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Abstract. In this paper a modified third order Wien bridge 
oscillator with fractional order memristor is proposed. 
Various dynamical properties of the proposed oscillator 
are investigated such as equilibrium points, Eigenvalues, 
Lyapunov exponents and bifurcation diagrams. The 
Lyapunov spectrum of the system for various values of 
fractional order is derived. Using forward and backward 
continuation methods of plotting bifurcation diagram, the 
multistability of the oscillator is investigated. The proposed 
oscillator is realized using Field Programmable Gate 
Arrays and the experiment is conducted using hardware-
software co-simulation. 
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1. Introduction 
Chaos is one of the most interesting topics in nonlin-

ear dynamics in recent decades [1–4]. Many researches 
have been done about understanding the mechanism of 
generation of chaotic attractors [5–8]. Chaotic attractors 
were considered in relation with saddle point equilibria [9], 
[10] till some counter examples discovered [11–14]. After 
that many studies have been done to investigate the effect 
of equilibrium points on the generation of chaotic dynamics 
[2], [14], [15]. Currently many researchers are working on 
the chaotic dynamics since there are many unsolved issues 
in this area [16–18]. Chaotic electronic circuits are very 
interesting in this area [19].  

The ability to store the state or information of any 
system at a given time, and access it at a later time is de-
fined as memory. Some dynamical properties of the con-
stituents of condensed matter, namely electrons and ions 

are influenced by a memory state. The memristor has the 
memory which means it remembers its last resistance 
(state). If the power turns back on again, the resistance of 
the memristor starts exactly from where it was turned off. 
Chua in 1971 realized the existence of memristor [20]. The 
V-I characteristics of memristor look like Lissajous pattern 
(pinched hysteresis loop). Thus, Chua concluded that 
memristor has nonlinear behavior. The ‘pinched hysteresis 
loop’ of the memristor shrinks while the excitation fre-
quency increases [21], [22]. Memristors are categorized to 
three models as ideal flux or charge controlled memristors, 
generalized voltage controlled memristors, and non-ideal 
voltage controlled memristors. Various nonlinear circuits 
were formulated and dynamical behaviors were investi-
gated based on these models [23–26]. 

The past history of the memristor current such as the 
time integral of the current is effective on the memristance. 
Due to the fractional interaction between flux and charge, 
many memristors cannot be treated as ideal ones [27], [28]. 
It is nearly impossible to understand the physical behavior 
of the circuit with memristors without the use of a properly 
modelled non-ideal memristor. By controlling fractional 
parameters exist in a fractional order memristor system, the 
saturation time of the resistance can be controlled [29]. In 
[30] the chaotic behavior of a system with fourth degree 
polynomial memresistance function has been investigated. 
By treating both integer order and fractional order it was 
concluded that fractional-order treatment can expose intri-
cate chaotic behavior with lower order than the integer-
order treatment. In [28] a two segment memristor has been 
investigated as a spin-transfer torque (STT) junction. The 
study has revealed that the integer order model showed 
symmetrical rectangular resistance hysteresis loop while 
the fractional order model exhibited non-symmetrical re-
sistance hysteresis loop which resembled closer to the real 
time hysteresis loop. In [31] memristor based Wien oscilla-
tor has been formulated and nonlinear characteristics have 
been studied. Voltage-controlled memristor emulator-based 
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Chua’s circuit and its dynamical properties have been in-
vestigated particularly effect of coexisting multiple attrac-
tors [24], [32], [33]. Coexistence of multiple attractors is 
called multistability. This property is undesirable and dan-
gerous in some engineering application. Contradictorily in 
some cases it is advantageous. It is very important to in-
vestigate the chaotic systems for such a phenomenon  
[34–36]. By transforming the parallel resistor and capacitor 
(RC) feedback network to a series RC feedback network 
a simple third-order Wien-bridge oscillator has been 
developed in [37]. The investigation confirms the existence 
of bistability phenomenon in this system.  

Many researches have been carried out in the last 
decade on fractional order systems and their applications 
[38–40]. Numerical methods to simulate fractional-order 
nonlinear system have been proposed in [41], and Matlab 
solutions for fractional-order chaotic systems have been 
discussed in [42]. Field Programmable Gate Array (FPGA) 
implementation of chaotic systems has been a hot topic 
recently [43–45].  

Motivated by the above discussions, we are proposing 
a modified third order Wien bridge oscillator with frac-
tional order memristor. Various dynamical analyses are 
presented to prove the existence of chaotic oscillations. 
An FPGA implementation of the proposed system is done 
to prove its hardware realisability. 

2. Fracmemristor Wien Bridge 
Oscillator (FWO) 
Chua in 1971 introduced a memristor [20]. Later the 

mathematical model of the memristor was proposed in 
[46]. The mathematical model of a memristor is as follows,  
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where  is the internal state of the memristor. The applica-
tion of a voltage-controlled model of memristor to con-
struct a third order Wien bridge oscillator is studied in [47]. 
The internal state was taken as   2

m mt V h V       
 , 

where Vm is the voltage across the memristor. It was con-
sidered to be a passive memristor. The memductance func-
tion was considered as    2W      . The modified 

memristor is as follows,  
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where im is the current of memristor. In order to reduce 
complexity, we assume  = c,  = 1. 

