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Abstract. This article presents new exact expressions,
written in terms of elementary transcendental functions, for
calculating the bit error probability of M-ary Quadrature
Amplitude Modulation (M-QAM) scheme considering the
wireless communication channel modeled by a Markov chain
with N states. For the numerical evaluation of the expres-
sions obtained, a particular case of a Markov chain with
two states is considered, with each state representing dis-
tinct scenarios. In the first scenario it is considered the
presence of Gated Additive White Gaussian Noise (GAWGN)
and fading η-µ or κ-µ, while the second scenario considers
the presence of the Double Gated Additive White Gaussian
Noise (G2AWGN) and fading η-µ or κ-µ. Bit error proba-
bility curves as a function of the signal-to-permanent-noise
ratio for different values of the signal-to-impulsive-noise ra-
tio, fading parameters and modulation order M are also
presented.
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1. Introduction
The signal transmitted in industrial environments and

indoor environments, such as shopping malls, is subjected to
noise from multiple sources and interference in the spectrum
band intended for industrial applications in 2.4GHz [1]. Be-
yond the noise usuallymodeled as an additive white Gaussian
process, these environments also present noise of impulsive
nature that arise mainly due to the presence of numerous
thyristorized equipment whose switching can generate dis-
turbances in the wireless links. Electric motors, frequency
inverters, welding equipment, triggering of lamps, among
others, are examples of sources of impulsive noise [2].

Another challenge commonly encountered in industrial
environments is fading, which imposes random variations
of intensity on the transmitted signal [1]. This phenomenon
arises due to the large number of objects andmachines present
in these environments, which are usually constructed with
metallic materials and provide appropriate conditions to mul-
tipath propagation [3]. The combination of phenomena such
as impulsive noise and fading can seriously compromise the
quality of the communication link.

In such wireless environments, the effects of fading
and impulsive noise on the observed signal at the output of
a matched filter in the receiver may be modeled by a two-
term composition, one representing the information signal
affected by fading and the other term representing the impul-
sive noise [2].

In non selective frequency channel models, fading is
usually considered flat and characterized by a single proba-
bility distribution over at least one symbol time [4]. However,
in environments such as shopping malls and factories, a sin-
gle probability distribution may not be able to appropriately
model the intensity variations imposed on the transmitted
signal as the receiver moves and may experience different
environment conditions for multipath propagation. In [2]
industrial environments are considered and more than one
probability distribution is used to characterize the effects
of fading.

A possible way to model sudden changes in the sta-
tistical behavior of the transmitted signal intensity, as the
receiver moves through the communication environment,
is by means of Markov chains [5–7]. One advantage of
considering Markov chains, compared to the non selective
frequency model, is that they allow to better describe the
statistical changes of fading over time [8]. These varia-
tions can be caused by changes in the scenarios in which
the transmissions are performed and can affect both up and
downlinks on reduced-diameter cells as well as horizontal
device-to-device links [9].
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Other authors have also used Markov chains to de-
scribe statistical behavior change in the channel, such as
Liu et al. [10] and Altinel and Kurt [11]. Lutz et al. [12], for
example, defined a channel model with two states, one classi-
fied as good and the other classified as bad, depending on the
conditions and level of attenuation in each scenario. Another
important work is that of Vucetic and Du [13], which charac-
terized the wireless channel of a particular geographical area
of Australia by a Markov chain of four states, combining four
different types of conditions.

In this work, exact expressions for the computation
of the average bit error probability (BEP), Pe, of M-ary
Quadrature Amplitude Modulation (M-QAM) scheme are
determined considering that the alternations in the fading
statistics along the channel are described by the state tran-
sitions of a Markov chain with N states. The expressions
obtained are novel and written in terms of elementary tran-
scendental functions. For the numerical evaluation of the
expressions obtained, a particular case of a Markov chain
with two states is considered, with each state representing
distinct scenarios. In the first state of the chain, the presence
of the Gated Additive White Gaussian Noise (GAWGN) and
fading η-µ or κ-µ is considered, whereas in the second state
the presence of the Double Gated Additive White Gaussian
Noise (G2AWGN) and fading η-µ or κ-µ is considered. In
the mathematical characterization of the impulsive noise, we
have considered the models GAWGN and G2AWGN because
they are able to characterize, respectively, the occurrence of
noisy pulses and bursts of noisy pulses. By its turn, the fading
is characterized by the distributions η-µ and κ-µ, which are
generalist models of fading and encompass, as special cases,
the distributions of Rayleigh, Rice and Nakagami, among
others, and may be used to characterize fading on a small and
large scale, with or without line-of-sight [14].

