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Abstract. Filter Bank MultiCarrier (FBMC) modulation
is currently considered as one of the key enablers for fu-
ture 5G technologies. In the literature, two approaches are
applied for the modulation of FBMC signals: Frequency
Spreading (FS) and PolyPhase (PP) implementation. The
complexity requirements of FBMC transmitters is considered
to be one of the key research fields. In this paper various
FBMC implementations are compared in terms of complex-
ity and quantization error. An alternative design approach
is suggested: the two full size Inverse Fast Fourier Trans-
forms (IFFTs) in the standard PP can be replaced by two
half size IFFTs taking advantage of real valued data pro-
cessing. It is shown that the complexity of the design will
be almost reduced by half. Furthermore, the proposed alter-
native method has the lowest quantization error among the
investigated transmitter architectures, which is a key issue in
hardware with low precision arithmetics.
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1. Introduction
Orthogonal Frequency Division Multiplexing (OFDM)

is themost prominent technology inwireless broadband com-
munication. One of its major advantages is the design sim-
plicity which benefits from Inverse Fast Fourier Transform
(IFFT) as a modulator and FFT as a demodulator. Despite
many advantages, OFDM suffers from several disadvantages
like its spectral inefficiency caused by cyclic prefix which
is considered as a waste of bandwidth. Currently, research
areas are studying other alternatives to overcome the above
mentioned deficiency in order to satisfy the ever increasing
demand for throughput especially with the introduction of
Internet of Things (IoT) and the expected increase in need
for more services and applications. To achieve this goal and
without losing the privilege of simple practical design, the re-
searchers’ focus has shifted to other technologies such as the
Filter Bank MultiCarrier (FBMC) modulation scheme which
can satisfy the previously mentioned spectral requirements
with some additional signal processing [1].

FBMC is being strongly considered as the physical layer
solution for 5G communication systems. The basic idea of
FBMC is that the time-domain symbol duration is enlarged
and filtering with a prototype filter is applied. In order to
counteract the data rate loss due to the enlarged symbols, the
symbols overlap in the frequency- and in the time-domain as
well and as a result, the original data rate can be maintained.

Numerous approaches have addressed the efficient im-
plementation of FBMC transmitters. A straightforward solu-
tion employing an enlarged IFFT with Frequency Spreading
(FS) is presented in [2], which uses frequency-domain con-
struction of the symbols. A significant complexity reduction
can be achieved by using two IFFTs and two PolyPhase (PP)
filter structures as shown in [3]. Further reduction can be
achieved by applying minor additional signal processing to
enable the usage of only a single IFFT [4]. Other design
proposals also exist for reducing the complexity of FBMC
transmitter such as [5], [6] where the number of operations is
reduced but it requires modifications to the existing hardware
blocks, e.g. the IFFT. Further methods for reducing the hard-
ware requirements of the FBMC transmitter using doubled
processing frequency can be found in [7], [8].

In this paper an alternative FBMC transmitter is intro-
duced where half size IFFTs can be used. The complexity of
the proposed scheme is almost equivalent to the one intro-
duced in [4]. The difference between the two architectures
is that the new one provides two parallel routes for real and
imaginary signal processing. The simulation results also
show that the alternative architecture has the lowest quanti-
zation error among the currently presented implementations.
This is advantageous because it is expected that numerous
low level hardware – especially low cost sensors – will be
heavily used in the IoT environment where the quantization
error will play an important role.

The paper is organized as follows. Section 2 presents
the FBMC modulation scheme and the currently available
transmitter architectures. In Sec. 3 the proposed alternative
FBMC transmitter with a reduced IFFT size is described. In
Sec. 4, the expected number of operations – in terms of multi-
plications – for the proposed transmitter scheme is compared
with that of the other schemes. Furthermore, Sec. 5 presents
simulations of the quantization error for the described trans-
mitter structures. Finally, Sec. 6 draws the conclusion.
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2. FBMC Modulation Scheme
In this section the FBMC signal model is introduced.

Later, three possible implementation solutions for the FBMC
transmitter are discussed.