A memristor emulator was proposed in [47] as 
follows,  
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Many studies have been done on the complex features 
of fractional order chaotic systems like multistability, meg-
astability and bispectrum [48], [49]. Here we investigate 
a fractional order memristor (called Fracmemristor) which 
is derived by replacing the integer order differentiator to 
a fractional order differentiator. The fractional order 
memristor [44] is defined as, 
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Using the above definition of a fractional order memristor 
[44], a third order Wien bridge oscillator is derived based 
on the one proposed in [47] as shown in Fig. 1. The 
circuit’s equations are as follows,  
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where q is the fractional order and V1, V2 are the voltages 
across the Fracmemristor [30] and capacitor C1, 
respectively . 

 
Fig. 1. Wien bridge oscillator with fractional order memristor. 

  



RADIOENGINEERING, VOL. 28, NO. 1, APRIL 2019 167 

 

By assuming x = V1, y = V2, z = , C1 = C2 = C, 
a = R1/(R2 R3 C), b = 1/(R3C), d = h the dimensionless 
model is as follows, 
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The FWO model (6) is discretized using the predictor-
corrector method [50], [51]. The Adams-Bashforth-Moul-
ton (ABM) algorithm [52] is considered to be effective 
when highly sensitive systems are considered. In this sec-
tion the predict-evaluate-correct-evaluate (PECE) method 
of ABM studied in [53] is used. The convergence and accu-
racy of this method were studied in [54]. In order to derive 
the general model of the PECE [50], [51] method, the frac-
tional order dynamical system with order q is considered as, 

  , ,   0qD x f t x t T    (7) 

where xk(0) = xk
0 for k  [0, n – 1].  

Equation (7) is similar to the Volterra integral 
equation [54] as, 
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where h = T/N and tn = nh as h belongs to [0, N]. The 
discrete form of (8) can be defined as, 
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The error estimate is e = Maxx(ti) – xh(ti) = 0(hp), (j = 0 
to N), where p = Min(2, 1 + q). So, the discrete form of the 
third state of the FWO can be defined as, 
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Fig. 2. 2D projections of attractor of the FWO system in 

initial conditions [0,1,0]. 
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where  l = 1 and i = z.  (12) 

The fourth order Runge-Kutta method is used to solve 
the first two states of the FOW system (6). The third 
fractional order state is solved using PECE derived in (11). 
The 2D projections of attractor of the discretized FWO 
system (6) in a = 3, b = 1, c = 0.5, d = 2 and fractional 
order q = 0.95 are shown in Fig. 2. 

3. Dynamical Analysis of the FWO 
In this section, dynamical properties of the FWO such 

as the stability of equilibrium, Eigenvalues and Lyapunov 
exponents are discussed. 

3.1 Stability of Equilibrium Points 

To study the FOW system, the parameter a is consid-
ered as the variable parameter and the other parameters are 
b = 1, c = 0.5, d = 2. The FOW system has three equilib-
rium points as follows, 
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Figure 3 shows the real part of Eigenvalues of the 
equilibrium points (13) with respect to changing parameter 
a. The figure shows that the equilibrium points E2 and E3 
have negative real parts in a  3 while they have zero real 
part for a < 3. So both of these equilibriums are stable. The 
fixed point at origin (E1) has a positive real part and so it is 
an unstable saddle.  

Corollary 1 If the dynamic of FWO is chaotic, the 
fixed point has to be unstable and hence, the necessary 
condition is  
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for any  of the equilibrium points. 

The Eigenvalues of the FWO at the equilibrium point E1 

 
Fig. 3. Real part of Eigenvalues with respect to changing 

parameter a. 

 
Fig. 4. Lyapunov spectrum of the FWO system with respect 

to changing q. 

in a = 3	are 1,2 = 0.5000  0.8660i and 3 = –2. In order to 
satisfy (14), we have qi > 0.92.  

Corollary 2 To exist chaotic attractor in the FWO, the 
equilibrium points corresponding to the oscillations should 
exhibit instability. So the necessary condition for the 
existence of unstable equilibrium is  
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2 i
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where i 	are the roots of   det diag , , _ x x x
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for each Ei. 

Using Corollary 1 and Corollary 2, the FWO has 
chaotic dynamics in q > 0.92 for E1. 

3.2 Lyapunov Exponent 

Lyapunov exponent is an interesting tool to find cha-
otic dynamics [55]. Lyapunov exponents (LEs) of the FWO 
are derived using the Wolf’s algorithm [56] and the frac-
tional order predictor-corrector [53] solver fde12 [57] as 
the ode solvers [58]. Figure 4 shows Lyapunov exponents 
of the FWO with respect to changing  fractional order q . 

3.3 Bifurcation 

Dynamical properties of the FWO with changing  pa-
rameter a and fractional order q are discussed in this sec-
tion. Firstly, bifurcation diagram with respect to changing 
parameter a is derived. The fractional order of the FWO 
system is set to q = 0.95. It is shown in Fig. 5 wherein 
maximum value of ‘Z’ variable is shown with respect to 
changing parameter a. 

