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Abstract. A new approach based on the incorporation of Z-
shaped defected ground structure (DGS) in microstrip 
antenna (MSA) for improving impedance matching and 
cross polarization (XP) performances is proposed in this 
paper. Through detail analysis of the surface current den-
sities, and input impedance, the proposed DGS is inte-
grated into a rectangular MSA (RMSA) to realize flat rela-
tive XP reduction of 22 dB in the H-plane around broad-
side angular range of ±60°. Further, an equivalent circuit 
model (ECM) for the proposed antenna is introduced by 
considering the mutual coupling in between the DGS and 
patch and the model is verified using circuit-system-EM co-
simulation software, Advanced Design System (ADS). 
A prototype has been fabricated and tested for the valida-
tion of simulated results and it shows good agreement with 
each other. The antenna operates over 2.32–2.58 GHz with 
good far-field radiation characteristics and a peak gain of 
2.8 dBi at the resonating frequency 2.4 GHz. Hence, the 
proposed design can be useful for the IEEE 802.11b appli-
cations. 
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1. Introduction 
In the past decades microstrip antennas (MSA) have 

received much attention and have been intensively studied 
because of their low cost, lightweight, and low profile. 
However, MSA commonly sustain high input impedance, 
typically in a range of 300–500 Ω, which is difficult for 
proper matching with 50-Ω SMA connector for the coaxial 
probe feed. The input impedance of a MSA depends on its 
shape, dimensions, properties of the materials, and the feed 
type. The experimental investigation [1] has shown that the 

dependence of the input resistance on the feed position 
differs in case of a simple coaxial probe feed and 
a microstrip line feed. Generally the input impedance of the 
probe feed MSA is proportional to the cosine squared of 
the normalized feed point distance with respect to the patch 
edge but for the inset microstrip line feed, the impedance 
dependence becomes proportional to the fourth power of 
the cosine [2]. For the probe feed at the center of the patch, 
the input impedance is zero. The input impedance behavior 
of the inset-fed rectangular MSA [3] depends on the notch 
width and the aspect ratio of the patch. It also shows that 
XP level in H-plane increases by increasing either the 
notch width or depth. However, for fixed input impedance, 
the cross-polarization level is not very sensitive to the 
notch width. Recently, a new technique using a pair of 
shorting pins [4] has been explored toward the flexible 
impedance matching and lower XP level of a rectangular 
MSA. Due to the symmetric arrangement of shorting pins, 
surface current density on the patch is maintained as the 
odd-symmetric property with respect to the H-plane, thus 
the XP level is reduced significantly. 

Proper input impedance matching of MSA plays an 
important role towards the improvement of the impedance 
bandwidth. The bandwidth enhancement of a MSA by 
employing a Z- shaped DGS for X-band application is 
reported in [5] nevertheless, incorporation of DGS for 
improving input impedance matching has not been ex-
plored. Defected ground plane is also used to enhance the 
bandwidth of an ultrawideband antenna [6] along with XP 
suppression. Though XP level improves by 12-22 dB in 
both the principal planes however, after inserting the DGS 
impedance matching deteriorates. 

Apart from many desirable properties, a simple rec-
tangular MSA suffers from XP radiation in the far field, 
especially in the H-plane. The asymmetry of the probe 
location results in asymmetry in the near fields in the 
vicinity of the antenna, causing high XP radiation in the H-
plane of the antenna. XP reduction using symmetric arc-
shaped DGS [7], asymmetric DGS [8], a strategic design of 
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DGS [9], and a dumbbell shaped DGS, without affecting 
co-polarized radiation pattern [10] have been explored to 
understand the effectiveness of DGSs towards this issue. It 
has been found that the XP reduction along with proper 
impedance matching is a difficult task for the MSA design-
ers. Because, for the proper impedance matching there is 
the requirement of asymmetric feed location which is also 
responsible for the higher XP radiation in the H-plane. 
Moreover, XP suppression in the boresight is not a difficult 
task but it is difficult to achieve very low and flat XP over 
the wide angle (–60° to +60°).   

