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Abstract. This paper presents a very simple surrogate
optimization method - a Tolerance-based Surrogate Method.
A surrogate optimization in general is essential to more and
more frequently used optimization in the development process
of new technologies. Fitness functions of such systems are
often costly, therefore keeping a number of evaluations of the
fitness functions at minimum is of a great importance in order
to save computer and time resources, i.e. the overall cost of
design. Unlike other complex surrogate optimization meth-
ods, the tolerance-based surrogate method does not require
excessive computational resources, is easy to implement, and
is flexible for all types of optimization algorithms. Behaviour
of the tolerance-based surrogate method is demonstrated
on several modified benchmark problems. Afterwards, our
method is verified on a real-world time-demanding optimiza-
tion task.
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1. Introduction
Global optimization algorithms works so that they

search for and compare different solutions to find the op-
timal one. The comparison of solutions is based on fitness
values, which express the quality of the solution. The fitness
values are obtained by evaluating fitness functions, which
describe the behaviour of the optimized system with its prop-
erties called decision variables. Therefore, the optimization
is a process of findingminima ormaxima of the fitness values.

If the system is described by one fitness function, the
optimization is called single-objective and a single decision
space vector is expected as an optimization result. Contrar-
ily, multiple conflicting fitness functions lead to the multi-
objective optimization and multiple trade-off solutions are
given at the end of the process.

The fitness functions can have various forms. If the
fitness function is expressed as a closed form formula, it
can be computed almost immediately. However, the fitness
functions in real-world optimization problems can take con-
siderably more time to compute. A common assumption is
that the computation of the fitness values is the most time
demanding operation during the optimization process.

An example of such a complex optimization can be the
synthesis of the cavity resonator structure used in [1]. An op-
timization algorithm generates decision variables (e.g. design
dimensions) and the calculation of the fitness values involves
full-wave simulation of the designed structure with dimen-
sions determined by the optimization algorithm.

Since evolutionary algorithms generally require a large
number of fitness function evaluations during the optimiza-
tion process and each evaluation can take a significant amount
of time, it is desirable to be able to skip some unnecessary
fitness functions evaluations.

There are various methods described in an open litera-
ture dealing with "redundant" fitness functions evaluations,
which are in general called surrogate optimization methods.
In [2], response surfaces are used to approximate the fitness
functions, that are evaluated only at a few points. Authors
in [3] proposes Progressive Optimum Search Using Evolv-
ing Reliable Regions (POSER) method, which at first estab-
lishes a Kriging model (contains an error prediction) from
a few initial samples and then applies it to create a reli-
able region. The reliable region of the Kriging surrogate is
progressively improved by additional samples. The method
presented in [4] reduces the number of fitness function evalu-
ations by fitting a function approximation model over k near-
est previously evaluated points. The method tries to identify
the most promising offspring solutions and exploit their po-
tential before other offspring solutions. The approximation
model uses Symmetric Latin Hypercube Design (SLHD).
In [5], a trust-region framework using an interpolating Ra-
dial Basis Function (RBF) model is used. The surrogate
optimization methods were summarized in [6].
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All the methods proposed in the open literature ap-
proximate or interpolate the unknown regions of the fitness
function by sampling it by minimal possible points to obtain
a reliable surrogate. Such complex methods are undoubt-
edly able to estimate more accurate substitute solution than
our proposed method. Nevertheless the tolerance-based sur-
rogate method simply stores all the evaluated solutions in
an archive and uses the stored fitness values later if a new
solution is within a specified margin. It can be used on
any problem with any single-objective or multi-objective al-
gorithm. While the methods proposed in [2–6], and other
surrogate optimization methods to be found in the open liter-
ature, are rather difficult to implement, our tolerance-based
surrogate method is, for its simple principle, very easy to
implement and is also universal for all kinds of optimization
algorithms and problems. Therefore, it has a potential to
help many engineers in various engineering branches in their
efforts to reduce design cost without deep studying of the
problem and implementing the complex surrogate methods.