Secondly, bifurcation diagram of the FWO system 
with respect to changing fractional order q is investigated. 
Figure 6 shows this bifurcation plot. We have plotted the 
maximum value of ‘X’ variable with change in order q. 
Figure 4 shows the existence of chaos with positive 
Lyapunov exponents in some intervals of parameter q. 

3.4 Multistability 

Multiple coexisting attractors have been a research 
interest  recently. The existence of  multistability is checked 
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Fig. 5. Bifurcation of the FWO system with respect to 

changing parameter a. 

 
Fig. 6. Bifurcation of the FWO system with order q. 

 
Fig. 7. Bifurcation diagram of the FWO system with respect 

to changing parameter a using forward continuation 
(blue) and backward continuation (red). 

by comparing the forward bifurcation where the parameter 
is increased with the reinitialization from the end value of 
state trajectory and backward bifurcation where the param-
eter is decreased. Figure 7 shows bifurcation diagram of the 
FWO system with forward continuation shown in blue dots 
and backward continuation shown in red dots. The figure 
shows that the system is multistable since the two bifurca-
tions are not completely matched.  

4. FPGA Implementation of the FWO 
System 
There are many literatures on the integer order FPGA 

implementations. However, few studies have been done on 
fractional order FPGA implementations. FPGA implemen-
tation of fractional order chaotic systems with hidden os-
cillations have been implemented and the power efficiency 
analysis with various fractional orders are investigated in 

[59]. The first two states of the FWO system is discretize 
using the RK4 method while the third state which is frac-
tional order is simulated using Adomian Decomposition 
Method (ADM) [60]. The ADM method used because the 
numerical analysis requires more memory [61] to imple-
ment in FPGA. Because the ADM algorithm converges fast 
[60], the first 6 terms are used to get the solution of FWO 
system as in real cases. So, it is impossible to find the accu-
rate value of x when t takes larger values [62]. Hence, 
a time discretization method is designed in this paper. In 
a time interval ti (initial time) to tf (final time), the interval 
is divided into (tn, tn + 1) and the value of x(n + 1) at time 
tn + 1 is got by applying x(n) at time tn using the relation 
x(n + 1) = F(x(n)) [34], [37].  

The discrete form of the FWO system (6) is given by, 
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where Ai
j  are the intermediate variables with i = 1,2,3  and 

j = 0 to 6 with h = tn + 1 – tn and () is the gamma function. 
Let A1

0 = xn, A2
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0 = zn. The values of Ki
j(n) used in 

RK4 calculations for i = 1 to 4 and j = x, y are calculated 
as 
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Two types of nonlinear terms exist in the FWO sys-
tem (xi)

2, xi
2xj and the six Adomian polynomials are de-

rived in Tab. 1. In this table xi = x, xj = z, Ai
0 = x(0), 

Aj
0 = z(0). We implement the discrete FOW system (12) in 

FPGA using the Adomian polynomials and the Kintex 7 
(Device=7k160t and Package=fbg484 S) processors. All 
the necessary static components such as hq, 
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 are calculated before the iteration to 

increase the processing speed. The step size h = 0.001 and 
the commensurate fractional order for implementing the 
FOW in FPGA is taken as q = 0.95. The entire discretized 
FWO system is implemented in System Generator tool  
in Simulink-Matlab.  Figure 8 shows the  FWO system (16) 
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Tab. 1. Adomian polynomials of the nonlinear components in the third state ‘Z’ of FWO system. 

 
Fig. 8. The FWO system implemented in Simulink with the Xilinx system generator token. 

 
Fig. 9. The hardware-software co-simulation block generated for Kintex-7 (KC-705) with point to point Ethernet connectivity. 
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Fig. 10. The RTL schematics of the FWO system. 

 
Fig. 11. The experimental setup for hardware-software co-

simulation using KC-705 board. 

 
Fig. 12. The 2D phase portraits generated using the co-

simulation. 

implemented in Matlab-Simulink using Xilink block set. 
To conduct the experiment, we have adopted hardware-
software co-simulation. Kintex-7 KC 705 board is used to 
co-simulate with point to point Ethernet connectivity. Fig-
ure 9 shows the point to point Ethernet block generated for 
hardware-software co-simulation and Figure 10 presents 
the register transfer logic (RTL) of the FWO system. Fig-
ure 11 shows the experimental setup for the co-simulation 
using the Kintex-7 (KC-705 board) and Figure 12 presents 
the generated phase portraits. 

5. Conclusion 
In this paper a modified third order Wien bridge 

oscillator with fractional order memristor component was 
proposed. Various dynamical properties of the proposed 

oscillator are investigated. The proposed oscillator had two 
stable and one unstable equilibrium points and showed 
a positive Lyapunov exponent for some parameters. Bifur-
cation diagrams of the system with respect to changing 
parameter a and fractional order were investigated. The 
feature of multistability is captured using forward and 
backward continuation bifurcation diagrams. Experimental 
investigations of the FWO system were done using FPGA 
while the integer order states were implemented using RK4 
and fractional order state was implemented using Adomian 
decomposition. 
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