In this paper, a coaxial probe feed RMSA with  
Z-shaped DGS is proposed and analyzed for improved im-
pedance matching and XP performances. The position of 
the DGS is optimized to get desired x-directed odd-sym-
metric surface current distribution so that the correspond-
ing radiated far field can be cancelled each other in the  
H-plane. Considering the mutual coupling in between the 
patch and DGS an ECM is developed and verified using 
circuit-system-EM-co-simulation software, Advanced De-
sign System (ADS-2017). Improved impedance matching 
over 2.32–2.58 GHz, low and flat XP level over the entire 
tracking angle –60° to +60°, and good far-field radiation 
along with reasonable peak gain of 2.8 dBi make this 
antenna suitable for the IEEE 802.11b applications. The 
antenna design is carried out using FEM-based Ansys 
HFSS EM simulator. 

2. Antenna Design 
In this section configuration of the proposed antenna 

and its equivalent circuit model have been discussed. 

2.1 Antenna Configuration 

The detailed of the antenna structure is shown in 
Fig. 1. An easily available FR4 substrate of dimension 
38 mm × 47 mm with dielectric constant (εr) 4.4 and thick-
ness (h) 1.6 mm is used for the antenna design. A rectan-
gular shaped patch is printed on one side of the substrate 
with dimension 25.98 mm × 29.79 mm. The resonance 
frequency (2.4 GHz) for the dominant TM10 mode of 
RMSA can be calculated by the following formula [9] 

 
 

0

r0.89

c
f

L W 



    (1) 

where, c0 cis the velocity of light, L and W are the length 
and width of the patch respectively. 

One Z-shaped metal of length 0.16λ0 from the upper 
middle portion of the ground plane has been etched to cre-
ate a groove (DGS) on the ground plane, where λ0 is the 
free space wavelength corresponding to the resonating 
frequency. Due to the insertion of the DGS the pass band 
and stop band is modified and therefore antenna shows new 
resonating behavior. Co-axial probe feeding technique is 
used to feed the antenna structure. All the dimensions of 
the antenna parameters are given in Tab. 1. 

 
Fig. 1. Detailed diagram of the proposed Z-shaped DGS 

integrated RMSA: (a) Top view. (b) Back view. 
 

W L LSUB WSUB LS1 LS2 

28.5 38.1 47.7 38.1 6 7.8 

WD1 WD2 WD3 WS1 L1 d 

18.5 25.5 13.7 1 15 17.7 

Tab. 1. Proposed antenna design parameters with optimized 
values (All dimensions are in mm). 

2.2 Equivalent Circuit Model (ECM) 

The equivalent circuit of the co-axial probe feed 
RMSA loaded with Z-shaped DGS is shown in Fig. 2, 
where the effect of the Z-shaped slot is introduced by 
considering mutual inductance between the DGS and patch. 
The input side consisting of parallel capacitance Cp, 
inductance Lp, and resistance Rp signifies the equivalent 
circuit of the MSA. As DGS structure is included in the 
ground plane, a parallel LC circuit (LDGS and CDGS) 
corresponding to the DGS is mutually connected with the 
patch antenna. 

 
Fig. 2. Equivalent circuit of the DGS integrated antenna. 
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The following equations are used for parameter 
extraction of equivalent circuit components of the DGS 
section and patch section [11], [12]. 
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where β is the wave number, s is the stub length, CS is the 
source capacitance, Z0 is the characteristics impedance, h is 
the substrate thickness, CDGS and LDGS are the capacitance 
and inductance value of the equivalent circuit of the DGS 
section, yo is the distance of the feed point from the patch 
edge, ω0 is the resonating angular frequency and ωc is the 
3-dB lower cut-off angular frequency. The coupling co-
efficient (K1) between the inductors is obtained as 0.04 
according to the following formula as given in (10) and as 
detailed in [13]. 
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where fe and fm are the frequencies corresponding to the 
lower and upper 3-dB points around the resonance fre-
quency and these positions are known as electric and mag-
netic walls respectively. Substituting the values of all the 
known parameters to (2)–(10), the calculated values of all 
the unknown parameters are CS = 20.9 pF, RP = 49 Ω, 
LP = 0.468 nH, LDGS = 1.87 nH, and CDGS = 2.35 pF, con-
sidering fe and fm as 2.35 GHz and 2.45 GHz respectively. 
These circuit parameters have been used to design the cir-
cuit model of Fig. 2 using ADS-2017. The response of this 
ECM is compared with the simulated and measured reflec-
tion coefficients (S11), as illustrated in Fig. 7 of Sec. 3.3. 