In Sec. 2, an optimization technique used for the valida-
tion of the proposed method is described. In Sec. 3, the prin-
ciple of the tolerance-based surrogate method is described.
In Sec 4 and 5, metrics used for the validation of the results
and problems for benchmarking the results are discussed.
Section 6 is dedicated to the experimental verification of the
proposedmethod. Section 7 presents the use of the tolerance-
based surrogate method for the design of a band-stop filter.
Finally, the conclusion of the paper is given in Sec. 8.

2. Optimization Technique
For the validation purposes of this paper the FOPS tool-

box [7] was used. The Multi-objective Particle Swarm Op-
timization (MOPSO) [8] algorithm has been exploited to
obtain presented results. The Elitist Non-dominated Sorting
Genetic Algorithm (NSGA-II) [9] and the Third General-
ized Differential Evolution algorithm (GDE3) [10] were also
tried and the produced resultswere practically similar to those
from MOPSO algorithm.

Minor differences in the results were related to algo-
rithms’ performance rather than to the tolerance-based sur-
rogate method itself. Therefore, the results from the GDE3
algorithmare not presented in this paper. Although the results
of theNSGA-II algorithm are also similar to those ofMOPSO
algorithm, they are attached to the paper in an appendix 1, due
to a completely different nature of the NSGA-II algorithm.

The MOPSO algorithm is based on the simulation of
the social behaviour of bees in a swarm. The position of
a particle is changed according to its own experience and that
of its neighbours according to equation [8]:

xt = xt−1 + ∆t · vt (1)

where xt is the position of the particle at a time step t, ∆t is
the time step (∆t = 1), and the vt is a velocity vector at

the time step t. The velocity vector reflects the exchange of
information and is defined as follows [8]:

vt = w · vt−1 + c1 · r1 ·
(
xpbest − xt−1

)
+ c2 · r2 ·

(
xgbest − xt−1

) (2)

where w is the inertia weight, c1 and c2 are cognitive and
social learning factors, respectively, r1 and r2 ∈ [0,1] are
random values, xpbest is the position of a personal best, and
xgbest is the position of a global best.

A multi-objective variant of PSO algorithm is extended
by an external archive, which is the container that stores
non-dominated solutions found during the optimization run.
Therefore, the global best solution (xgbest in (2)) is selected
among external archive members. To avoid overloading of
the external archive, a pruning method based on a crowding
distance [9] is used.

3. Tolerance-based Surrogate Method
Aswasmentioned before, the tolerance-based surrogate

method allows an optimization algorithm to skip some fitness
function evaluations. The question is, which evaluations can
be skipped?

If an electromagnetic structure design is considered,
there are always some manufacture precision limits, there-
fore it is useless to evaluate the fitness values for dimen-
sions (decision variables) that differ at e.g. sixth decimal
place. Moreover, the fitness values of such similar dimen-
sions would most likely be very similar too and an overall
contribution to the optimization process would be minimal.

This is the essential idea of the tolerance-based surro-
gate method. At the beginning of the optimization run, no
fitness values are known and all the fitness function has to be
evaluated. Each evaluated solution (i.e. decision variables
and corresponding fitness values) is stored in the archive. At
some point in the optimization process, an algorithm con-
verges close to the true global optimum (minimum or max-
imum for single-objective optimization and Pareto-front for
multi-objective optimization) and new solutions with yet un-
known fitness values begin to be similar (or equal) to some
members of the archive. Evaluation of the fitness functions
of such solution has a negligible contribution to the optimiza-
tion process, therefore the fitness functions are not evaluated
and the fitness values of the closest solution in the archive
are taken from the archive.

How close the new solution from a member of the
archive has to be, is defined by the vector of tolerances, which
has a number of elements equal to a number of decision vari-
ables of a problem. Each time the differences between all
the decision variables of some member of the archive and
the new solution are lower than the vector of tolerances, the
fitness function evaluation is skipped.
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Figure 1 further clarifies the tolerance-based surrogate
method. It depicts a decision space of a simple two-objective
optimization problem and several solutions stored in the
archive. A light grey grid denotes the limits of the deci-
sion variables, i.e. x1 ∈ 〈0.1, 1〉 and x2 ∈ 〈0, 1〉. The fitness
functions are defined as follows:

f1 (x) = x1, (3)

f2 (x) =
1 + x2

x1
. (4)

A red line marks the true Pareto-front of the problem in
decision space. There are 15 solutions stored in the archive
(their positions are marked with the black thick crosses). The
tolerance vector was set to {0.05, 0.1} and areas within toler-
ance are marked by the hatched boxes around solutions. Five
of the solutions aremarkedwith the index number from 1 to 5.