2.1 FBMC Signal Model
The FBMC modulation scheme is capable of transmit-

ting N parallel streams – combined into one symbol – us-
ing Offset Qaudrature Amplitude Modulation (OQAM). The
complex input stream C is split into real (<{C}) and imag-
inary (={C}) parts, and they are transmitted with an offset
of a half symbol duration N . Then, each stream is filtered
by a prototype filter p0 and modulated to a separate subcar-
rier frequency. The resulting discrete time-domain baseband
FBMC signal can be expressed as:

x[n] =
∞∑

m=−∞

N−1∑
k=0

(
Θ
k<{Ck[m]}p0[n − mN] +

Θ
k+1={Ck[m]}p0[n − mN − N/2]

)
e j 2π

N
kn (1)

where j =
√
−1 is the imaginary unit andCk[m] is the complex

QAM value – taken from the complex modulation alphabet
– in the mth symbol on the k th subcarrier with the frequency
fk = 2π

N k. Each subcarrier is additionally multiplied by
a phase rotation factor Θk = e j π2 k in order to ensure the
orthogonality between the neighboring subcarriers and the
consecutive symbols. The filter bank implementation of (1)
can be seen in Fig. 1.

The length L of the prototype filter chosen as an in-
teger number of the signaling time: L = KN , where K is
also interpreted as the overlapping factor. During this paper
the prototype filter defined by [2] is used with an overlap-
ping factor K = 4. The time-domain structure of the FBMC
signal is shown in Fig. 2. It can be seen that the mth sym-
bol is overlapping with the time-domain symbols with in-
dices m−3, . . . ,m+3. At a given time instant four symbols
overlap in the resulting FBMC signal, which corresponds to
the overlapping factor. Considering the OQAM, an offset
of N/2 can be seen between the symbols generated from
<{C} and ={C}.

2.2 FBMC Transmitter Schemes
In this section various implementation possibilities for

the FBMC signal generation are discussed. The direct imple-
mentation based on Fig. 1 is inefficient. As a result, several
alternatives for reducing complexitywill be introduced as fol-
lows: FS implementation with enlarged IFFTs, complexity
reduction possibility using two IFFTs and two PP filterbanks,
and an implementation possibility with only one IFFT and
two PP filterbanks.
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Fig. 1. Filter bank structure of the FBMC modulation.
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Fig. 2. Signal structure of a time-domain FBMC signal with an
overlapping factor of K = 4.

2.2.1Frequency Spreading Implementation
The scheme described in this section was introduced

in [2], [10]. The basic idea in this transmitter structure
is to construct the transmitted symbols in the frequency-
domain, and then convert them to the time-domain using
enlarged IFFTs.

The real and imaginary data parts are extracted from
the input data symbolsC[m] and are treated separately where
an IFFT of size KN is applied at each data part. The k th sub-
carrier is multiplied with the phase rotating factor Θk and
spread around the discrete frequency with the index kK .
Each spread value is multiplied by the frequency-domain co-
efficients of the prototype filter Pκ – where κ = 0, . . . ,K − 1
– in a symmetric manner. Pκ=0 is considered as unity.

The generating procedure for the partial FBMC sig-
nal x<[n] when K = 4 is presented in Fig. 3. It can be
seen that only the directly neighboring subcarriers overlap,
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but due to the phase rotation factors they alternatively switch
between purely real and purely imaginary values. As a re-
sult, they can be separated without any interference from the
other subcarriers. After creating the time-domain symbols
a Parallel-to-Serial (P/S) conversion is performed and with
the aid of a buffer the symbols are overlapped as presented
in Fig. 2. The generation of the other partial FBMC sig-
nal x=[n] can be performed in a similar manner using the
corresponding Θk+1 phase rotation factors and a time offset
of N/2. Finally, the resulting FBMC signal can be expressed
as:

x[n] = x<[n] + x=[n − N/2]. (2)

The entire FBMC signal generation using FS can be seen
in Fig. 5.

2.2.2Polyphase Implementation
The FS implementation is inefficient due to the enlarged

IFFT. A considerable amount of reduction can be achieved
using PP filtering. The Z-Transform of the prototype filter
can be calculated as:

P0(z) =
L−1∑
l=0

p0[l]z−l . (3)

Equation (3) can be represented in an N-band PP form as
well, cosidering the fact that L = KN:

P0(z) =
N−1∑
i=0

P0,i

(
zN

)
z−l (4)

where P0,i
(
zN

)
is the ith PP decomposition of the prototype

filter P0(z) and it can be expressed as:

P0,i

(
zN

)
=

K−1∑
q=0

p0[qN + i]z−qN . (5)

