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Abstract. A low-complexity unambiguous tracking method
for cosine-phased binary offset carrier (BOCc) signals is pro-
posed in this paper. The proposed method directly constructs
a code discriminator function by multiplying two correla-
tion functions. One local reference signal is a specifically
designed auxiliary signal whose cross-correlation function
with the BOCc signal is an unambiguous S-curve. The other
reference signal is a replica BOCc signal whose correla-
tion function with the BOCc signal is used as a "cover" to
maintain the slope of the discriminant function as much as
possible and to make the final discriminant function non-
coherent. The proposed discriminator function has only
a single main lock point and can make tracking reliable and
unambiguous. In contrast to the traditional unambiguous
early-minus-late methods, the proposed method needs only
the prompt branch correlator outputs, and the correlation
process of the BOCc signal with input signals is the same
as that of the carrier loop process. As a result, the pro-
posed method reduces the number of correlators by at least
three-quarters. The theoretical analysis and simulation re-
sults show that the proposed method has higher code tracking
accuracy, lower tracking threshold and better anti-multipath
performance than those of PUDLL, SF and SPAR. In con-
clusion, the proposed method completely eliminates tracking
ambiguity, significantly improves tracking performance and
reduces implementation complexity.
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1. Introduction
As an increasing number of navigation signals join the

global navigation satellite system (GNSS), the compatibil-
ity and interoperability of signals have become a focus of
signal design. Binary offset carrier (BOC) signals and their
derivative signals can be separated from each other in fre-
quency by the square waveform subcarrier, which can make

full use of the navigation frequency band and improve the
compatibility. In addition, BOC signals have better code
tracking accuracy and anti-multipath performance than those
of BPSK signals with the same code rate [1]. In this pa-
per, a sine or cosine BOC signal is defined as BOCs(m, n)
or BOCc(m, n), respectively, where m denotes that the fre-
quency of the subcarrier is m×1.023MHz and n denotes that
the code rate is n×1.023Mcps. BOC signals are widely used
in GNSS: the Galileo used BOCc (10, 5) at E6 for the pub-
lic restricted service (PRS) and BOCc(15, 2.5) at E1 for the
PRS [2]. However, the cost of these potential performance
improvements is a decrease in tracking reliability [3] due to
the multiple side peaks in the autocorrelation function (ACF)
of BOC signals. Each of the side peaks is a false lock point
that makes traditional tracking ambiguous. GNSSs perform
the positioning function based on timing information. Thus,
a timing offset due to a tracking error could result in a serious
positioning error [4]. Therefore, eliminating ambiguity is the
premise and focus of BOC signal processing [5].

Most ambiguity elimination technique are based on the
pseudo-correlation function method. The core idea is to con-
struct an unambiguous correlation function with specifically
designed local auxiliary signals. Then, the discriminant func-
tion is obtained by means of early minus late. Since there are
more side peaks and turning points in the ACF of BOCc sig-
nals thanBOCs signals, whichmakes it more difficult to elim-
inate the ambiguity problem of BOCc signals. As a result,
the performance of somemethods is significantlyworsewhen
applied to BOCc signals than BOCs signals, such as the sym-
metrical pulse ambiguity removing (SPAR) technique [6], the
method proposed by Shen Feng (SF) in [7], and PUDLL [8],
which uses two local step-shaped waveforms. There are also
some other methods that have good performance but are suit-
able for only BOCs signals, such as [1] and [9-11]. Compared
with all the methods mentioned before, [10] and [11], which
are previous works by our team, have obvious advantages in
tracking accuracy and anti-multipath performance. However,
they are suitable for only BOCs signals, and implementing
the receiver costs a considerable amount. In this paper, we
proposed an unambiguous tracking method specifically for
BOCc(m,n) signals. In order to remove the ambiguity threat,
the proposed method construct an unambiguous discrimina-
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tor function by multiplying two correlation functions. There
are three differences between the proposed method and those
of [10] and [11]. Firstly, the proposed method can solve the
ambiguity problem of cosine phased BOC signal, while both
[10] and [11] are only applicable for sine phased BOC sig-
nals. Secondly, the proposed method directly generates the
unambiguous discriminator function instead of generating
an unambiguous correlation function first and then realizing
the unambiguous discriminator function by early minus late.
Finally, the new tracking loop structure reduces the number
of correlators by at least three quarters than those in [10] and
[11]. As a result, compared with all the other unambiguous
tracking methods for BOCc signals, the proposed method has
obvious advantages in complexity. The theoretical analysis
and simulation results show that the theoretical analysis is
correlect and the proposed method has better tracking accu-
racy and lower threshold compared with PUDLL, SF, SPAR.
A comparison of the performance in amultipath environment
is also offered in this paper: under medium multipath con-
ditions, the proposed algorithm has the smallest multipath
error envelope among all the abovementioned methods. In
conclusion, the proposedmethod greatly enhances the perfor-
mance of unambiguous BOCc signal tracking with the lowest
complexity.

