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Abstract. In this article, we examine the late-time instabil-
ity properties of hybrid boundary conditions in the discon-
tinuous Galerkin time-domain (DGTD) simulations of 
an elongated multilayer thin plate. The hybrid boundary is 
combined by uniaxial perfectly matched layer (UPML) and 
periodic boundary condition (PBC). Herein, the PBC is 
employed to approximate an infinite long target. For the 
target studied, when implementing the UPML within the 
discrete DGTD domain, late-time instabilities would occur. 
This instable or spurious information can severely corrupt 
the solution of a physical problem in time domain. To sup-
press them, two effective ways are proposed, i.e., increas-
ing the size of the air space (the distance away from the 
interface between the target studied and the UPML) and 
decreasing the conductivity of the UPML. The numerical 
experiments verify that the instability characteristics can 
be efficiently attenuated by two methods proposed in this 
paper. 
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1. Introduction 
To mimic unbounded regions in time domain calcula-

tion of Maxwell’s equations, an absorbing boundary condi-
tion (ABC) must be introduced to truncate the computa-
tional region. A popular kind of artificial absorbing bound-
ary treatment is the perfectly matched layer (PML) 
invented by Berenger [1] in which each field of Maxwell’s 
equations is split into two orthogonal tensor forms. The 
innovation of Berenger’s PML is that plane waves of arbi-
trary incidence, polarization, and frequency could be ab-
sorbed perfectly and without reflections into the computa-
tional domain [2]. However, due to the field splitting, the 
memory requirements will double. Fortunately, a lossy 
UPML suggested by Sacks and Ziolkowski does not re-
quire the splitting of the Maxwell’s fields [3], [4]. The 

formulations of the well-posed UPML are identical to the 
Maxwell’s equations [5], therefore, only a few relatively 
straightforward complex-coordinate modifications are 
needed to implement in existing numerical methods [6]. 
The lossy UPML employs the split conductivity to realize 
the anisotropic property of the PML and achieve the decay 
of the fields inside the UPML region [7]. The UPML is 
a  Maxwellian formula-based perfectly matched absorbing 
medium, it offers a number of significant advantages: more 
computational efficient, more flexible implementation, 
lower buffer spaces, and easier to extend to unstructured 
grid techniques. 

DGTD is an excellent unstructured-grid-based numer-
ical method [8], which is originated from the finite volume 
time domain (FVTD) and the finite element method (FEM) 
[9], [10]. It retains spatial high-order convergence and 
adaptive unstructured meshes of the FEM and explicit 
iterative and easy parallelization of the finite difference 
time domain (FDTD) [2]. Thus, the DGTD approach is 
more accurate, stable, flexible, and efficient than FDTD, 
FVTD and FEM. What’s more, DGTD employs a Galerkin 
test procedure for each element to obtain the spatial dis-
cretization, and applies a unique numerical flux to provide 
the coupling information from neighbor elements [11], 
[12]. It is a very powerful full-wave numerical approach to 
solve all kinds of time-dependent electromagnetic prob-
lems, especially suitable for handling radiation, scattering, 
and propagation problems which involve open regions. In 
an open region computations, it is common to surround 
artificial boundaries of a computational domain with the 
UPML of finite thickness to prevent artificially reflected 
waves from contaminating a numerical simulation [13]. 
Theoretically, the UPML can ensure zero reflection from 
an interface with the computational domain. However, in 
the discretized implementation of the UPML equations 
some unwanted features appear, e.g., frequency-dependent 
reflection and even divergence [15]. Using UPML ABC, 
a gradual long-term growth of the solution will destroy the 
accuracy of a numerical simulation everywhere. Eventu-
ally, the DGTD simulations would be subjected to some 
issues of late-time instabilities or spurious results [13], [18]. 
This is mainly because waves inherently have long-term 
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interactions with the UPML boundary or an irregularly 
shaped computational domain is inherently ill-posed. 