As shown in Fig. 1, the modulated transmitter filter pk for
the k th subcarrier can be given as

pk[n] = Θkp0[n]ej 2π
N kn. (6)

From (6) and using PP representation given in (3), the
Z-transform of the k th filter pk[n] can be expressed as

Pk(z) =Θk
L−1∑
l=0

p0[l]ej 2π
N klz−l

=Θk
N−1∑
i=0

ej 2π
N kiz−i

K−1∑
q=0

p0[qN + i]ej 2π
N kqN z−qN

=Θk
N−1∑
i=0

ej 2π
N kiP0,i

(
zN

)
z−i . (7)

Considering WN = ej 2π
N , (7) can be represented in the fol-

lowing matrix form

P =


P0(z)
P1(z)
...

PN−1(z)


= Θ �WP0, (8)

which can be expanded as

P =

Θ0

Θ1

.

.

.

ΘN−1


�



1 1 . . . 1

1 W 1
N . . . WN−1

N
.
.
.

.

.

.
. . .

.

.

.

1 WN−1
N . . . W

(N−1)2
N





P0,0
(
zN

)
P0,1

(
zN

)
z−1

.

.

.

P0,N−1
(
zN

)
z−(N−1)


(9)

where the first vector represents the phase rotation which is
multiplied element-wise (�) with a matrix (W), which is the
Inverse Discrete Fourier Transform (IDFT) matrix and the
last one is an PP decomposition with the corresponding de-
lays. The structure realizing (9) is shown in Fig. 4. Finally,
the FBMC transmitter using two N-IFFT and PP filtering is
presented in Fig. 6.
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2.2.3Polyphase Implementation with a Single N-IFFT
Further computational complexity reduction can be

achieved by exploiting real valued data processing. This
idea was presented in [4]. The presented scheme can be seen
in Fig. 7. Compared to the transmitter structure presented
in Fig. 6, the basic concept is to move the phase rotation
factor from the input to the output of the IFFT. The effect of
multiplying the input sequence with the phase rotation factor
Θk = ej π2 k can be considered – based on the frequency shift
property of the IFFT – as an N/4 circular shift in the time-
domain at the output of the IFFT. As a result a single IFFT
can be applied, where the input signal – after replacing Θk

with a circular shift at the output – can be expressed as

Xk[m] =<{Ck[m]} + Θ={Ck[m]}

=<{Ck[m]} + j={Ck[m]}

=Ck[m]. (10)

This way a single IFFT is applied for two input sequences
simultaneously – one of them is considered as purely real and
the other as purely imaginary. After performing the IFFT, the
spectrum of the two input signals can be retrieved from the
output signal using simple signal processing as presented in
Appendix A. A detailed description of the separation can be
found in [9]. This way an IFFT can be spared compared to
the previously presented transmitter scheme with the cost of
some additional signal processing. As mentioned above, an
N/4 circular shift is applied to the two outpout signals. The
following blocks of the transmitter chain remain unaltered
with PP filtering, P/S conversion and an N/2 delay compo-

nent. This FBMC transmitter structure is especially useful
for reconfiguring and extending existing OFDM transmitters.

3. FBMC Transmitter with Two
N/2-IFFT Blocks
In this section an alternative structure is presented for

reducing the complexity of FBMC signal generation by ex-
ploiting real valued data processing. In the proposed scheme
the structure presented in Fig. 6 is modified so that two IFFT
are used with size of N/2 instead of N . The extraction of
the real and imaginary parts from the complex input C[m]
remains unaltered. From the two real valued input symbols,
two complex valued symbols with half length are formed as:

X<k [m] = <{C2k[m]} + j<{C2k+1[m]}, (11)

X=k [m] = ={C2k[m]} + j={C2k+1[m]}, (12)
k = 0, . . . , N/2 − 1.

After applying the N/2-IFFT to each sequence separately,
data separation and expansion is performed to form the sym-
bols with length N from the output symbols with length
N/2. Detailed signal processing steps for calculating the
N-IFFT of a real valued signal using N/2-IFFT are shown
in Appendix B. A detailed description of the separation can
be found in [9]. Finally, – as shown in Sec. 2.2.3 – the
multiplication by the phase rotation factor Θk in frequency-
domain will be translated into N/4 circular shift in the time-
domain at the output of the IFFT. The following signal pro-
cessing blocks remain unaltered. The resulting architecture
of the presented scheme is shown in Fig. 8.
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Fig. 8. The proposed alternative architecture for creating the FBMC signal using two N /2-IFFT and PP filtering.

