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Abstract. The measurement-oriented marginal multi-Ber-
noulli/Poisson (MOMB/P) filter is an attractive approach 
for multi-target tracking. However, the effect of measure-
ment on predicted target states may be weakened when the 
hypothesized tracks are separated, even if the measurement 
is close to the predicted target state. This is due to the 
inaccuracy of the missed detection hypothesis probabilities 
in the marginal association probabilities. To solve this 
problem, an improved MOMB/P (IMOMB/P) filter is pro-
posed in this paper, by considering the measurement infor-
mation in the missed detection hypotheses. Simulation 
results reveal a favorable comparison to the MOMB/P 
filter in terms of the Optimal Subpattern assignment 
(OSPA) distance and cardinality estimation. 

Keywords 
Multi-target tracking, random finite set, MOMB/P 
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1. Introduction 
Recently, random finite set (RFS) theory has attracted 

extensive applications in multi-target tracking (MTT) [1], 
[2]. Some RFS-based filters have been proposed, such as 
the probability hypothesis density (PHD) filter [3], the 
cardinalized PHD (CPHD) filter [4], the multi-target multi-
Bernoulli (MeMBer) filter [2] and the cardinality-balanced 
MeMBer (CBMeMBer) filter [5]. Even though the combi-
natorial problems caused by data association in the PHD 
and CPHD filters can be avoided, a potentially unreliable 
clustering step is usually required in the sequential Monte 
Carlo (SMC) implementation [6], [7]. By using multi-Ber-
noulli representation in the MeMBer and CBMeMBer 
filters, reliable and inexpensive extraction of state esti-
mates can be achieved. But note that they are only appro-
priate for the cases with low clutter density [5]. 

In Bayesian probability theory, the prior distribution 
is a conjugate-prior form for the likelihood function, which 
means that the prior distribution has the same form with the 
posterior distribution. The conjugacy is an attractive prop-

erty with an exact posterior density. Thus, some conjugate 
priors based filters [8],[13] have been proposed, which use 
a specific mixture of multi-Bernoulli probability density 
functions to represent the posterior multi-target probability 
density function (pdf). The generalized labeled multi-
Bernoulli (GLMB) filter [9], [10] is based on the labeled 
multi-Bernoulli conjugate prior with the label information 
of targets. To reduce the computational complexity, an 
extended the GLMB filter was proposed in [11]. In 
addition, two marginal multi-Bernoulli filters were 
proposed in [12], namely the measurement-oriented 
marginal multi-Bernoulli/Poisson (MOMB/P) filter and the 
target-oriented marginal multi-Bernoulli/Poisson 
(TOMB/P) filter. The MOMB/P and TOMB/P filters are 
based on Poisson multi-Bernoulli mixture (PMBM) 
conjugate prior. In [14], the sequential Monte Carlo imple-
mentation of the TOMB/P filter has been proposed. The 
PMBM conjugate prior based multiple extended target 
tracking filter was proposed in [15]. 

The marginal multi-Bernoulli filters assume that the 
global association probabilities are factorized into the mar-
ginal association probabilities. Then, the marginal associa-
tion probabilities can be calculated by the loopy belief 
propagation (LBP) algorithm with less computational com-
plexity. Actually, the MOMB/P filter is a combination of 
the MeMBer filter and LBP data association approxima-
tion, which is robust to coalescence and can achieve better 
performance than the CPHD and CBMeMBer filters do [12]. 

Although the MOMB/P filter has excellent perfor-
mance, it exhibits lower performance when targets are well 
separated [13]. This is because the cardinality estimation of 
the MOMB/P filter is inaccurate when the marginal associ-
ation probability has error. In the marginal association 
probability, the effect of measurement on predicted target 
state may be weakened, even if the measurement is close to 
the predicted target state, since the measurement infor-
mation is not involved in the missed detection hypotheses. 
To solve this problem, an improved MOMB/P (IMOMB/P) 
filter is proposed with more accurate cardinality estimation 
by considering the measurement information in the missed 
detection hypotheses. Simulations show that the proposed 
filter outperforms the MOMB/P filter in a challenging 
scenario. 
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The rest of this paper is organized as follows. In 
Sec. 2, the MOMB/P filter is reviewed and the existing 
problems are presented. Then the IMOMB/P filter is pro-
posed in Sec. 3. Section 4 presents the simulation results, 
subsequently conclusion is drawn in Sec. 5. 