In this paper, the issues pertaining to variational spa-
tial distance and UPML conductivity are systematically 
studied, to verify how they affect the late-time stability 
properties of the hybrid boundary conditions. Herein, the 
high-order discontinuous Galerkin scheme in space accom-
panied by the explicit 4th-order Runge-Kutta evolution in 
time is adopted. The PBC is employed to approximate 
an infinite long target and the UPML is applied to truncate 
the infinite width computational domain. The elongated 
multilayer thin plate could be regarded as a large aspect-
ration target which is infinitely long in the y-axis direction 
but extremely thin in the x-axis direction, that is, the 
dimension of the computational domain in the x-axis direc-
tion is not sufficiently large compared to the one in the  
y-axis directions. For this special computational model, the 
existence of non-physical higher-order modes may cause 
instable or spurious characteristic [7]. There are two ways 
to improve the late-time instability: one is to increase dra-
matically the size of the air space w to postpone the unsta-
ble wave shape; the other is by adjusting the value of the 
polynomial-graded conductivity σ to achieve a stable 
solution.  

2. Implementation of UPML in DGTD 
When one maps the UPML into the discrete DGTD 

space, to avoid the convolution-type constitutive relation in 
the time domain, an auxiliary differential equation (ADE) 
approach is used to acquire an efficient formulation [2]. 
Consider the normalized time-domain form of Maxwell’s 
equations for TMz (in 2D case, Hz = 0 and Ex = Ey = 0) 
waves in physical and UPML regions [4], [5]  
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where Ez is the z-component of the normalized electric 
field, Hx and Hy are the x- and y-component of the normal-
ized magnetic field, respectively. r and r are separately 

the relative permeability and permittivity. Qx, Qy and Pz are 
auxiliary variables introduced by the UPML. These auxil-
iary fields exist only in the UPML region and thus the 
additional computational cost is little. σx and σy are the 
normalized relative conductivity for the UPML in the x- 
and y-direction. Due to the discrete approximation of elec-
tric and magnetic fields, the material parameters at the 
interface of the UPML will result in a spurious impedance 
loading. Usually, the conductivity σ is set to a polynomial-
graded profile along the normal axes of the UPML [2], 
[20], [21], as shown 
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where σi,max is the maximum conductivity in i-axis direc-
tion, d is the thickness of the UPML, l is the distance from 
the air-UPML interface to  the internal UPML, which is 
varied in the range [0, d] and m is order of the polynomial 
variation, which represents a finer spatial discretization. As 
far as (2), it is shown that by choosing appropriate profile 
one can control the feature of the PML reflectance decrease 
with the increase of the thickness d [14], [15]. 

Supposing the computational domain is decomposed 
into K non-overlapping triangles in 2D space. For given 
an arbitrary element Dk, the unknown fields can be ex-
panded by interpolating multivariate Lagrange polynomial 

 k k
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where Np = (N + 1)(N + 2)/2 stands for the minimum num-
ber of nodal points, N signifies the maximum order of the 
polynomial, and x = (x, y) is the position vector. On ac-
count of the fact that correctly choosing interpolation 
nodes can bring about good numerical behaviors, this work 
employs the Legendre-Gauss-Lobatto (LGL) interpolating 
nodes as xi [8].  

Choose the same multivariate Lagrange interpolation 
polynomials as test functions. Multiplied by the test 
functions, integrated over each element, and followed by 
integration by parts, the fully explicit semi-discrete scheme 
are obtained as 
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Here, kD is the boundary of D and n̂ denotes the local 
outward pointing normal vector. The matrices J, D, and M 
represent the local transformation Jacobian, the 
differentiation matrix and the mass-integration matrix, 
respectively (see Ref. [8] for details). Using of the notation 

    ˆ, ,q q q q q    n here ( , ),Hh xh yhH H

[ ],x y zH ,H ,Eq  and d   q q q  are simple notations. 

To facilitate the coupling with the neighbor elements, 
we use a pure upwind flux which could strongly damp 
unphysical modes [8], as follows, 
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where Z± and Y± are the local impedance and admittance, 

respectively, and defined as 1 r rZ Y       . The 

characteristic impedance and admittance of free space is 

given by 0 01Z Y    . The superscript minus signs 

refer to the local element and the superscript plus signs to 
its adjacent element across the interface [5]. The numerical 
fluxes play a role in performing the communication be-

tween adjacent elements. For the special case of a PBC 
boundary, the boundary fluxes can be acquired by setting 

Y     because the PBC boundary behaves as a material 
with an infinite admittance. 