The methodology used to determine Pe is to weight
the BEP of the scheme M-QAM under the composite noise
models GAWGN and G2AWGN by the probability density
function (PDF) of the fading envelope. In this approach, the
representation of Craig [15] is used for the function Q(·),
expressing Pe for an integral defined in the range of 0 to π/2,
in terms of the Moment Generating Function (MGF) of the
distributions η-µ and κ-µ.

2. Noise Model
The mathematical model of noise η(t) is given by [16]

η(t) = ηg(t) + C(t)ηi(t), (1)

in which ηi(t) represents a zero-mean complex white Gaus-
sian random process with variance σ2

i , C(t) is a signal which
models the occurrence of noise ηi(t), characterized by a con-
tinuous time and discrete Bernoulli randomprocess, and ηg(t)
is the background Gaussian noise with zero-mean and vari-
ance σ2

g . The product C(t)ηi(t), referred to as impulsive
noise, in (1), characterizes the noise ηi(t) gated by the pro-
cess C(t). The noise can be simple or double gated.

In simple gated noise, the noise is referred to as Gated
AdditiveWhite GaussianNoise (GAWGN) and the amplitude
of C(t) assumes values zero or one randomly, with probabil-
ities 1 − p and p, respectively. The signal C(t) has unit
amplitude in the interval −αpT/2 ≤ t ≤ αpT/2 and zero
otherwise. The variable αp can assume values between zero
and one.

In double gated noise, the noise is referred to as Double
Gated Additive White Gaussian Noise (G2AWGN) and the
random signal C(t) is characterized by the product of two
auxiliary processes, C1(t) and C2(t), that take values in the
discrete set {0, 1}. In the intervals at which C1(t) assumes
value one, several noisy pulses, modeled as C2(t)ηi(t), can
occur. One can say that the interval for which C1(t) = 1
is a burst of noisy pulses C2(t)ηi(t). The product C1(t)C2(t)
models the occurrence of bursts of noisy pulses. The func-
tion C1(t) assumes the values one and zero with probabilities
p1 and 1− p1, respectively. This function has unit amplitude
in the interval 0 ≤ t ≤ βT1 and zero otherwise. The signal
C2(t) assumes the values one and zero randomly, with prob-
abilities p2 and 1 − p2, respectively, and has unit amplitude
in the interval 0 ≤ t ≤ αpT2 and zero otherwise. The
variables β e αp assume values between zero and one.

3. Average Bit Error Probability of
M-QAM Under Noise and Fad-
ing Modeled by Using a N States
Markov Chain
It was shown in [17] that the BEP of M-QAM for a given

fading z, denoted by P(e|z), under GAWGN, can be written
as

P(e|z) =
2

√
Mlog2

√
M

log2
√
M∑

k=1

(1−2−k )
√
M−1∑

i=0
w(i, k, M)

×

{
αppQ

(√
a(i, M)z2 δgδi

δg + δi

)
+ (1 − αpp)Q
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a(i, M)z2δg

)}
, (2)

in which

w(i, k, M) = (−1)
⌊
i ·2k−1
√
M

⌋
·

(
2k−1 −

⌊
i · 2k−1
√

M
+

1
2

⌋)
, (3)

a(i, M) =
3(2i + 1)2

(M − 1)
log2M, (4)

M is the order of the constellation, δg is the signal-to-
permanent-noise ratio, defined as the ratio of the signal power
to the power of the background Gaussian noise that is always
present in the system, and δi is the signal-to-impulsive-noise
ratio, defined as the ratio between the power of the signal and
the power of the impulsive noise that acts in the system.
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Making
x = z2 (5)

in (2), P(e|z) can be written as

P(e|z =
√

x) =
2

√
Mlog2

√
M

log2
√
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k=1

(1−2−k )
√
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)
+ (1 − αpp)Q

(√
a(i, M)xδg

)}
. (6)

The bit error probability, Pe, can be obtained by taking
the average of (6) with respect to the PDF of x, that is,

Pe =

∫ ∞

0
P(e|z =

√
x) fX (x)dx
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2
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)
fX (x)dx

}
, (7)

in which fX (x) is the PDF of the fading.