2. Background 
This section involves multi-target system model, the 

MOMB/P filter and its problem description. 

2.1 Multi-Target System Model 

In this paper, the standard system model [1], [3] is 
used for MTT with measurement origin uncertainty. At 
time k, Nk target states are denoted by xk

1,…, xk
Nk nx 

consisting of parameters such as position, velocity, etc. 
Meanwhile, a sensor observes Mk measurements 
zk

1,…, zk
Mk nz. The target states and measurements are 

treated as the multi-target state and multi-target measure-
ment respectively, i.e.,  

  1 , , ,kN
k k k X x x   (1) 

  1 , , .kM
k k k Z z z   (2) 

Using RFS theory, the time evolution of the multi-
target state and the multi-target measurement can be 
constructed as follows. 

At time k – 1 a target with state xk – 1 continues to 
exist at time k with probability ps(xk – 1) and moves to a new 
state xk, or dies with probability 1 – ps(xk – 1). Thus, at time 
k the target with state xk – 1 is modeled as a Bernoulli RFS 
Sk(xk – 1) with existence probability ps(xk – 1) and spatial pdf 
f(xkxk – 1). Assuming that the targets are mutually inde-
pendent, the multi-target state Xk at time k is given by the 
union [1], [3] 

  
1 1

1
k k

k k k k
x X 




 
  
 

X S x Γ   (3) 

where Γk denotes the newborn targets which is a Poisson 
RFS with mean μb, spatial pdf b(xk) and intensity function 
λb(xk) = μbb(xk). This model defines the RFS transition pdf 
f(XkXk – 1). 

An existing target with state xk is detected with prob-
ability pd(xk) and generates a measurement zk with spatial 
pdf f(zkxk), or missed with probability 1 – pd(xk). In addi-
tion, measurements may be generated by clutter or false 
alarms which can be modeled as a Poisson RFS Kk with 
mean μc, spatial pdf fc(zk) and intensity function 
λc(zk) = μcfc(zk). Thus, the multi-target measurement Zk at 
time k is given by the union [1], [3] 

   .
k k

k k k k
x X

   
 

Z Θ x K   (4) 

This model defines the RFS likelihood function f(ZkXk). 

2.2 Review of the MOMB/P Filter 

Filters based on RFS consist of prediction step and 
update step. In prediction step, the previous posterior pdf 
f(Xk – 1Z1:k – 1) is converted into the predicted pdf f(XkZ1:k–1) 
involving the transition pdf f(XkXk – 1). In update step, the 
predicted pdf f(XkZ1:k – 1) is converted into f(XkZ1:k) 
involving the likelihood function f(ZkXk). Note that, in 
different filters, different assumptions and approximations 
are used to reduce the computational complexity. 

In this section, the MOMB/P filter in [12] is 
reviewed. The posterior multi-target pdf f(XkZ1:k) is given 
by the convolution [1] 

      1:| = \
k

k k u d kf f f



Y X

X Z Y X Y   (5) 

where \kX Y  is the set of elements in kX  but not in Y , 

 u kf X  is the pdf of unknown targets u
kX  and  d kf X  is 

the posterior pdf of detected targets d
kX . Furthermore, u

kX  
is modeled as a Poisson RFS with mean uu , spatial pdf 

 u kf x  and intensity function    u k u u ku f x x . d
kX  is 

modeled as a multi-Bernoulli RFS involving kI  Bernoulli 
components, each composes existence probability i

kr  and 
spatial pdfs  i

k ks x . Then, the MOMB/P filter is given as 
follows including the prediction step and the updating step. 