3. Computational Setup of Model 
Assume the elongated multilayer thin plate is com-

posed of two skin layers and one core layer. For the sake of 
simplicity, the skin thickness is set to 0.1λ (where the 
wavelength λ = 10 mm) and the core thickness is set to 
1.4λ, thus the total thickness of the thin plate is 1.6λ. The 
thin plate is assumed to be lossless and has a dielectric 
constant of εr,skin = 3.3 and εr,core = 1.08. The origin is as-
signed to the center of the bottom edge of the thin plate. 
The air space which is signified by w is variable as illus-
trated in Fig. 1. Furthermore suppose a height of 1.0λ small 
unit is backed by the PBC boundaries in the y-direction, 
which is to mimic an infinite long shape. To truncate the 
computational domain in the x-direction we add two addi-
tional layers whose thickness is 1.0λ, symmetrically lo-
cated at two sides of the thin plate. Moreover, the UPML is 
terminated by PEC boundaries, to enable propagating 
waves are sufficiently suppressed, resulting to provide just 
an insignificant contribution to the studied EM fields. The 
source is located at (–1.5λ, 0.5λ) and the monitoring point 
is located at (1.5λ, 0.5λ).  

The UPML conductivity σi has the polynomial-graded 
profile as given in (2). However, there are the PBC bound-
aries in the vertical direction of our model, thus (2) is mod-
ified as x(x) = x,max(l/d)m, y(y) = 0. In all subsequent 
computations we use this absorption profile. For the order 
of the profile m, typical values are 2～4 and we shall 
choose m = 3 unless stated otherwise. The computational 
model is illuminated by a vertically directed electric cur-
rent source with a Gaussian time-signature. In all computa-
tions x0 = –1.5λ, y0 = 0.5λ, δx = 0.03λ，δy = 0.06λ. The 
initial magnetic field components are zero, as shown, 
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To calculate the scattering parameters on the elon-
gated multilayer thin plate, DGTD with 3rd-order basis 
functions is  applied in  space and  the 4th-order low-storage 
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Fig. 1. The geometry of computational setup used throughout. 
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(a)                                                       (b) 

Ez field,  x,maxWidth of air space =0.8λ 

 
(c) 

Fig. 2. Snapshots of the magnitude of the electric field Ez 

distribution for the elongated multilayer thin plate, 
which are given at Timestep = 240 (a), Timestep = 840 
(b), and time-domain wave-form of the electric field at 
the monitoring point of (1.5λ, 0.5λ) (c). 

explicit Runge-Kutta (LSERK) scheme in time is used. 
Here, taking the air space w = 0.8λ, the UPML conductiv-
ity σx,max = 50, and FinalTime = 500, i.e., a total of 224,317 
steps of numerical calculations is performed. The short-
time and long-time propagation behavior are illustrated in 
Fig. 2. A view of the late-time response of Ez field at the 
observation point in Fig. 2(c) reveals any instable or spuri-
ous value once generated, no matter how small, will grow 
up to be significant in the very late time. The gradual val-
ues will pollute the entire computational domain and lead 
to late-time instability [22]. 

4. Mitigate Late-Time Instability 
In this section, we examine the issues pertaining to 

the air space w and the UPML conductivity σx,max, to see 
how they impact the late-time instability property for the 
elongated multilayer thin plate with UPML and PBC 
boundaries. 

4.1 Enlarge the Air Space 

The existence of non-physical higher-order modes 
generated in the elongated domain may cause a late-time 
instability characteristic [7]. In this case, we fix the UPML 
conductivity σx,max, i.e., taking σx,max = 50. And let the 
width of the air space w to be the only free parameter, i.e., 
from 0.8λ to 5.2λ. The computational domain is meshed 
with unstructured triangular elements, and much finer 
triangles are used near the thin plate to better approximate 
the thin plate surface. The shortest edge of element is 
0.05λ. According to the stability conditions of the DGTD 
method, the smallest time discrete interval t = 0.0031. 
Table 1 records the grid information for different width 
values. 
 

Width of air 
space

Number of 
element 

Number of 
node 

Minimum 
edge size 

Maximum 
edge size 

0.8λ 1904 1017 0.05λ 0.140λ 
1.2λ 1892 1011 0.05λ 0.140λ 
2.2λ 1780 955 0.05λ 0.220λ 
3.2λ 1676 903 0.05λ 0.320λ 
5.2λ 1700 925 0.05λ 0.347λ 

Tab. 1. Grid information versus various widths of w. 

 
Fig. 3. RMS of the upper envelope of long time response of 

the electric field Eztest for different air space w. 