The rest of this paper is organized as follows. Section 2
discusses the ambiguity problem of BOCc signals and de-
scribes the local reference signal of the proposed algorithm.
The unambiguous tracking loop is described and analyzed in
Sec. 3. We provide simulation results and a performance
comparison in Sec. 4, and the conclusions are presented in
the final section.

2. Signal Models and Local Auxiliary
Signals

The BOC signal received from one satellite is described
in [12] as (1):

r (t)=
√

2CD (t−τ0) sBOC (t−τ0) cos (2π fIFt+θ0)+n0 (t)

=
√

2CD (t−τ0) c (t−τ0) pBOC (t−τ0) cos (2π fIFt+θ0)

+nc (t) cos (2π fIFt) − ns (t) sin (2π fIFt)
(1)

where C is the power of the received signal, D(t) is the
navigation data message, c(t) is the pseudo-random noise
(PRN) code waveform, τ0 is the transmission delay, fIF is
the frequency of the carrier, θ0 is the initial phase of the
carrier, and n0(t) is band-limited white noise. nc(t) and ns(t)
are independent zero-mean Gaussian random processes that
have the same double-sided power spectrum density N0 [13].
PBOC denotes the waveform of the chips and is expressed
as PBOC(t) = sign[cos(2π fsct)], where sign() is the signum
function and fsc is the frequency of the subcarrier. To facili-
tate the analysis, the baseband form of r(t) can be expressed
as:

rbase (t)=
√

2CD (t−τ0) c (t−τ0) pBOC (t−τ0) ejθ0

+nc (t) + jns (t) .
(2)

The expression of the ACF of the BOCc signal can be de-
scribed as (3) using the method in [14], where k = 2m/n
is the order of the BOC signal [15], l = 0, 1, 2, ..., k − 1, TC
is the chip duration, and TS = TC/k is the half-cycle of the
subcarrier[16]. For comparison, Fig. 1 and Fig. 2 depict the
ACFs and traditional non-coherent early-minus-late power
(NELP) discrimination curves, respectively, of BOCc(10,5)
and BPSK(1).
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Fig. 1. The ACFs of BPSK(1) and BOCc(10,5).
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Fig. 2. The discriminator curves of BPSK(1) and BOCc(10,5).
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RB (τ)=


(−1)l

[
(k−l)(2l+1)+l

k − 2k−2l+1
TC

|τ |
]

lTS ≤ |τ| <
(
l+ 1

2

)
TS

(−1)l
[
(k−l)(2l+1)−3l−2

k − 2k−2l−3
TC

|τ |
] (

l+ 1
2

)
TS ≤ |τ| < (l+1)TS

0 |τ | ≥ TC

(3)
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Fig. 4. Waveform of the proposed method. (a) Modulation order is odd, (b) modulation order is even.

As shown in Fig. 1, compared with the triangle ACF of the
BPSK signal, the main peak of the ACF of the BOC signal is
narrower, which makes the BOC signal have better tracking
accuracy and anti-multipath performance. However, BOCc
has 2k side peaks, and each side peak leads to a false lock
point, as shown in Fig. 2, where the early-late spacing is
0.1 chips. It is catastrophic for the receiver to lock at any
false lock points in the appeal. As a result, we must find
a way to eliminate the ambiguity of BOC signal processing.