An alternative expression for the function Q(·) is given
by [15]

Q(x) =
1
π

∫ π
2

0
exp

(
−

x2

2sin2θ

)
dθ. (8)

Thus, Pe can be written as

Pe =
2

π
√

Mlog2
√

M

log2
√
M∑

k=1

(1−2−k )
√
M−1∑

i=0
w(i, k, M)

×

{
αpp

∫ π
2

0

∫ ∞

0
exp

(
−

a(i, M)x
2sin2θ

δgδi

δg + δi

)
fX (x)dxdθ

+ (1 − αpp)
∫ π

2

0

∫ ∞

0
exp

(
−

a(i, M)x
2sin2θ

δg

)
fX (x)dxdθ

}
.

(9)

Since the fading is constant for at least one symbol inter-
val Ts, it is possible to represent the behavior of the channel
by means of a Markov chain of N states. In the model con-
sidered in this article, whenever the fading changes to a par-
ticular state, it is assumed that it will remain in this state for
a time Ti = kTs seconds. The parameter Ti is a discrete ran-
dom variable with distribution pTi (t) and average value t̄i . In
a given state j, the fading envelope is characterized by a ran-
dom variable Xj with probability density function fXj (x).
Under these conditions, the probability of X ≤ x can be

written as

P(X ≤ x) =
N∑
i=1

N∑
j=1

P(X ≤ x,Ti, ej)

=

N∑
i=1

N∑
j=1

P(X ≤ x |Ti, ej)P(Ti, ej). (10)

Given that [18]

P(Ti, ej) =
P(ej)t̄iδ[i − j]∑N

u=1
∑N

v=1 t̄uP(ev)δ[u − v]
, (11)

where δ[i − j] is the Kronecker delta, which assumes value
equal to one if i = j and zero otherwise; t̄i is the average
duration of the i-th state and P(ej) is the probability that the
chain be in the j-th state after n transitions, it follows that

P(X ≤ x) =
N∑
i=1

N∑
j=1

P(X ≤ x |Ti, ej)

×
P(ej)t̄iδ(i − j)∑N

u=1
∑N

v=1 t̄uP(ev)δ[u − v]

=

N∑
j=1

P(X ≤ x |Tj, ej)
P(ej)t̄j∑N

v=1 t̄vP(ev)

=

N∑
j=1

P(Xj ≤ x)
P(ej)t̄j∑N

v=1 t̄vP(ev)
. (12)

Hence, the probability density function fX (x) is obtained
from the derivative of the cumulative distribution function
FX (x) = P(X ≤ x) and can be written as

fX (x) =
N∑
j=1

fXj (x)
P(ej)t̄j∑N

v=1 t̄vP(ev)
, (13)

in which fXj (x) is the PDF of X in the j-th state of theMarkov
chain.

A simplification of this model can be performed consid-
ering that the chain remains in a certain state during a symbol
interval and then performs a transition to another state. This
means that all states have the same average duration value,
since fading can be considered independent of time for at
least one symbol interval Ts. Considering a Markov chain
of N states, the probability of X ≤ x can be written as

P(X ≤ x) =
N∑
j=1

P(X ≤ x, ej)

=

N∑
j=1

P(X ≤ x |ej)P(ej) (14)

=

N∑
j=1

P(Xj ≤ x)P(ej).
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Hence, the PDF fX (x) is given by

fX (x) =
N∑
j=1

fXj (x)P(ej), (15)

in which fXj (x) is the PDF of X in the j-th state of theMarkov
chain and P(ej) is the probability that the chain be in the j-th
state.

