particle positions, 
computing and comparing the value of fitness function, 
which is designed to evaluate the performance of the parti-
cles. Value of fitness function is defined as 

 Hmax ,   1, ,
S

mfitness m M


  w b . (7) 

Thus, the non-linear high dimensional optimization 
problem of (3) is converted to the combination of PSO and 
SOCP problem, taking advantages of these two optimiza-
tion algorithms and reducing the probability of algorithms 
falling into a local optimal solution. 

3.2 Robust SOCP Algorithm for Mismatched 
Array Manifold 

Equation (4) can be seen as an optimization algorithm 
for grating lobes suppression without considering the mani-
fold error. However, mismatches are found in many practi-
cal arrays for the perturbation of elements’ positions, the 
discrepancy of directional function of array elements as 
well as mutual coupling between array elements. All these 
factors may change the steering vector b(), resulting in 
a false solution. Thus, the robust SOCP(RSOCP) algorithm 
is proposed as follows. 

Presume b̃() is the mismatched array manifold, e() 
is array manifold error, thus b̃() = b() + e(), the error 
e() is always unknown but a threshold ε can be given as 
e()  ε, then      H H H       b w w b w b w w . 

Therefore, with regard to robust optimization, the 

optimization problem of (4) can be written as the robust 
convex form as follows: 
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where bm
Hw + εw is the largest electric field intensity 

in the direction of side lobe m of the mismatched array and 
b0

Hw – εw is the smallest electric field intensity in the 

direction of the set radiation angle 0. Similar to (4), when 
the position vector x is fixed, assume β is a real and non-
negative variable, the problem in (8) can be converted to: 
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which is also a typical SOCP problem and its weights can 
be optimized by SOCP algorithm.  

Then the fitness function of the RSOCP algorithm is 
re-defined as 
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which, taking into the consideration of error threshold ε, 
limits the optimal PSLL to a value that won’t be worse 
than the fitness function value. 

3.3 The Procedure of PSO-SOCP/RSOCP 
Algorithm 

In this paper, the hybrid algorithm of PSO and 
SOCP/RSOCP takes the advantages of both algorithms. 
Because of its high efficiency and simplicity, PSO is ap-
plied as global optimization algorithm, and SOCP/RSOCP 
is applied as local optimization algorithm for its character-
istic that the local optimal solution is the global optimal 
solution. All these features guarantee that the particles can 
search the whole space with the best local solution. The 
following are the detailed descriptions of the hybrid PSO-
SOCP/RSOCP algorithm. 

1) Set the element number and aperture of the specific 
array model. Choose the angle sampling interval and 
the appropriate main lobe width of zero power point 
in accordance with the aperture.  

2) Initialize the particle population and the speed of each 
particle. Use PSO to optimize the model in (2). Each 
particle’s position vector represents the location of the 
array elements. 

3) WHILE maximum number of cycles has not been 
reached, DO  

a) Obtain weight coefficients of each array element 
by SOCP/RSOCP algorithm. 
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b) Compute fitness values. 

c) Update global optimal solution and historical 
optimal solution. 

d) Update positions and velocities of the particles. 

e) Increase the loop counter. 

4) End cycle 

5) Display the best results of pattern synthesis. 

Figure 2 is the flowchart of the hybrid PSO-SOCP/RSOCP 
algorithm. 

START

set array, element number, 
aperture, bandwidth and 

sampling interval

PSO parameters initialization

obtain weight excitation vector 
by SOCP/RSOCP 

compute fitness value

update global optimal and 
historical optimal solution

update particle positions and 
velocities

Maximum 
iteration?

Show results

END

calculate steering vector              b

NO

YES

 
Fig. 2.  Flowchart of PSO-SOCP/RSOCP. 

4. Simulation Results 
In array signal processing, in order to suppress the 

grating lobes, the adjacent element spacing of the array 
should be less than or equal to a half wavelength. How-
ever, under the constraint of the limited elements number 
and array aperture, the array can only be sparsely popu-
lated. In order to describe sparse degree of the sparse array, 
the sparse ratio is defined as 

  (1 ) 100%
M

l
      (11) 

where M is the number of the physical elements in the 
sparse array, l is the number of the equivalent elements 
formed by half-wavelength interval array. Sparse ratio 
combines two factors: the number of elements and the 
aperture of the array. Therefore, the sparse ratio reflects the 
sparseness of the distributed array, that is, the larger of the 
sparse ratio, the sparser of the array. 