PBOC(t) is a symmetric function with a period of 2TS
and meets the following indication:∫ τ+2TS

τ
PBOC(t)dt = 0. (4)

Therefore, if the waveform of the local auxiliary signal is
a rectangle with a width of 2TS, the number of side peaks
in the CCF will decrease. Then, we can obtain two local
reference signals:

PL1 (t) =
{ √

k/2 − TS < t < TS
0 otherwise (5)

and

PL2 (t) =
{ √

k/2 TC − TS < t < TC + TS
0 otherwise. (6)

The CCF (RB/L1) of PL1 with BOCc(10,5) and the CCF
(RB/L2) of PL2 are shown in Fig. 3. When t ≈ 0, RB/L2 is in
the shape of an S-curve, and RB/L1 is an inverse S-curve. To
further increase the slope of the S-curve when t ≈ 0, PL1 and
PL2 are combined to form the waveform of the local signal
in (7), as shown in Fig. 4:

PL (t) =


−
√

k/2 − TS < t < TS

(−1)k
√

k/2 TC − TS < t < TC + TS

0 otherwise.

(7)

Then, the local auxiliary signal can be expressed as:

sL (t) =
∑
l

cl(−1)klPL (t − lTC) (8)

where cl is the PRN code. Note that the power of the
local auxiliary signal sL (t) has been normalized. Since
all the BOCc signals used in the GNSS are in even or-
der, we consider only the case where k is an even num-
ber for simplicity. When k is an even number, we have
PL (t) =

√
k/2

[
PTC (t − TS) − PTC (t + TS)

]
, where PTC is the

waveform of BPSK(n). Thus, sL (t) is rewritten as:

sL (t) =
√
k

2
∑

l cl
[
PTC (t−TS−lTC)−PTC (t+TS−lTC)

]
=
√

k cl (t−TS)−cl (t+TS)
2 .

(9)

Equation (9) implies that the designed auxiliary signal can
be generated by using the two different replicas of the PRN
code, which is similar to the auxiliary signal in [10]. The
correlation function (RB/L) of SL with the BOCc signal is
shown in Fig. 3 and (10).

RB/L (τ)=



1√
kTS

τ |τ | ≤ TS
2

sign(τ)
√
kTS
(TS − |τ |)

TS
2 < |τ | ≤ TS

1
2
√
kTS
(TC − |τ |) −

TS
2 < |τ | − TC ≤ −

TS
2

1
2
√
kTS
(|τ | − TC + TS) − TS < |τ | − TC ≤

TS
2

1
2
√
kTS
(|τ | − TC − TS)

TS
2 < |τ | − TC ≤ TS

0 otherwise.
(10)

As shown in Fig. 3, there is only one lock point in RB/L when
τ = 0. The slope of RB/L is 0.2492/0.125

0.1763/0.125 = 1.414 times better
than those of RB/L1 and RB/L2. Note that when τ = ±Tc,
RB/L is an inverted S-curve, and the receiver will not lock at
that point falsely, which means that RB/L is an unambiguous
discriminant function for BOCc signals.
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Run (τ) = [RB (τ) eθ0 ][RB/L (τ) eθ0 ]′

= RB (τ) RB/L (τ)

=



1√
kTS

τ
(
1 − 2k+1

TC
|τ |

)
|τ | ≤ TS

2

sign(τ)
√
kTS
(TS − |τ |)

(
k−2
k −

2k−3
TC
|τ |

)
TS
2 < |τ | ≤ TS

(−1)k+1

2k
√
kT 2

S
(TC − |τ |)

2 TC −
TS
2 < |τ | ≤ TC

(−1)k+1

2k
√
kT 2

S
(|τ | − TC + TS)(3TC − 2TS − 3|τ |) − TS < |τ | − TC ≤ −

TS
2

0 otherwise.

(11)
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Fig. 5. The discriminator curves of BOCc(10,5).