During the prediction step, the intensity function 
 | 1

u
k k k  x  of  | 1

u
k k kf  X  is given by 

          | 1 1 1 1 1| du
k k k b k k k s k u k kf p        x x x x x x x  (6) 

where  1u k x  is the intensity function of  1u kf X . | 1
i

k kr   

and  | 1
i
k k ks  x  of  | 1

d
k k kf  X  are given by 

    | 1 1 1 1 1 1d ,i i i
k k k s k k k kr r p s       x x x   (7) 

  
     

   
1 1 1 1 1

| 1

1 1 1 1

| d

d

i
k k s k k k ki

k k k i
s k k k k

f p s
s

p s

    


   

 


x x x x x
x

x x x
  (8) 

for  11, , ki I   , where 1
i

kr   and  1 1
i
k ks  x  are parameters 

in  1d kf X . The number of Bernoulli components 1kI   
does not change in the prediction step, so does the number 
of unknown target hypotheses 1

u
kI   (in the linear Gaussian 

implementation). 

During the update step, the intensity function  u k x  

of  u kf X  is given by 

       | 11 .u
u k d k k k kp   x x x   (9) 

The number of Bernoulli components is 

 1 .k k kI I M    (10) 

The association vector at time k  can be represented as 

 1= , ,
kIb bb   where  11, ,j kb I    indexes the track asso-

ciated with measurement j  for  1, , kj M  . Here, 0jb   
indicates that the new target is associated with measure-
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ment j . Furthermore, for kj M i   with  11, , ki I   , 

jb i  indicates that target i  is associated with no measure-

ment. For the new tracks and existing tracks  1, , kj M  , 
the association weights are given by 

        0,
| 1| dj j j u

k c k k k d k k k k kw f p    z z x x x x   (11) 

and 
      ,

| 1 | 1| dj j jb j b bj
k k k k k d k k k k kw r f p s   z x x x x   (12) 

for  11, ,j kb I   ; the existence probabilities are given by 

 
     

       
| 10,

| 1

| d

| d

j u
k k d k k k k kj

k j j u
c k k k d k k k k k

f p
r

f p



 









z x x x x

z z x x x x
  (13) 

and , 1jb j
kr   for  11, ,j kb I   ; and the spatial distributions 

are given by 

        
     

| 10,

| 1

|

| d

j u
k k d k k k kj

k k j u
k k d k k k k k

f p
s

f p









   

z x x x
x

z x x x x
  (14) 

and 

        
     

| 1,

| 1

|

| d

j

j

j

bj
k k d k k k kb j

k k bj
k k d k k k k k

f p s
s

f p s






   

z x x x
x

z x x x x
  (15) 

for  11, ,j kb I   . 

For missed tracks kj M i   with  11, , ki I    and 

 0,jb i , the association weights are given by 

     ,
| 1 | 1 | 11 1 di j i i i

k k k k k d k k k k kw r r p s      x x x   (16) 

and 0, 1j
kw  ; the existing probabilities are given by 0, 0j

kr   
and 

 
    

    
| 1 | 1,

| 1 | 1 | 1

1 d

1 1 d

i i
k k d k k k k ki j

k i i i
k k k k d k k k k k

r p s
r

r r p s

 

  




  



x x x

x x x
  (17) 

and the spatial distributions are given by 

  
    
    

| 1,

| 1

1
.

1 d

i
d k k k ki j

k k i
d k k k k k

p s
s

p s








  
x x

x
x x x

  (18) 

kp  is the marginal association probability at time k , 
which is approximated efficiently by the LBP algorithm 
based on the association weights kw . For the missed 
detection hypotheses kj M i   with  11, , ki I   , 

   , ,i j i j
k k kr p i r   (19) 

    , .i i j
k k k ks sx x   (20) 

For the hypotheses of the existing tracks and new tracks 

1ki I j   with  1, , kj M  , 

  
1

,

0

kI
i j h j

k k k
h

r p h r




  , (21) 

      
1

, ,

0

1
.

kI
i j h j h j
k k k k k ki

hk

s p h r s
r





 x x   (22) 

2.3 Problem Description 

In the MOMB/P filter, the missed detection hypothe-
sis probability in marginal association probability will be 
exaggerated when the target is detected. This is due to the 
fact that measurement information is not used in the missed 
detection hypotheses, as seen in (16). Therefore, the target 
may be lost since the detection hypothesis probability is 
small. 

To solve this problem, measurement information 
should be used in the missed detection hypotheses. This 
results in a more accurate marginal association probability 
to make the cardinality estimation more accurate. 