After extensive trials, it is interesting to observe that 
increasing the width of the air space w dramatically im-
proves the late-time instability. In physics and engineering, 
the envelope of an oscillating signal is a smooth curve 
outlining its extremes [23]. Owing to the electric field at 
the monitoring point Eztest is an approximate oscillating 
signal, we employ its root mean square (RMS) of the upper 
envelope to represent the instable characteristic of the 
long-time propagation behavior, as shown in Fig. 3. From 
Fig. 3 we can see that when w  1.2λ, solutions of a long-
time interaction become unstable, i.e., narrower w is easier 
to render significant late-time instability. Compared to the 
case of w = 0.8λ, if the UPML is moved to 2.2λ, the upper 
envelope of Eztest will drop by about 5:1. When w  3.2λ, 
we assert the solution to be stable even up to about 230,000 
time steps. 

4.2 Decrease the UPML Conductivity 

Owing to increasing the width of the air space shall 
aggravate cost in system memory and computational time. 
To still generate a stable solution, we fix the width of the 
air space, i.e., taking w = 0.8λ and change the value of 
σx,max in the UPML formula from 50 to 1. The RMS of the 
upper envelope of Ez at the monitoring point is presented in 
Fig. 4. It is interesting to observe that the larger the con-
ductivity σx,max, the worse the solution after long time 
running, that is, a larger value of σx,max will bring about 
more significant late-time instability. By inspection of 
Fig. 4 it is evident that taking 5  σx,max  15 would prevent 
the late-time instability. However, using a too small value 
of conductivity i.e., σx,max = 1, the mitigation of the late-
time instability is a little poorly effective, comparing with 
σx,max = 10 and σx,max = 5. 
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Fig. 4. RMS of the upper envelope of long time response of 

the electric field Eztest for different σx,max. 

 

σx,max 
First maximum 

of Eztest 
RMS of  

Eztest 
Variation characteristic of  

Eztest 
50 0.0676 - divergence 
20 0.0676 0.0081 slight divergence 
15 0.0676 0.0035 be reduced to 5.1722% 
10 0.0676 0.0020 be reduced to 2.9555% 
5 0.0676 0.0021 be reduced to 3.1033% 
1 0.0676 0.0032 be reduced to 4.7288% 

Tab. 2. Late-time response of Eztest for different σx,max. 

After extensive trials, it is interesting to observe that 
the first maximum of Eztest 0.06757 is obtained at Timestep 
= 794. Changing the UPML conductivity σx,max from 50 to 
1, the different effects relative to the different σx,max are 
shown in Tab. 2. One can clearly see the late-time instabil-
ity problem can be mitigated by using the smaller value of 
σx,max, especially, when σx,max = 10, the RMS of the Eztest  
reduces to about 3% relative to the first maximum value. 

4.3 Compare the Two Strategies 

Figure 5 shows the RMS of the upper envelope of 
long time response of the electric field Eztest for a small 
σx,max value and a large w. In this experiment, for the ma-
genta solid line, the value of σx,max is fixed, e.g., taking 
σx,max = 100 and the larger width of the air space, i.e., tak-
ing w = 5.2λ; for the blue dot line, the value of w is fixed, 
e.g., taking w = 0.8λ and the smaller value of σx,max, i.e., 
taking σx,max = 5. In contrast to the large air space case, 
reducing the σx,max value neither increases the simulation 
time nor the memory requirement. Evidently, there are 
some advantages to the small σx,max as compared to the 
large w in terms of mitigating late-time instability. 

5. Conclusions 
This work successfully performs a systematic study of 

the late-time instability characteristic of the elongated 
multilayer thin plate with the UPML and PBC boundary. 
The unstructured triangular finite element is employed to 
model the elongated domain, the 2D DGTD-UPML 
scheme is  applied for the solution  of Maxwell’s equations. 

0 0.5 1 1.5 2 2.5 3 3.5

Timestep 105

0

0.002

0.004

0.006

0.008

0.01

0.012
 RMS Envelope of Ez Field at Monitoring Point

 Large w,  Fix 
x,max

 Small 
x,max

,  Fix w

 
Fig. 5. RMS of the upper envelope of long time response of 

Eztest for large w and smallσx,max. 

To mitigate the late-time instability caused by the ill-posed 
elongated thin target, there are two ways to be adopted: 
1) increasing the width of the air space and 2) decreasing 
the UPML conductivity σx,max. A large number of numeri-
cal trials have shown that both ways can decrease the grad-
ual growth in the UPML region, ultimately, the late-time 
instability can be effective to be mitigated and reduced. 
Furthermore, numerical results illustrate using the small 
σx,max is superior to using the large air space w. 
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