However, it is worth noting that RB/L is a coherent discrimi-
nator function, which means that the performance of the dis-
criminator is severely affected by the carrier residual phase.
However, the carrier loop cannot completely eliminate the
carrier phase, and the performance loss (cos (∆θ)) of the code
loop caused by the residual carrier phase (∆θ) can not be ig-
nored. To ensure that the code loop is relatively independent
of the carrier loop, the receiver always selects non-coherent
code loop discriminators. As a result, RB is selected as a "hat"
tomaintain the slope of RB/L asmuch as possible and tomake
the final discriminator function non-coherent by multiplying
it with RB/L, as shown in (11), and the discriminator func-
tions of BOCc(10,5) are shown in Fig. 5, where inf denotes
the correlation function obtained when the input signal is not
filtered and 40M denotes the correlation function obtained
when the input signal is filtered with a 40MHz bandwidth.
As shown in Fig. 5, Run can be regarded as an unambiguous
discriminator function under both filtered and unfiltered con-
ditions. In conclusion, the method proposed in this paper is
unambiguous.

3. Tracking Scheme and Performance
Analysis
Figure 6 presents the proposed unambiguous tracking

block diagram, where IP1 and QP1 are the correlation output
of the local BOC signal with the in-phase and quad-phase
input signal, respectively, and IP2 and QP2 are the correla-

tion output of the local auxiliary signal with the in-phase and
quad-phase input signal, respectively. Note that both IP1 and
QP1 are used in the code and carrier loops and that the carrier
loop is indispensable to the tracking process, which means
that the proposed method adds only IP2 and QP2 to achieve
code loop tracking. The four correlation outputs are:

IP1 =
√

2C RB(∆τ) sinc (π∆ f TP) cos (∆θ) + nI
1,

QP1 =
√

2C RB(∆τ) sinc (π∆ f TP) sin (∆θ) + nQ1 ,

IP2 =
√

2CRB/L(∆τ)sinc (π∆ f TP) cos (∆θ) + nI
2,

QP2 =
√

2CRB/L(∆τ)sinc (π∆ f TP) sin (∆θ) + nQ2

(12)

where ∆ f is the residual carrier frequency, TP indicates the
coherent integration time, and ∆θ represents the residual car-
rier phase. When noise and∆ f are ignored, the non-coherent
discriminator function Run(t) is obtained from (13):

V(∆τ) = IP1IP2 +QP1QP2

=
√

2CRB (∆τ) cos(∆θ)
√

2CRB/L (∆τ) cos(∆θ)
+
√

2CRB (∆τ) sin(∆θ)
√

2CRB/L (∆τ) sin(∆θ)

= 2CRun(∆τ)cos2(∆θ) + 2CRun(∆τ)sin2(∆θ)

= 2CRun(∆τ).
(13)

When the tracking is in a steady state, ∆τ ≈ 0, ∆ f ≈ 0
and ∆θ ≈ 0. The joint distribution of the correlator outputs
has been well analysed in [17], as shown in (14):

(IP1, IP2,QE1,QL2)
T ∼ N (µ,Σ) (14)

with

µ =
√

2Csinc(π∆ f TP)
[

RB (0) RB/L (0) 0 0
]T
,
(15)

and

Σ=
N0
TP


1 RB/L (0) 0 0

RB/L (0) 1 0 0
0 0 1 RB/L (0)
0 0 RB/L (0) 1

 . (16)
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Fig. 6. Block diagram of the code and carrier loops.

The code tracking error variance has been thoroughly
discussed in [16] and is given by (17):

σ2 =
2BL (1 − 0.5BLTP)TPσ

2
V

K2
V

(17)

where BL is the single-sided code loop filter bandwidth, σ is
the discriminator output standard deviation, and KV is the
discriminator gain. When considering the effect of a filter
with transfer function H( f ), the correlation functions previ-
ously defined in (3) and (10) can be replaced by (18):

R̂B(τ) = F−1 [ GB( f ) H( f )] ,
R̂B/L(τ) = F−1 [

GB/L( f )H( f )
] (18)

where GB( f ) is the power spectral density of the BOCc sig-
nal, GB/L( f ) represents the cross-power spectral density be-
tween BOCc and the local auxiliary signal, and F−1 denotes
the inverse Fourier transform. The discriminator gain under
bandwidth-limited conditions can be obtained by (19):