4. Calculation Complexity
In this section the computational complexity for the

four presented schemes is compared. The comparison is per-
formed based on the number of real multiplications necessary
to process input sequence of size N . The summary of the
required number of multiplications is presented in Tab. 1.
The required number of multiplications for FS and general
PP implementation is taken from [3], [11] and the formu-
las for the two modified PP implementation solutions using
a single N-IFFT and two N/2-IFFT are calculated based on
the equations presented in Appendices A and B. The IFFT
is considered to be implemented using Split Radix algo-
rithm. The multiplication with ±j is considered negligible,
furthermore for the last two methods it is replaced by a cyclic
rotation of N/4.

The equations given in Tab. 1 are visualized in Fig. 9
for K = 4. As it can be seen, the FS method has the highest
computational complexity. Using PP implementation with
two N-IFFT, the required number of multiplications can be
significantly reduced. A further reduction in complexity can
be achieved using the implementation with a single N-IFFT.
The complexity requirements for the proposed method using
two N/2-IFFT is significantly lower than the FS and stan-
dard PP methods, but it is slightly higher than that of the PP
implementation using single N-IFFT. However, its benefit is
that it provides completely parallel processing routes for the
real and imaginary data.

Fig. 9. Number of real multiplications for the different FBMC
modulator schemes for K = 4 in the function of the
number of subcarriers N .

5. Simulation Results
In this section the simulation results are presented for

the previously introduced four FBMC transmitter schemes.
During the simulations the parameters presented in Tab.2
were used.

For comparison, the four FBMC transmitter schemes
were implemented using 32-bit – single precision – floating
point arithmetic, and as a reference a 64-bit – double pre-
cision – floating point FS based transmitter was used. The
simulations were performed using MATLAB 2017b. The
quantization error was calculated as the difference between
the single precision and the reference FBMC signal with
double precision:

ε[n] = |xFS,double[n] − xmethod,single[n]|. (13)

The simulation results are shown in Fig. 10. The his-
togram of the values of the quantization error ε is depicted
together with their mean value µ and standard deviation σ
for the four FBMC transmitter schemes. As it can be seen
the largest error is produced by the single precision imple-
mentation of the FS architecture. This is mainly due to the
enlarged IFFT size. The implementations using one and two
N-IFFT have a relatively similar quantization error but lower
than the quantization error of the FS scheme. The difference
can be explained by the fact that in case of using two N-IFFTs
the real or imaginary part of some inputs are unused, so the
resulting quantization error is smaller. The smallest quanti-
zation error (lowest µ and σ) is produced by the alternative
method using two N/2-IFFT.

Fig. 10. Histogram of the quantization errors for the four FBMC
transmitters.
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Implementation
method

Signal processing
blocks

Complexity (real multiplications)

FS 2 KN -IFFT, K multipliers,
and delay buffer

2(KN (log2(KN ) − 3) + 4) + 8N (K − 1)
[11]

PP: Two N -IFFT & PP
filter

2 N -IFFT, 2 PP filters &
delay buffer

2
(
N (log2(N ) − 3) + 4

)
+ 4KN + 4N

[3, 11]

PP: Single N -IFFT & PP
fillter

N -IFFT, 2 PP filters &
delay buffer

N
(
log2(N ) − 3

)
+ 4 + 4KN + 4N

PP: Two N/2-IFFT &
PP fillter

2 N/2-IFFT, 2 PP filters &
delay buffer

2
(
N/2(log2(N/2) − 3) + 5

)
+ 4KN + 5N

Tab. 1. Complexity comparison of FBMC implementations.

Parameter Value
N 256

Used subcarriers 128

Modulation type 4-QAM

Prototype filter Phydyas [2]

K 4

Number of symbols 1000

Tab. 2. Simulation parameters.

Fig. 11. Quantization error ε [n] averaged in a moving widow
with length equal to the FBMC symbol size (L = 1024)

Furthermore, Fig. 11 shows the quantization error over
the FBMC signal averaged in a moving window with a size
of an FBMC symbol L = KN = 1024. It can be seen that the
quantization error is relatively constant over the time-domain
FBMC signal for all the implementations. The results also
correspondwith the conclusions derived from Fig. 10: the FS
implementation has the highest quantization error. The error
signal of the PP implementation using single IFFT is higher
than that of the PP implementation using two IFFTs. The
lowest error is produced by the proposed alternative FBMC
transmitter implementation.