Since, due to the mutual coupling effect in between 
the patch and DGS, the equivalent input impedance of the 
antenna changes which leads to alter the current distribu-
tions on the ground plane. This variation in current distri-
bution alters the fringing field effect which leads to modify 
the effective dielectric constant. Now according to (5) this 
effective dielectric constant is directly proportioned to the 

square of the quality factor (Q). Further, the bandwidth 
(BW) of the antenna is inversely proportional to the quality 
factor following the relation   1 /BW VSWR Q VSWR  . 

So, change in effective dielectric constant due to DGS 
incorporation will affect the quality factor and the band-
width of the antenna accordingly. 

3. Results and Discussion 

3.1 Input Impedance 

The simulated input resistance (Rin) and reactance 
(Xin) variations with different locations of the DGS are 
summarized in Fig. 3. Left and right shift of the DGS from 
its proposed position has been defined in terms of the ratio 
of the diagonal spacing (d1 and d2) between the center of 
the DGS and feed point to the substrate width WSUB. The 
parameters d, d1, and d2 are defined in the inset of Fig. 3(b). 
As the value of WSUB (38.1 mm) and the ratios are known 
then following the inset of Fig. 3(b), one can calculate the 
value of the variables d1, d2, X1, and X2. For the proposed 
position of the DGS (d/WSUB = 0.6), Rin attains a maximum 
value of 57 Ω and Xin = 0 at the resonance frequency 
2.4 GHz, whereas for other positions of the DGS the reso-
nance frequency has been changed. The real values of the 
input resistance followed the Gaussian distribution whereas 
for its imaginary part a shifted cosine distribution has been 
observed which indicates the purity of the dominant mode 
generation. 

 
(a) 

 
(b) 

Fig. 3. (a) Input resistance (Rin) and (b) reactance (Xin) of the 
DGS loaded antenna for different position of DGS on 
the ground plane. 
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Fig. 4.  Variation in simulated reflection coefficient for size 

and position variation of the DGS. 

To establish a strong evidence for the suitability of the 
proposed DGS size and position, simulated reflection coef-
ficients under different circumstances are shown in Fig. 4. 
This study reveals that for the increment and decrement of 
the DGS size with respect to the proposed size the reso-
nating frequency has been decreased and increased respec-
tively but the impedance matching is affected only when 
the DGS length is decreased. However, for the right and 
left shift of the DGS position with respect to the proposed 
position the reflection coefficient exhibits poor impedance 
matching at the resonating frequency. Hence, the position 
of the DGS plays the most important role towards the better 
impedance matching issue. 

3.2 Surface Current Distribution and XP 
Performance 

Surface current vectors on the patch for various posi-
tions of the DGS are illustrated in Fig. 5. Due to the incor-
poration of DGS the surface current is perturbed and the 
position of the DGS is optimized to produce odd symmetric 
for the XP reduction. Apart from the proposed DGS posi-
tion, there is no evidence of the odd-symmetric x-oriented 
surface current vectors generated from the co-axial probe 
with respect to the H-plane; hence the corresponding radi-
ated fields will not cancel each other, which lead to the 
problem of higher XP in H-plane for the other positions of 
DGS as shown in Fig. 6. 

Therefore the proposed centered position of the DGS 
is justified in terms of surface current vectors and lower XP 
performance. It has been observed that there is no effect on 
the co-pol patterns due to DGS position variation however 
cross-pol patterns in the H-plane changes significantly. Due 

to the proper cancellation of radiated fields for the pro-
posed position of Z-shaped DGS, it exhibits flat XP pattern 
in the H-plane with a relative XP reduction of 22 dB 
around ±60° with respect to the other positions of DGS. 