KV =
dV
d∆τ |τ=0

= 2CR̂
′

B(0)R̂B/L(0) + 2CR̂B(0)R̂
′

B/L(0)

= 2CR̂B(0)R̂
′

B/L(0)

= 4πC
∫ ∞
−∞

H( f )GB( f )d f
∫ ∞
−∞

f H( f )GB/L( f )d f .
(19)

When the receiver is in a steady state, V(t) is obtained by
substituting (12) into (13):

V (0)=
(√

2CR̂B (0) + nI
1

) (√
2CR̂B/L (0) + nI

2

)
+ nQ1 nQ2

=
√

2CR̂B (0) nI
2 + nI

1nI
2 + nQ1 nQ2

= N1 + N2 + N3,
(20)

where N1 =
√

2CR̂B (0) nI
2, N2 = nI

1nI
2, and N3 = nQ1 nQ2 . As

E(V) = E(N1) + E(N2) + E(N3) = 0, (21)

we can obtain:

σ2
V = E(V2),

E(N2
1 ) =

2CN0
TP

R̂2
B (0) ,

E(N2
2 ) = E(N2

3 ) = [1 + 2R̂2
B/L (0)]

N2
0

T 2
P
=

N2
0

T 2
P
,

E(N1N2) = 0,

E(N1N3) = 0,

E(N2N3) =
N2

0
T 2

P
R̂2

B/L (0) = 0.

(22)

Then,

σ2
V = E(N2

1 ) + E(N2
2 ) + E(N2

3 )

+2E(N1N2) + 2E(N1N3) + 2E(N2N3)

=
2CN0
TP

[
R̂2

B (0) +
1

TPC/N0

]
.

(23)

By substituting (19) and (23) into (17), we can obtain the
code tracking accuracy under additive Gaussian white noise,
as shown in (24):

σ2 =
2BL(1−0.5BLTP)TPσ

2
V

[4πC
∫ ∞
−∞

f H( f )GCS( f )d f
∫ ∞
−∞

f H( f )GB/L( f )d f ]
2

=
BL(1−0.5BLTP)

[
R̂2

B(0)+
1

TPC/N0

]
4π2C/N0[

∫ ∞
−∞

H( f )GB( f )d f
∫ ∞
−∞

f H( f )GB/L( f )d f ]
2 .

(24)
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4. Simulation Results and Perfor-
mance Comparison

The main code tracking challenges in BOC signal pro-
cessing are to avoid losing track of the signal (loss-of-lock sit-
uation), to operatewell under noisy conditions, and to achieve
high-accuracy code estimation under multipath channel con-
ditions while preserving a reasonable complexity of the re-
ceiver [18]. With the exception of BPSK-Like(BL) [19], most
unambiguous tracking algorithms have no specific require-
ment for the receiver front-end, loop filter, etc. With the same
receiving parameters, only the number and type of correla-
tors affect the complexity of different algorithms. The two
local reference waveforms required in the proposed method
are a BOCc signal and a pulse signal. Both waveforms can be
classified as binary-level signals. For comparison, the corre-
lator numbers of Bump-Jump (BJ) [20], BL, PUDLL, SF and
SPAR are listed in Tab.1. Among all these methods, the pro-
posed method requires the smallest number of binary-level
correlators and no multilevel correlators. In other words, the
proposed method has the lowest complexity and reduces the
number of correlators by at least three-quarters.

Taking the actual use of BOCc signals into account,
BOCc(10,5) is selected as the simulation contrast signal. For
comparison, the performances of BJ, BPSK-like, PUDLL, SF
and SPAR are also provided. Figure 7 shows the code track-
ing performance of BOCc(10,5) with thermal noise. The
code loop noise bandwidth BL = 1Hz, TP = 1ms, and the re-
ceived bandwidth is 30.69MHz when the correlator interval
is 0.1 chips. As shown in Fig. 7, compared with BPSK-
like, PUDLL, SF and SPAR, the proposed method has the
best performance. When the tracking error is 0.01 chips, the
performance advantage of the proposed method over SPAR,
PUDLL, SF,and BL is approximately 1 dB, 1.5 dB, 2 dB, and
2.5 dB, respectively. As the carrier-to-noise ratio decreases,
the tracking accuracy advantage of the proposed algorithm
increases.