The solution 1 is the true Pareto-optimal solution and
its fitness values are {0.1, 10}. The solution 2 has the fitness
values {0.3, 3.67}. The solution 3 is not far from optimality
(see that a tolerance box covers a part of the true Pareto-front)
and its fitness values are {0.5, 2.15}. The solution 4 has the
fitness values {0.7, 1.643} and the solution 5 has the fitness
values {1, 1} (also the true Pareto-optimal solution). All the
indexed solutions are non-dominated (in objective space).

If a newly generated solution has the position e.g.
{0.94, 0} (marked with the blue thin cross in Fig. 1), it
will fall in the tolerance area of the solution 5 ({1, 0}) and
even if its fitness values according to (3) and (4) would be
{0.94, 1.064}, the fitness values {1, 1} of the solution 5
will be assigned to it. A deviation in fitness values caused
by tolerance-based surrogate method is relatively small in
this case.

Another generated solution has the position e.g.
{0.14, 0} (markedwith the blue thin cross in Fig. 1). Such so-
lutionwill fall in the tolerance area of the solution 1 ({0.1, 0})
and even if its fitness values according to (3) and (4)
would be {0.1, 7.143}, the fitness values {0.1, 10} of the
solution 1 will be assigned to it. The difference between the
true fitness values and the surrogate fitness values is rather
large here, although the absolute distance between the archive
member and the generated solution in the decision space is
identical as in the case described in the previous paragraph.
This suggests that the setting of the tolerance vector can be
sometimes a difficult task.

The solution 3 in Fig. 1 indicates the main drawback
of the tolerance-based surrogate method. The border of the
hatched box of this solution lies on the true Pareto-front, but
the solution itself is rather far away ({0.5, 0.075}). There-
fore, if a new solution is generated within the hatched box,
e.g. {0.5, 0} (marked with the blue thin cross), then the
fitness values of known solution are assigned to it. But the
fitness values of the true Pareto-optimal solution with the po-
sition {0.5, 0} according to equations (3) and (4) are {0.5, 2},

while the fitness values of the solution 3 from the archive are
{0.5, 3.5}. Afterwards, the solution {0.5, 0} (which is, as
we know, better then the archive member) will be supressed
in the optimization process due to its downgraded fitness val-
ues. This denotes that a part of the true Pareto-front under
the solution 3 in Fig. 1 is inaccessible due to the tolerance-
based surrogate method when too large values are used in the
tolerance vector.

There exists no methodology to estimate the proper tol-
erance vector. The tolerance vector depends on an optimized
problem and user’s knowledge about the problem. This draw-
back of the tolerance-based surrogate method that can make
the parts of the true Pareto-front inaccessible, and therefore
introduces an uncertainty into the optimization process, is
balanced by the positive effect on the overall number of fit-
ness evaluations i.e. overall cost of optimization. In other
words, the setting of the tolerance vector is a trade-off be-
tween the time saving properties and the inaccessible area
that might occur around the true global optimum.

Note that an optimization algorithm can still reach any
point within the decision space. It can not reach only a close
neighbourhood of the archive members.

The drawback can be suppressed with the use of a dis-
crete decision space. When the decision space is discrete, the
tolerance vector can be set to almost zero values and a new
solution can be either identical or differ by a step of the dis-
crete decision variable. If the new solution generated by the
optimization algorithm already exists in the archive, it is not
calculated again. In this scenario, some regions of the deci-
sion space are inaccessible for the optimization algorithm.
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Fig. 1. Decision space of a two-objective problemwith solutions
stored in the archive.
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4. Evaluated Metrics
The performance of the tolerance-based surrogate

method is tested from a two points of view. The first one
is the computational time required to perform the particu-
lar simulation run. For a better insight into the time saving
property of the tolerance-based surrogate method, Table 3
contains an average count of fitness values obtained by our
surrogate method.