3.3 Measured Results 

To validate the antenna performance a prototype has 
been fabricated and the reflection coefficient and radiation 
patterns  are  measured  using  proper  experimental  setup. 

 
Fig. 5.  Surface current vectors distribution on the patch with 

different DGS positions: (a) proposed, (b) down shift, 
(c) left shift, (d) right shift. 

 
Fig. 6.  Co-pol patterns for both E-plane and H-plane and the 

x-pol patterns only for the H-plane.  

 
Fig. 7.  S11 vs frequency characteristics, and gain vs frequency 

characteristic.  

A comparative study of reflection coefficients without 
DGS, with DGS, simulated and measured is summarized in 
Fig. 7.  This figure  also shows  the simulated and measured 
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Ref. no. Methodology used 
Size of the patch 

(mm2) 
Operating band 

(GHz) 
XP reduction  

(dB) 
Impedance matching 

improvements 

[4] Pair of shorting pins 0.3λ0 × 0.3λ0 around 2.241 & 2.478  16 
Flexible matching 

(values are not mentioned) 

[6] 
Combination of DGS 

and slotted patch 
0.2λ0 × 0.23λ0 2–21  

XP increased in the E-
plane but in the H-plane 

XP reduced by 20 dB 

After inserting DGS 
impedance matching 

deteriorates 

[7] DGS 1.0λ0 × 1.0λ0 5.83–6.03  7-12 5 dB (approx) 

[8] Asymmetric DGS 2λ0 × 2λ0 
9.5–10.4 
(approx.) 

15 Not mentioned 

Proposed Z-shaped DGS 0.3λ0 × 0.37λ0 2.32–2.58  22 26 dB 

Tab. 2. Performance comparison of the proposed structure. 

 
Fig. 8. Simulated and measured radiation patterns of the proposed antenna at 2.4 GHz (a) E-plane, (b) H-plane. 

 

gain variation throughout the operating frequency range. It 
can be concluded that with the introduction of the DGS the 
operational band changes from 2.35–2.46 GHz to  
2.32–2.58 GHz and impedance matching is improved from 
–30 dB (S11 W/O DGS) to –50 dB (S11 with DGS). A good 
similarity is also observed between the simulated result and 
response of ECM model. Over the entire operating band, 
the gain is in the acceptable range and it shows a maximum 
peak gain of 2.8 dBi at the resonating frequency. In this 
analysis, the bandwidth improvement using Z-shaped DGS 
is about 150 MHz. This amount of bandwidth improvement 
is not sufficient for many applications but this analysis can 
be applied to any shape of the DGS to improve the imped-
ance matching as well as for the bandwidth enhancement of 
an MSA.  

Stable radiation patterns at the resonating frequency 
in both principal planes are shown in Fig. 8. For both 
planes lower XP level is achieved. To enlighten the ad-
vantages of the proposed technique over the previously 
proposed techniques, a comparative study is carried out and 
summarized in Tab. 2. Critical analysis of Tab. 2 shows 
that the proposed design is very simple and able to achieve 
higher level of XP reduction along with better impedance 
matching. 

4. Conclusion 

The applicability of the DGS toward better impedance 
matching as well as XP level suppression has been ex-
plored successfully. Size and position of the DGS are cru-

cial to achieving desired input impedance and current dis-
tributions. Centered position of the DGS provides the best 
result in terms of impedance matching and XP reduction. 
An analysis is carried out to identify the particular location 
with maximum surface current density beneath the patch. 
The position of the DGS has been fixed accordingly to 
improve the impedance matching. Improved impedance 
matching along with low and flat XP level throughout the 
entire tracking angle –60° to +60°, make this work prom-
ising in comparison to the related works of its class. The 
proposed ECM also provides the better insight of the de-
sign and it will be helpful for the antenna community. This 
study opens a new avenue to find out the optimum position 
of DGS for the maximum impedance matching and XP 
suppressions. 
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