Algorithm Binary level Multi-level
correlators correlators

Proposed method 2 0
BL 8 0
BJ 10 0

PUDLL 0 8
SF 0 8

SPAR 8 0

Tab. 1. Number of correlators.

Algorithm Tracking threshold [dB-Hz]
Proposed method 28

BJ 35
PUDLL 31

SF 33
SPAR 33

Tab. 2. Tracking threshold.
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Fig. 9. Average multipath error for BOCc(10,5).
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BJ has the same tracking accuracy as NELP when false
locking does not occur or when it rapidly jumps back to the
main peak. However, as the environment worsens, the per-
formance of BJ rapidly deteriorates, as shown in Fig. 7. BJ
loses the lock when C/N0 is less than 35 dB-Hz, whereas the
proposed method loses the lock when C/N0 is approximately
28 dB-Hz. The tracking thresholds of all the algorithms are
listed in Tab. 2. The proposed method has the lowest code
tracking threshold, which is 3 dB better than that of PUDLL,
5 dB better than those of SPAR and SF, and 7 dB better than
that of BJ. That is, the proposed method has the best code
tracking accuracy and robustness among the unambiguous
tracking methods discussed above.

The anti-multipath performance of the proposedmethod
is analysed and compared with those of SPAR, PUDLL, SF,
BL, and NELP. The multipath model considered here is sim-
ilar to that in [4]. The model includes one multipath signal
with some amplitude attenuation relative to the direct signal.
The phase difference between the multipath and direct signal
is 0 or π. Figure. 8 and 9 show the multipath error envelope
and the average multipath error, respectively, for BOCc(10,5)
when the multipath-to-direct ratio is −6 dB. Note that the
BPSK-like algorithm has poor performance under multipath
conditions. To clearly compare the other algorithms, the
performance of the BPSK-like algorithm is not depicted in
the figure. In Fig. 8, when the multipath delay is between
0 and 0.25 chips or 0.75 and 1 chips, the performance of
the proposed method is similar to those of PUDLL and SF.
When the multipath delay is between 1 and 1.25 chips, the
proposed method is sensitive to multipath signals. When the
multipath delay is between 0.25 and 0.75 chips, the multi-
path signal has minimal influence on the proposed algorithm,
whose anti-multipath performance is far better than those of
all the other methods. As shown in Fig. 9, the anti-multipath
performance advantage of the proposed method is clear.

5. Conclusions
In this paper, we proposed an unambiguous tracking

technique with very low complexity. The method requires
two local reproduced signals: a specifically designed binary
auxiliary signal whose correlation function with BOCc sig-
nals is an unambiguous discriminator function and a BOCc
signal whose correlation function with BOCc signals is the
ACF. The second correlation is used as a "cover" to retain
the discriminator slope as much as possible and to make the
final discriminator function non-coherent by multiplying it
with the first correlation function. Since only the output
of the prompt branch is required, the proposed code tracking
method reduces the number of correlators by at least one-half
compared to that of traditional early-minus-late unambiguous
tracking methods. In addition, since the correlation between
the BOCc signal and the input signal is the same as the carrier
tracking and the carrier tracking is indispensable to the re-
ceiver, the number of correlators actually required by the pro-
posed code tracking method is less than one-quarter of those

required by the other methods. The proposed method signif-
icantly reduces the complexity of the unambiguous tracking
method.

Under thermal noise conditions, the code tracking ac-
curacy advantage of the proposed method is clear: approx-
imately 1 dB better than that of SPAR, 1.5 dB better than
that of PUDLL and 2 dB better than that of SF. The code
tracking threshold of the proposed method is 3 dB better than
that of PUDLL, 5 dB better than those of SPAR and SF, and
7 dB better than that of BJ. In terms of multipath mitiga-
tion, the proposed method has the best average multipath
error among all the algorithms. In summary, the proposed
method achieves the best tracking accuracy and robustness
while maintaining the lowest complexity.
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