The second point of view is the value of a generational
distance. The generational distance was proposed in [11].
It defines the distance between a non-dominated set P and
a true Pareto-front P∗. It is obtained by the equation:

GD =

√∑ |P |
i d2

i

|P |
(5)

where d2
i is the minimal Euclidean distance in an objective

space between i-th solution from the set P and any member
of the true Pareto-front P∗:

d2
i = min |P

∗ |

k=1

√√√
M∑
m=1
[ fm(i) − f ∗m(k)]

2 (6)

where f ∗m(k) is the m-th fitness value of k-th member from
the set P∗.

5. Testing Problems
The validation of the tolerance-based surrogate method

was performed on numerous two-objective optimization
benchmark problems. However, the tolerance-based surro-
gate method is independent on the number of objectives.

A summary of benchmark problems can be seen in
Tab. 1 (MOFON stands for Fonseca and Fleming’s study,
MOKUR stands for Kursawe’s study, MOPOL stands for
Poloni’s study and MOZDT1 and MOZDT6 stands for Zit-
zler, Deb and Thiele’s studies). The benchmark problems are
further described in [12].

The generational distance metric uses the true Pareto-
fronts P∗ for the distance calculation. The true Pareto-fronts
of MOFON, MOZDT1, and MOZDT6 problems can be
found in [12], while the true Pareto-fronts of MOPOL and
MOKURproblemswere obtained thanks to a very dense sam-
pling of the regions, where the true Pareto-front is located.

6. Results
Controlling parameters of the MOPSO algorithm were

set as follows: the inertia weight w was linearly decreased
from 0.6 to 0.4 over each iteration, the cognitive learning fac-
tor was c1 = 1.5, and the social learning factor was c2 = 1.

There were 100 agents in each simulation run over
100 iterations. Therefore, the fitness function would be eval-
uated 10 000-times if the tolerance-based surrogate method
was disabled.

An evaluation of the fitness function in case of the
benchmark problems is almost immediate, therefore the us-
age of the tolerance-based surrogate method would have no
benefit. Nevertheless, there were delays inserted to the fit-
ness functions. The delays were 0, 1, and 10 milliseconds.
Due to the nested delays, all evaluations of the fitness func-
tions alone took 0, 10, and 100 seconds, respectively, for
each simulation run if the tolerance-based surrogate method
was disabled.

The tolerance vector was defined as a fraction of the
range of problem’s decision variables, i.e. 0, 0.001, 0.01,
0.05, and 0.1 times the range of the decision variable. The
first one means that the range of each decision variable is
“divided” into an infinite number of sections. In other
words, the tolerance-based surrogatemethod is disabled. The
last one means, that the range of each decision variable is
“divided” into 10 sections. The quotation marks refer to the
fact, that the tolerance-based surrogate method has nothing
to do with the discretization of the decision variables. The
tolerance-based surrogate method only takes positions of two
randomly generated solutions and checks whether its differ-
ence is lower than the tolerance or not. All values presented
in Tabs. 2–5 are an average of 100 repetitions.

6.1 Computational Time
Table 2 contains an average computational time of par-

ticular simulations. It is obvious from the first three lines
(the tolerance-based surrogate method is disabled), that the
computational time of an optimization method alone is al-
most independent on a problem. It is also evident how the
nested delays affect the computational times.

Following lines show the computational times when the
tolerance-based surrogate method is enabled. The higher the
tolerance is, the larger the time saving is. Contrarily, the com-
putational time when the tolerance-based surrogate method
is enabled depends on the problem.

On several occasions, the computational time is larger
when the tolerance-based surrogate method is enabled, com-
pared to the computational times with the tolerance vector
elements set to zero. The most obvious items are the ones
where no delay and small tolerance values were used. This
behaviour is caused by a number of comparison operations
required by the tolerance-based surrogate method. If the tol-
erance is small and no surrogate fitness values are found in
the archive (MOKUR and MOZDT1 problems, see Tab. 3),
the number of the comparison operations quickly increases
during the optimization which slows the entire process.