In this section, a variety of simulations and compari-
sons are presented in order to illustrate the advantages of 
the proposed hybrid algorithm. Firstly, without array mani-
fold perturbations, the proposed PSO-SOCP algorithm is 
compared with the previously published methods in terms 
of the ability to suppress the grating lobes (Figs. 3, 4). 
Then, new simulations and results are listed, in which 
RSOCP model proposed in Sec. 3.2, is adopted to modify 
and obtain much more robust elements’ excitations 
(Figs. 5–7). Finally, the simulations of the RSOCP algo-
rithm combined with PSO algorithm are presented, which 
optimize the weight vector as well as the position vector to 
obtain not only the robust weight coefficients but also the 
robust array layout (Figs. 8–11). 

4.1 Simulations of the Grating Lobes 
Suppression 

Assume a 50 element linear array with a fixed aper-
ture of 5 m and a working wavelength of 0.06 m. The main 
radiation direction of the pattern synthesis is set as 10º, and 
the width of the main lobe zero power points is set as 3º. 
Under these conditions, the equivalent number of elements 
with d = λ / 2 is 167, thus the sparse ratio is 70% according 
to (11).  

The optimization model described above is a typical 
sparse array with a sparse ratio of 70%. The parameters to 
be optimized are the positions and weight coefficients of 
the array elements. Simulations in the following verify the 
effectiveness of the proposed algorithm in terms of grating 
lobe suppression when there is no error in the steering 
vector of the actual array. 

In order to suppress the grating lobes of the sparse 
model and improve the performance of directivity pattern, 
firstly, PSO is used according to the formula presented in 
(3). The basic parameters of PSO are given in Tab. 1 where 
c1 and c2 are personal and global learning coefficients, 
respectively. 

Figure 3 shows the comparison of radiation patterns 
using the PSO algorithm, the secondary optimization 
algorithm by SOCP after PSO and hybrid PSO-SOCP algo- 
 

angle sampling interval 0.2 
population size 300 
Iteration number 200 
learning coefficients c1 = c2 = 1.4962 

Tab. 1. Basic parameters of PSO. 
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rithm proposed in this paper. PSO is run 30 times for inde-
pendent trials, the best value of PSLL is –14.58 dB. With 
the secondary optimization by SOCP after PSO, PSLL can 
be suppressed to –23.69 dB, which is much lower than that 
of original PSO. The PSO-SOCP hybrid optimization algo-
rithm proposed in this paper pushes the PSLL to –32.13 dB 
while broadening the main lobe width by 2, which is 
within the acceptable range and understandable for the 
reduction of the side lobes will result in a broadening of the 
main lobe. The optimization effect of the hybrid algorithm 
is much better than that of the PSO and the second optimi-
zation algorithm in the literature [33]. 

The better numerical values indicate that the idea of 
introducing convex optimization to get better weights with 
obtained array layout by PSO is indeed effective in the 
pattern synthesis of the sparse array. 

To further discuss in detail the validity and reliability 
of the hybrid method, Figure 4 draws the convergence 
curves of the PSLL obtained by this algorithm for 30 inde-
pendent trials. Already for the zeroth or the first iteration 
the fitness value is –27 dB, thus it is far below those of the 
compared methods. The hybrid algorithm of PSO and 
SOCP proposed in this paper can enhance the ability of 
each particle's optimal search in each iteration through 
reducing the dimension of the particles, preventing the 
particles to fall into local optimum. Given their respective 
contribution to global optimization and local optimization, 
combining PSO algorithm and SOCP algorithm can greatly 
enhance the optimization ability of the entire algorithm and 
achieve better grating lobe suppression effect. 

 
Fig. 3.  Radiation patterns of three different methods. 
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Fig. 4. Convergence curves of 30 independent trials. 

Figure 4 shows that it tends to converge at about the 
140th iteration, and the worst fitness is –30.034 dB while 
the best fitness is –32.13 dB, which is better than the result 
of –14.58 dB by PSO and –23.69 dB by the method in litera-
ture [33]. And the best result of the proposed hybrid algo-
rithm has improved 17.55 dB in PSLL compared with PSO, 
and 8.44 dB compared with the method in literature [33]. 

The above-mentioned statistics suggest that the pro-
posed hybrid algorithm outperforms the other algorithms in 
the ability to suppress the grating lobes of the sparse array, 
which exhibits its superiority and efficiency. 

4.2 The Sensitivity Analysis of the Obtained 
PSO-SOCP Results 

The simulation results discussed above have testified 
the validity of the proposed hybrid algorithm. Those simu-
lations, however, are conducted without considering the 
array manifold mismatch factor. In fact, the steering vector 
perturbation of the array can greatly reduce the perfor-
mance of the array pattern, so the simulations of this sec-
tion are performed under the condition that array manifold 
mismatch errors are true. The uncertainty for the location 
of the optimized array is considered in the simulations. 