Substituting (15) in (9), it follows that
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(16)

Given that [19]∫ ∞

0
e−sx fX (x)dx = MX (s), (17)

in which MX (s) represents the MGF of fX (x), it follows that
it is possible to write (16) as

Pe =
2
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For the model G2AWGN, the bit error probability con-
ditioned to z is given by [17]

P(e|z) =
2
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Mlog2
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Using (5), it follows that P(e|z =
√

x) is given by

P(e|z =
√
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2
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The average bit error probability for a Markov chain
with N states for the G2AWGN model is given by

Pe =
2

π
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Mlog2
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in which MX (·) represents the MGF.

4. Moment Generating Function of the
Distributions η-µ and κ-µ
If z in (2) and (19) has distribution η-µ or κ-µ, the prob-

ability density function of of x = z2, in (6) and (20), is given
by [19]

fX (x) =
1

2
√

x
[ fZ (
√

x) + fZ (−
√

x)]. (22)

If z has distribution η-µ, it follows that fX (x) is given
by

fXη−µ (x) =
2
√
πµµ+0.5hµxµ−0.5

Γ(µ)Hµ−0.5Ωµ+0.5 exp
(
−

2µhx
Ω

)
× Iµ−0.5

(
2µHx
Ω

)
u(x), (23)

in which u(·) represents the unit step function, Ω if the aver-
age power of the signal, Γ(·) represents the Gamma function
and the parameters H and h are given by

H =
η−1 − η

4
and h =

2 + η−1 + η

4
(24)

for the first format and η, 0 < η < ∞, is the ratio of
the power of the phase and quadrature components. The
generalized moment of that distribution is given by [20]

MXη−µ (s) =
(

4µ2h
(2(h − H)µ + sΩ)(2(h + H)µ + sΩ)

)µ
. (25)
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If z has distribution κ-µ, it follows that fX (x) is given
by

fXκ−µ (x) =
µ(1 + κ)

µ+1
2 x

µ−1
2

κ
µ−1

2 exp(κµ)Ω
µ+1

2

exp
(
−
µ(1 + κ)x
Ω

)
× Iµ−1

(
2µ

√
κ(1 + κ)x
Ω

)
u(x), (26)

in which the parameter κ is the ratio of the total power of the
dominant components and the power of the scattered waves,
and Ω is the average power of the signal. The generalized
moment for the distribution κ-µ is given by [20]

MXκ−µ (s) =
(

µ(1 + κ)
µ(1 + κ) + sΩ

)µ
exp

(
µ2κ(1 + κ)

µ(1 + κ) + sΩ
− µκ

)
.

(27)

5. Results
Simulations were carried out considering two channel

scenarios. The first scenario is characterized by the occur-
rence of GAWGNnoise and fading that can alternate between
the models η-µ and κ-µ, and the second scenario is charac-
terized by the presence of noise G2 AWGN and fading η-µ
or κ-µ.

The values adopted for the Markov chain parameters
are based on the work of Sanchez-Salas and Cuevas-Ruiz [8].
The values used for the parameters of the impulse noise η(t)
and the modulation schemes are chosen in accordance with
impulsive interference studies described in [21] and with the
conditions of simulations performed in [16].

In the present work, simulations were carried out by
Monte Carlo method, considering 5 × 106 transmitted bits.
In the simulations, the matrix of transition probabilities be-
tween states is given by [8]

P =
[

0.7 0.3
0.1 0.9

]
, (28)

initially the states are equiprobable and the steady state is
obtained with a high number of transitions between states
The absence or presence of line of sight between transmitter
and receiver is characterized by η-µ or κ-µ distribution, resp.

The average bit error probability curves of 64-QAM,
for a Markov chain with two states, under the effects of noise
GAWGN and η-µ or κ-µ fading are presented in Fig. 1. The
curves are plotted as a function of the signal-to-permanent-
noise ratio, δg, for different values of δi , with p = 0.3, µ = 2.0,
Ω = 1.0, κ = 2.0, η = 0.3, and αp = 0.1. For low val-
ues of signal-to-impulsive-noise ratio, with δi = 1 dB and
δi = 10 dB, it is observed that the average bit error probabil-
ity, Pe, changes little with the increase of δg, for values of
signal-to-permanent-noise ratio in the range 20–40 dB. For
the four values of δi under consideration, it is observed, for δg
in the range 0 to 12 dB, that the average bit error probability
curves overlap. Figure 1 also presents the theoretical Pe curve

with the Markov chain subjected to AWGN and fading η-µ
or κ-µ. It is observed that the curves with the presence of
impulsive noise have a higher BEP value when compared to
the theoretical curve of Pe with the communication channel
under the effect of AWGN. It is important to observe that the
AWGN theoretical curve can be seen as a lower bound of the
system performance.