Especially, in case of the MOZDT1 problem and the
tolerance vector elements set to 0.001, no surrogate solutions
were found (see Tab. 3). This problem has 30 decision vari-
ables, therefore the probability that a new solution is within
the tolerance of some solution stored in the archive is lower
compared to other problems. The number of the comparison
operations quickly grows from 100×30 after first iteration to
10000× 30 after last iteration. Therefore, an overall deceler-
ation is almost 13 seconds.
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Problem MOFON MOKUR MOPOL MOZDT1 MOZDT4

Number of decision variables 3 3 2 30 10
Limits of decision variables 〈−4,4〉 〈−5,5〉 〈−π, π〉 〈0,1〉 〈−5,5〉*
*The first decision variable has limits 〈0, 1〉.

Tab. 1. Summary of benchmark problems used in the paper.

Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0 2.95 2.86 2.62 2.74 2.68
1 0 13.66 13.75 12.82 13.36 13.13
10 0 103.42 103.11 103.09 103.10 103.10
0 0.001 5.07 5.26 4.53 16.61 5.18
1 0.001 10.94 15.36 11.14 27.76 13.21
10 0.001 58.19 100.36 65.50 117.85 78.53
0 0.01 3.79 4.13 3.79 17.09 5.02
1 0.01 5.40 6.63 6.14 27.84 11.00
10 0.01 17.97 24.97 22.78 116.15 54.68
0 0.05 2.98 3.16 2.95 14.78 4.60
1 0.05 3.48 3.76 3.26 21.69 8.04
10 0.05 7.37 8.47 5.39 74.52 34.11
0 0.1 2.81 2.91 2.70 6.00 4.30
1 0.1 3.04 3.20 2.83 10.99 6.60
10 0.1 4.81 5.24 3.84 45.97 23.53

Tab. 2. An average computational time in seconds.

Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0.001 4777 597 4024 0 2870
1 0.001 4812 596 4045 0 2755
10 0.001 4775 587 3992 0 2751
0 0.01 8620 7991 8177 230 4788
1 0.01 8626 7976 8171 228 4801
10 0.01 8624 7980 8170 199 5117
0 0.05 9576 9488 9778 4014 7080
1 0.05 9575 9497 9777 3970 7160
10 0.05 9574 9493 9775 4101 7135
0 0.1 9805 9774 9889 6159 8192
1 0.1 9806 9775 9889 6148 8201
10 0.1 9806 9779 9889 6128 8152

Tab. 3. An average number of surrogate solutions.
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Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0 <0.001 0.032 0.011 0.247 20.822
1 0 <0.001 0.032 0.012 0.232 20.649
10 0 <0.001 0.032 0.013 0.221 19.965
0 0.001 <0.001 0.033 0.012 0.234 23.354
1 0.001 <0.001 0.031 0.012 0.245 22.911
10 0.001 <0.001 0.034 0.010 0.225 23.507
0 0.01 0.005 0.110 0.037 0.226 46.445
1 0.01 0.005 0.109 0.036 0.238 49.949
10 0.01 0.005 0.111 0.039 0.232 47.377
0 0.05 0.051 0.893 0.322 0.261 61.551
1 0.05 0.052 0.869 0.306 0.262 60.981
10 0.05 0.052 0.888 0.313 0.259 60.895
0 0.1 0.129 2.153 0.903 0.337 70.144
1 0.1 0.130 2.068 0.929 0.334 68.461
10 0.1 0.123 2.064 0.965 0.335 68.306

Tab. 4. An average generational distance - Real-coded decision space.