6. Conclusion
In this paper the most popular FBMC modulator ar-

chitectures were described and compared. An alternative
FBMC transmitter architecture was also presented based on
the previous schemes. Using the proposed method, the IFFT

size can be reduced by half with some additional signal pro-
cessing. It was shown that the computational load of the
proposed scheme is comparable with the currently known
most efficient implementations. The additional advantage of
the proposed alternative FBMC transmitter scheme is that
–based on the simulation results – it has the lowest quanti-
zation error; this feature is significant in low cost hardware
implementation where only reduced arithmetical complexity
is available.
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Appendix A: N-IFFT of Two Real
Valued Signals Simultaneously

Consider the two real valued frequency-domain signals:
Ak and Bk , where k = 0, ..., N − 1. The IFFT of the two sig-
nals is to be calculated using a single N-IFFT. As a first step,
form the signal:

Yk = Ak + jBk . (A-1)

The IFFT of Yk is y[n], where n = 0, . . . , N − 1. Split y[n]
into its real and imaginary parts:

y[n] = y<[n] + jy=[n]. (A-2)

Further, decompose both y<[n] and y=[n] into even and odd
components as:

y<even[n] =
1
2

(
y<[n] + y<[N − n]

)
, (A-3)

y<odd[n] =
1
2

(
y<[n] − y<[N − n]

)
, (A-4)

y=even[n] =
1
2

(
y=[n] + y=[N − n]

)
, (A-5)

y=odd[n] =
1
2

(
y=[n] − y=[N − n]

)
. (A-6)

Finally, compute

a[n] = y<even[n] + jy=odd[n], (A-7)

b[n] = y=even[n] − jy<odd[n] (A-8)

where a[n] and b[n] correspond to the IFFT of the original
signals Ak and Bk , respectively. Note that the IFFT of jBk

can be simply expressed as jb[n].

Appendix B: N-IFFT of a Real Valued
Signal with an N/2-IFFT

In this section, the N-IFFT of a purely real valued input
sequence, Ak , where k = 0, . . . , N − 1, using an N/2-IFFT is
described. The N-IFFT of Ak is denoted by a[n]. First, the
following signal is formed:

Yk = <{A2k} + j<{A2k+1}, k = 0, . . . , N/2 − 1. (B-1)

The N/2-IFFT of Yk is y[n], where n = 0, . . . , N/2− 1. Split
y[n] into its real and imaginary parts:

y[n] = y<[n] + jy=[n]. (B-2)
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Further, decompose both y<[n] and y=[n] into even and odd
components as:

y<even[n] =
1
2

(
y<[n] + y<[N/2 − n]

)
, (B-3)

y<odd[n] =
1
2

(
y<[n] − y<[N/2 − n]

)
, (B-4)

y=even[n] =
1
2

(
y=[n] + y=[N/2 − n]

)
, (B-5)

y=odd[n] =
1
2

(
y=[n] − y=[N/2 − n]

)
. (B-6)

The real part a<[n] for n = 0, . . . , N/2 − 1 can be calculated
as:

a<[n] =
1
2

(
y<even[n] + y=even[n] cos (2πn/N) −

y<odd[n] sin (2πn/N)
)
, (B-7)

and the imaginary part a=[n] for n = 0, . . . , N/2 − 1 can be
expressed as:

a=[n] =
1
2

(
y=odd[n] − y<odd[n] cos (2πn/N) −

y=even[n] sin (2πn/N)
)
. (B-8)

Note that the values of the sine and cosine factors can be
calculated and stored in prior to save computational time and
complexity. The resulting signal with size of N/2 can be
calculated as:

a[n] = a<[n] + ja=[n], n = 0, . . . , N/2 − 1. (B-9)

In order to retrieve the full a[n] vector, the samples a[N − n],
can be expressed with the aid of complex conjugate as:

a[N − n] = a∗[n], n = 1, . . . , N/2 − 1. (B-10)

Finally, the value at index n = N/2 has to be additionally
calculated as:

a[N/2] =
1
N

N−1∑
k=0
(−1)k Ak . (B-11)