It is also observed in Fig. 1 that the average BEP curves
tend to become irreducible froma given signal-to-permanent-
noise ratio. For low values δi , such as 1 dB, one has, for
δg = 20 dB, that the power of the impulsive noise is approx-
imately 80 times greater than the power of the permanent
noise, contributing so that the average BEP does not de-
crease from a given value of δg. For high values of signal-
to-impulsive-noise ratio, such as 20 dB, both permanent and
impulsive noise have low power. This explains why the re-
spective average BEP curve presents a greater approximation
(when compared to the curves referring to the low signal-to-
impulsive-noise ratio) to the curve determined by the AWGN
noise and η-µ or κ-µ fading. However, even for this case of
high δi , the average BEP also tends to become irreducible
from a given value of δg, because in this scenario the power
of the permanent noise is much larger than the power of the
impulsive noise. This contributes to the receiver’s decision-
making regions becoming more indefinite and, consequently,
correct decoding of the transmitted bits is impaired.

In Fig. 2 average bit error probability curves are pre-
sented, for different values of the modulation order M , for the
channel modeled by a Markov chain with two states, under
the effects of noise GAWGN and η-µ or κ-µ fading, consid-
ering µ = 2.0, αp = 0.3, p = 0.4, η = 0.2, κ = 2.0, Ω = 1.0
and δi = 20 dB. As the parameter M increases, the greater
is the number of symbols present in the constellation, and
consequently the receiver is more likely to make an incor-
rect decision. Therefore, in this scenario, for fixed values
of signal-to-permanent-noise ratio, it follows that greater av-
erage bit error probabilities are obtained. For δg ranging
from 30 to 40 dB, average bit error probability less than 10−5

is obtained with M = 16. An average bit error probability
of 10−3 is achieved with δg ≈ 15.0 dB for M = 16 and with
δg ≈ 26.6 dB for M = 256. It is also observed in Fig. 2 that the
presence of impulsive noise causes the BEP curves deviate
from the curve obtained when only AWGN noise is present
in the system.

In Fig. 3 average bit error probability curves of 64-QAM
are presented for a Markov chain with two states, under
GAWGN and η-µ or κ-µ fading, with µ = 2.0, η = 0.3,
Ω = 1.0, αp = 0.1, p = 0.2 and δi = 20 dB. The Pe curves
are plotted as a function of the signal-to-permanent-noise
ratio, δg, for different values of κ. One observes in Fig. 3
that greater average bit error probability is obtained as κ in-
creases. It is also observed that the BEP curves for the four
considered κ values tend to decrease faster when noise in the
channel is the AWGN. In turn, around δg = 20 dB, when the
power of the impulsive noise is greater than the power of the
permanent AWGN noise, the BEP curves tend to decrease
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slowly when compared to AWGN curves. It is observed that
Pe = 10−3 is obtained with δg ≈ 17.3 dB for κ = 0.3, while it
is obtained with δg ≈ 21.1 dB for κ = 6.3.

In Fig. 4, average bit error probability curves
of 64-QAM are presented, for a Markov chain with two
states, under the effects of noise G2AWGN and η-µ or κ-µ
fading, with µ = 2.0, κ = 1.0, Ω = 1.0, η = 1.5, αp = 0.5,
p2 = 0.5, β = 0.5 and p1 = 0.5, for four different values
of signal-to-impulsive-noise ratio, δi . For comparative pur-
poses, the BEP curve is also shown in Fig. 4 when theMarkov
chain is subjected to AWGN and η-µ or κ-µ fading. It is
observed that the BEP decreases as δg increases, for fixed
values of δi . As the value of δi increases, it is noted that the
BEP curves tend to follow the curve provided for the case
where only AWGN noise and fading are present in the chan-
nel. In addition, it is observed that values of Pe less than
10−4 are obtained only with high values of δi , such as 20 dB.