Delay [ms] Fraction MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0 <0.001 0.032 0.011 0.235 21.542
1 0 <0.001 0.033 0.010 0.231 19.827
10 0 <0.001 0.032 0.014 0.242 17.982
0 0.001 <0.001 0.030 0.011 0.110 11.954
1 0.001 <0.001 0.030 0.011 0.111 14.233
10 0.001 <0.001 0.030 0.011 0.129 12.823
0 0.01 0.001 0.057 0.027 0.055 11.033
1 0.01 0.001 0.058 0.027 0.043 11.574
10 0.01 0.001 0.057 0.027 0.041 12.019
0 0.05 0.026 0.219 0.277 0.041 0.145
1 0.05 0.026 0.219 0.311 0.045 0.146
10 0.05 0.026 0.219 0.311 0.038 0.146
0 0.1 0.102 0.017 0.288 0.074 0.164
1 0.1 0.102 0.017 0.288 0.046 0.167
10 0.1 0.102 0.017 0.288 0.063 0.160

Tab. 5. An average generational distance - Discrete decision space.
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6.2 Number of Surrogate Solutions
Table 3 shows, howmany fitness valueswere taken from

the archive during each simulation run. The content of Tab. 3
correlates with the content of Tab. 2. The first three lines of
the table were omitted, because they obviously contain zeros
because the tolerance-based surrogate method is disabled.
With an increasing tolerance values the number of surrogate
solutions also increases, because there is a higher probability
of finding a close enough solution in the archive.

The differences between values with the same tolerance
but different problems are firstly set by a number of deci-
sion variables. If a problem has only three decision variables
(MOFON), it is much easier to randomly generate a close
solution to a member of the archive compared to a problem
with 30 decision variables (MOZDT1).

Secondly, the differences are given by the speed of con-
vergence to an optimum. If agents rapidly approach global
optimum, then new solutions are almost similar to the pre-
vious ones, therefore surrogate solutions can be found in the
archive (MOFON). Contrarily, if agents approach the op-
timum slowly, the positions are continuously drawn to opti-
mum (MOKUR), and the surrogate solutions cannot be found
in the archive.

6.3 Generational Distance
When the tolerances are increased, the generational dis-

tance also increases due to the drawback of the tolerance-
based surrogate method described in Sec. 3. Differences
between values of the generational distance with the same
tolerance are caused by the difficulty of the problem. The
MOFON problem is relatively simple one. On the other
hand, the MOZDT4 problem with only 10 decision variables
(in comparison with the MOZDT1 problem) has many lo-
cal optima, where an algorithm can be caught, therefore the
values of the generational distance are large.

Table 5 contains generational distance values of simula-
tions when a discrete decision space was used. Note that the
second column in Tab. 5 is now called Fraction. In this case,
the tolerances were set to very low values (1e−6). However,
the discretization of the decision variables corresponds with
the tolerances from the simulation with a real-coded decision
space. Therefore, the fraction of 0.1 denotes that each deci-
sion variable was sampled by 11 points. When the discrete
decision space is used, the surrogate is found only if a new
solution is identical to a member of the archive. Otherwise,
the fitness functions has to be evaluated.

Some problems (MOPOL andMOFON) in Tab. 5 show
that if the fraction value is increased, meaning that the deci-
sion variable is sparsely sampled, the generational distance
downgrades. This is caused by the fact that the true Pareto-
optimal solutions do not correspond with the samples of the
decision variables. The true Pareto-optimal set of MOZDT
problems corresponds to x1 ∈ 〈0, 1〉 while all the other de-
cision variables are zero. Therefore, the discrete samples of
the decision variables can match the true Pareto-optimal set.

Analogous tables to Tab. 2 and Tab. 3 with the discrete
decision space are not presented, because their content is
similar to those with the real-coded decision space.

7. Anisotropic Band-Stop Filter
Design
Until now, only artificial, benchmark problems were

considered for the verification of the tolerance-based surro-
gate method in this paper. The benchmark problems were
unnaturally altered by inserting delays to introduce repro-
ducible results, but the use of the tolerance-based surrogate
method on such optimization tasks is meaningless.

The tolerance-based surrogate method was advanta-
geously exploited in the synthesis of the electromagnetic
equivalents of composite sheets [13]. An anisotropic band-
stop filter based on a microstrip line above a uniplanar
band-gap (UBG) ground plane was designed by a multi-
objective optimization.

The Anisotropic band-stop filter is formed by the mi-
crostrip line above a ground plane with an array of etched
slots of varying widths (Fig. 2). By changing a number of
step-impedance slot lines N , a slot period a (dimension of
etched slots) and the angle ϕ between the microstrip line and
the step-impedance slots, transmission properties of the filter
are being changed.