Using the PSO-SOCP algorithm proposed in this pa-
per, the simulation in Sec. 4.1 has obtained the optimal 
array layout and excitation coefficient. Then the array 
element perturbation (1 mm–5 cm) was added and 10 inde-
pendent trials were carried out. 

Figure 5 shows the maximum threshold of the array 
manifold error functioning as position error. As can be 
seen from the figure, the array manifold error ε increases as 
the position error increases. Since 10 statistical experi-
ments were performed, the mean value, maximum value, 
and minimum value of the error threshold were approxi-
mately linear with the position error. 

The PSLL change curves vs. position error are put 
forward in Fig. 6. Without position error, the PSO-SOCP 
hybrid optimization algorithm proposed in this paper 
pushes  the PSLL to –32.13 dB.  It can be seen from  Fig. 6 
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Fig. 5. Array manifold error threshold ε change curves vs. 
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Fig. 6. PSLL change curves vs. position errors. 

that the PSLL without the robust condition increases 
sharply with the increase of the position error of the array 
element, and the comprehensive performance of the pattern 
deteriorates. When the error position grows to 5 cm, the 
maximum value of the PSLL reaches approximately  
–10 dB. 

Figure 7 shows the power pattern at a position error 
of 0.05 m, 0.01 m, 0.006 m, and 0.001 m, respectively. 
When the position error is 1 mm, the PSLL is as low as  
–31.73 dB, which is only 0.4 dB higher than the non-posi-
tion error. By comparison, the PSLL of 5 cm uncertainty 
location is up to –11.93 dB, which illustrates the worse 
grating lobe suppression performance. 

4.3 Simulation of Robust Array Layout and 
Robust Excitation 

The previous section describes the influence of posi-
tion disturbance on array manifold mismatch. In this sec-
tion, we consider the array manifold mismatch error, and 
try to optimize robust array layout and robust weight coef-
ficients simultaneously with PSO-RSOCP algorithm. This 
algorithm has been explained in detail in Sec. 3.3, in which 
the local optimization algorithm was solved by using the 
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Fig. 7.  Radiation patterns while different position errors. 

robust convex optimization algorithm according to (9). The 
fitness function value of each particle in each iteration was 
obtained from (10). We set the position error 1 cm. And the 
simulation is performed according to the obtained optimal 
array. The comparisons between robust and non-robust 
directivity patterns are shown in the same graph to display 
the robustness. 

Figure 8 shows the radiation patterns of the optimized 
array with the position error 1 cm. The radiation patterns 
maintain a comparatively low PSLL even when the robust 
constraint isn't included, which suggests that the array 
layout under this circumstance has a stronger tolerance 
against the array manifold mismatch. In other words, this 
optimization of the array elements is insensitive to the 
array errors and has the best stability for practical use. 

To further discuss the validity and reliability of the 
PSO-RSOCP method, Figure 9 draws the PSLL change 
curves obtained by this algorithm for 50 independent trials. 
By comparison, the PSLL of the robust constraints fluctu-
ates around –27 dB while the PSLL of the ordinary optimi-
zation is up to –24 dB, which suggests that the robust con-
straints on weights and locations have a stronger ability to 
resist array manifold mismatch. 

Figure 10 presents the array layout optimized by the 
PSO-RSOCP algorithm and non-robust algorithm, respec-
tively. There is a big disparity between the two placements. 
From the above analysis, it is apparent that robust array 
layout composed of red circles has a stronger stability against 
array manifold mismatch while using RSOCP optimization 
to optimize the elements’ weights in local optimization. 
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5. Conclusions 
In a sparse array, the high PSLL due to grating lobes 

and array manifold mismatch errors caused by array jitter 
and mutual coupling always influence the performance of 
the pattern synthesis. To solve these problems, a robust 
hybrid optimization method based on PSO and convex 
optimization is proposed for the grating lobes suppression 
of the sparse array in this paper, where we use PSO as a 
global searcher to optimize the elements’ positions and 
convex optimization as a local searcher to optimize the 
elements’ weight coefficients to keep the complete match 
of positions and weights. In addition, we introduce the 
array manifold errors to get a much more robust convex 
model. (The simulation results of sparse linear array of 50 
array elements and with 70% sparse rate verify the effec-
tiveness of the algorithm.) However, as the array errors 
increase, the distortions of the pattern synthesis become 
large. Therefore, we consider introducing robust weights 
optimization into the local optimization to get a more ro-
bust array layout, which can get a lower steady PSLL no 
matter the weight coefficients are robust or not. The robust 
algorithm proposed in this paper is capable of enhancing 
the ability of beam form optimization against array mani-
fold mismatch and can achieve more robust excitation 
weights and positions, which explain its great value in 
practical use. 
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