Average bit error probability curves for four values of
modulation order M , for a channel modeled by a Markov
chain with two states, subjected to noise G2AWGN and η-µ
or κ-µ fading, are presented in Fig. 5, for δi = 20 dB, µ = 2.0,
κ = 1.0, Ω = 1.0, η = 1.5, αp = 0.5, p2 = 0.5, β = 0.5
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Fig. 1. Average BEP of 64-QAM, for a Markov chain with two
states, under the effects of noise GAWGN and η-µ or κ-µ
fading, for four different values of δi .
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Fig. 2. Average BEP of M-QAM, for a Markov chain with two
states, under the effect of noise GAWGN and η-µ or κ-µ
fading, for different values of modulation order M .

and p1 = 0.5. The greater the number of symbols M in the
constellation, the closer the symbols affected by the noise
and, consequently, the greater the average bit error proba-
bility for a fixed δg. An average bit error probability equal
to 10−3 is obtained with δg ≈ 25.3 dB for M = 16 and with
δg ≈ 30.3 dB for M = 64. For δi = 20 dB, it is observed that
the average bit error probability, Pe, is not less than 10−3 for
δg < 40 dB, for constellations with M ≥ 64.

In Fig. 6 average bit error probability curves
of 64-QAM are presented for aMarkov chain with two states,
under the effects of noise G2AWGN and η-µ or κ-µ fad-
ing. The curves are plotted as a function of the signal-
to-permanent-noise ratio, δg, for different values of κ, with
µ = 2.0, η = 1.5, Ω = 1.0, αp = 0.5, p1 = 0.5, p2 = 0.5 and
δi = 20 dB. As κ increases, a greater bit error probability is
obtained. It is observed that an average bit error probability
of 10−3 is obtained with δg ≈ 25.0 dB for κ = 0.3, while it
is obtained with δg ≈ 33.0 dB for κ = 6.3. One observes in
Fig. 6, by the dashed lines, that the Pe curves of 64-QAM for
a Markov chain with two states under the effects of AWGN
and η-µ or κ-µ fading are practically linear for δg in the
range 20–40 dB.
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Fig. 3. Average BEP of 64-QAM for a Markov chain with two
states, under the effect of noise GAWGN and η-µ or κ-µ
fading, for different values of κ.
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Fig. 4. Average BEP of 64-QAM, for a Markov chain with two
states, under the effects of noise G2AWGN and η-µ or
κ-µ fading, for different values of δi .
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Fig. 5. Average BEP of M-QAM, for a Markov chain with two
states, under the effects of noise G2AWGN and η-µ or
κ-µ fading, for different values of modulation order M .

6. Conclusion
This article presents new exact expressions for the av-

erage bit error probability, Pe, of the M-QAM scheme for
a wireless communication channel model with fading driven
by a Markov chain of N states. For numerical evalua-
tion of the mathematical expressions, a particular case of
Markov chain with two states is considered, each one rep-
resenting a different fading scenario. In the first state of
the chain, the presence of the Gated Additive White Gaus-
sian Noise (GAWGN) and fading η-µ or κ-µ is considered,
whereas in the second state the presence of the Double Gated
Additive White Gaussian Noise (G2AWGN) and fading η-µ
or κ-µ is considered. Average bit error probability curves
under different values of the signal-to-impulsive-noise ratio
(δi), fading parameters and modulation order M are shown.

In the simulation results, it has been observed that as
the constellation order M increases, the performance of the
receiver is worse, and consequently larger values of Pe are
obtained for fixed values of the signal-to-permanent-noise ra-
tio (δg). Concerning the increase in the signal-to-impulsive-
noise ratio, it was observed that some average bit error proba-
bility curves remained practically constant at certain intervals
with the increase of δg, for δi equal to 1 dB and 10 dB.

As future works, we aim to determine closed expres-
sions for the average bit error probability of the modulation
scheme M-QAM for a N states Markov chain under the ef-
fects of GAWGN or G2AWGN and α-µ fading [22].
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