The transmission characteristics of the band-stop fil-
ter were obtained by a full-wave analysis in the transient
solver of CST Microwave Studio. The design properties N ,
a and ϕ were acting as decision variables and fitness func-
tions evaluation consists of a full-wave analysis in the CST
Microwave Studio and parsing of the transmission character-
istics to achieve the fitness values. An RT/Duroid substrate
(h = 0.635mm, εr = 10.2, t = 35 µm) was used in the
optimized structure.

It is obvious, that such evaluation is time demanding
(approximately 5 to 30 minutes), therefore a great emphasis
should be put on keeping the overall number of the fitness
functions evaluations at minimum.

d = N•a

x

y

ϕ

slotmetal
a/2

a/2

a

microstrip

Fig. 2. UBG structure with state variables. Gray: metal strips,
white: slots.
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7.1 Optimization Parameters
Decision variables were discrete and they were defined

as follows: the number of the step-impedance slot lines
N ∈ [5, 7, 9], the slot period a ∈ [0.5, 0.6, . . . 2.0]mm and
the angle between the microstrip line and the step-impedance
slots ϕ ∈ [0, 2, 4, . . . 90]◦. The fitness values were obtained
from a frequency response of the transmission coefficient
defined as follows (see Fig. 3):

|S21 (x,F)| > − 5 dB,F ∈ 〈0GHz; 4GHz〉 , (7)
|S21 (x,F)| < − 20 dB,F ∈ 〈5GHz; 8GHz〉 , (8)
|S21 (x,F)| > − 5 dB,F ∈ 〈9GHz; 10GHz〉 (9)

where x = [a,N, ϕ]T is the position of a solution and F de-
notes a frequency.

Each frequency band forms one fitness function defined
by (10)–(12). Basically, it is a sum of S21 values that violates
the defined frequency mask (7)–(9). The CST Microwave
Studio produces 5001 frequency samples of S21 within the
interval from 0GHz to 12GHz.

f1(x) =
∑
♦ [−S21(x,F) − 5] ,F ∈ 〈0GHz; 4GHz〉 , (10)

f2(x) =
∑
♦ [20 + S21(x,F)] ,F ∈ 〈5GHz; 8GHz〉 , (11)

f3(x) =
∑
♦ [−S21(x,F) − 5] ,F ∈ 〈9GHz; 10GHz〉 (12)

where the operator ♦ denotes that an output is equal to an ar-
gument in square brackets only if the argument is positive.
Otherwise, the output is zero.

7.2 Optimization
The paper [13] presents the comparison of the per-

formance of two algorithms, GDE3 and NSGA-II, in de-
sign of the band-stop filter. Both algorithms had 20 agents
over 20 iterations, which means that each algorithm needed
400 fitness function evaluations. To obtain independent re-
alizations of stochastic processes, both algorithm runs were
10 times repeated.

In other words, 2 × 400 × 10 = 8000 fitness func-
tion evaluations would be normally needed. It would take
almost 56 days to evaluate the fitness functions (assum-
ing that each fitness function evaluation takes 10 min-
utes). However, an overall number of possible solutions
is 3 × 16 × 46 = 2208 (the decision variables are discrete).
This suggests that some solutions would certainly be eval-
uated more than once, which encourages to the use of the
tolerance-based surrogate method.

Thanks to the tolerance-based surrogate method, the
whole procedure took about 15 days and the total number of
2022 solution had to be full-wave analysed by the CST Mi-
crowave Studio (an average fitness function evaluation took
little over 10 minutes). The remaining solutions (2208 over-
all) were not reached during any optimization run.
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Fig. 3. Frequency response of transmission coefficients of the
best solution found in optimization process.

Figure 3 shows the result of the anisotropic band-stop
filter design using the multi-objective optimization. The fig-
ure also shows the intended frequency mask (hatched areas)
described by equations (7)–(9).

8. Conclusion

The Tolerance-based Surrogate Method reducing the
time of the optimization process has been introduced. It has
been described, that certain fitness function evaluations are
unnecessary to evaluate, therefore an overall computational
time of an optimization process can be reduced.

The drawback of skipping the fitness function evalua-
tion can lead to a loss of a precision. The precision loss
might be reduced if a discrete decision space is used with
an appropriate tolerance vector.

It was also discussed that if the tolerance-based surro-
gate method is improperly used, the optimization process can
be even slowed.

The real-world optimization task, the anisotropic band-
stop filter design, was also presented. The fitness function
evaluation took around 10 minutes and the overall optimiza-
tion timewas reduced fromaround 2months to approximately
2 weeks thanks to the tolerance-based surrogate method.

Since an evaluation of fitness functions can be very time
consuming, the proposed tolerance-based surrogate method
can accelerate the whole optimization process even if only
few surrogate solution are found.

The tolerance-based surrogate method can also be ex-
ploited in cases of recurrent optimization tasks either after al-
tering algorithm settings or the crash of a simulation, because
the archive of known solutions can be inserted before the be-
ginning of the optimization process and surrogate solutions
can be used from early stages of the optimization process.
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Appendix A: NSGA-II Results
Controlling parameters of the NSGA-II algorithm were

set as follows: the probability of crossover PC = 0.9, the
probability of mutation PM = 0.7 and a binary precision
of each decision variable depends an a number of discrete
samples of each decision variable (BP = 4 for 11 discrete
samples, BP = 7 for 101 discrete samples, etc.). Although
there are 16 possible combinations for BP = 4 for each de-
cision variables, the NSGA-II algorithm was set so that only
the defined number of discrete positions could be reached.

The number of the discrete samples of each decision
variable is analogous to the setting of MOPSO with the
discrete decision space. Therefore, each decision variable
was sampled by 11, 101, 1001, and 220 points. Note that
220 discrete points per decision variable represents here
a continuous-like decision space.

A number of agents and a number of iterations used in
the NSGA-II simulation was identical to the MOPSO algo-
rithm setting (100 agents and 100 iterations). A number of
repetitions of all simulations was 10 in this case.
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Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0 0.96 1.07 0.92 1.33 1.07
1 0 11.31 11.42 11.26 11.56 11.42
10 0 105.11 105.50 104.93 105.52 105.27
0 0.001 3.38 3.36 2.66 21.12 4.49
1 0.001 13.08 11.35 9.01 31.54 13.52
10 0.001 97.28 83.24 66.37 123.09 94.76
0 0.01 2.57 2.30 1.83 20.77 4.08
1 0.01 6.96 5.41 3.84 30.41 11.45
10 0.01 52.49 37.71 22.28 120.90 75.75
0 0.1 1.64 1.61 1.50 17.56 2.93
1 0.1 2.18 2.13 1.68 26.30 6.44
10 0.1 7.02 6.99 2.85 108.15 41.25

Tab. 6. An average computational time in seconds - NSGA-II.

Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0.001 1253 2352 3997 533 1594
1 0.001 1298 2593 3979 509 1681
10 0.001 1219 2534 4069 576 1555
0 0.01 5631 6909 8104 571 3354
1 0.01 5741 7006 8114 589 3111
10 0.01 5360 6756 8115 628 3288
0 0.1 9501 9522 9882 1992 6634
1 0.1 9482 9524 9881 1754 6641
10 0.1 9500 9512 9881 1729 6456

Tab. 7. An average number of surrogate solutions - NSGA-II.

Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0 0.003 0.007 0.027 0.195 6.537
1 0 0.002 0.007 0.022 0.183 5.457
10 0 0.002 0.007 0.018 0.182 6.078
0 0.001 0.002 0.005 0.031 0.119 5.066
1 0.001 0.002 0.005 0.014 0.120 5.907
10 0.001 0.002 0.005 0.019 0.131 3.860
0 0.01 0.002 0.064 0.024 0.087 4.359
1 0.01 0.002 0.065 0.024 0.086 3.625
10 0.01 0.002 0.059 0.028 0.091 3.150
0 0.1 0.102 0.017 0.288 <0.001 <0.001
1 0.1 0.102 0.017 0.288 <0.001 <0.001
10 0.1 0.102 0.017 0.289 <0.001 <0.001

Tab. 8. An average generational distance - NSGA-II.