At the same time, an important situation should be 
attended. If the measurement is used in the missed detec-
tion hypothesis probabilities, the measurements of detected 
targets will interfere the missed detection hypothesis prob-
abilities of missed targets when targets are together as 
close as possible. The cardinality estimation exhibits great 
bias in such situation. Thus, it is necessary to judge this 
situation where targets are close with each other. 

3. IMOMB/P Filter 
In this section, the solution to the problem in Sec. 2.3 

is presented and the linear Gaussian implementation of the 
IMOMB/P filter is given. 

3.1 Problem Solution 

In the linear Gaussian implementation of the 
MOMB/P filter, suppose that the predicted multi-Bernoulli 
mixture contains 1kI   Bernoulli components at time 1k  , 
each composes a probability of existence | 1

i
k kr  , a mean 

| 1
i
k kx  and covariance | 1

i
k kP  as follow 

    1

| 1 | 1 | 1
1

, , .
kI

i i i
k k k k k k

i
r



   
x P   (23) 

The association weight ,i j
kw , for kj M i   with 

 11, , ki I   , describes the probability that target i  is 
associated with no measurement. When targets are well 
separated, it is unreasonable that ,i j

kw  is large for kj M i   
with  11, , ki I   , even if there are one or more measure-
ments close to the target state. In order to get more accurate 
missed detection hypothesis probability in marginal associ-
ation probability of well separated targets, ,i j

kw  is modified 
with ( | )i

k kg z x , describing missed detection hypotheses, 
where i

kz  is the nearest measurement to the target state 

| 1
i
k kx . Thus, ,i j

kw  is rewritten as 

       ,
| 1 | 1 | 11 ( | ) 1 d .i j i i i i

k k k k k k k d k k k k kw r r g p s      z x x x x   (24) 

The likelihood function  |k kf z x  is generally 
a Gaussian distribution which describes the possibility that 
the measurement kz  is generated by the target state kx . In 
addition, ( | )i

k kg z x  describes the influence of the measure-
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ment i
kz  to the target state kx  when the target is hypothe-

sized to be missed. When the measurement i
kz  is close to 

the target state kx , ( | )i
k kg z x  should have a small value 

which means the target is unlikely missed because the 
measurement i

kz  may be generated by the target. On the 
contrary, when the measurement i

kz  is far away from the 
target state kx , ( | )i

k kg z x  should have a big value which 
means the target may be missed because the measurement 

i
kz  is unlikely generated by the target. It is worth noting 

that the value of ( | )i
k kg z x  should have the same magnitude 

as  |k kf z x . Therefore, ( | )i
k kg z x  is defined as an exponen-

tial function, as follows 

 | 1

| 1 | 1

21
( | ) exp .

( ) ( )2

i
k ki

k k i i T i i
k k k k k k

g




 

 
  

   

P
z x

Hx z Hx z
  (25) 

By (24) and (25), ,i j
kw  is smaller when there are one 

or more measurements close to the target state. It is more 
reasonable that missed detection occurs only when no 
measurement is around the target. Thus, the marginal 
association probability is more accurate based on ,i j

kw . In 

the proposed filter, the other parts are almost the same as 
the MOMB/P filter except ,i j

kw . 

3.2 The IMOMB/P Filter 

As mentioned in Sec. 2.3, the situation should be no-
ticed where targets are close. To handle this situation, 
a judge step in the proposed filter is required. Then, the 
corresponding linear Gaussian implementation of the 
IMOMB/P filter is summarized in this section. 

Firstly, the prediction step is the same as that of the 
MOMB/P filter. 

Secondly, the judge step is given as follows. Suppose 

that the estimated tracks are    1
ˆ

1 1 1
1

ˆˆ ˆ, ,
ki i i

k k k
i

r


  


X

x P  at time k – 1. 

If there exist 1ˆ i
kx  and 1ˆ j

kx ( )i j  satisfying 
1 1

2 2
1 1 1 1

ˆ ˆˆ ˆi j i j
k k k k     x x P P , the update step same to that of 

the MOMB/P filter is performed. Otherwise, go to the 
update step. 

Then, the update step is given as follows. Suppose 
that at time k, the predicted intensity of the unknown tar-
gets is a Gaussian mixture as follows 

  
1

, , ,
| 1 | 1 | 1 | 1

1

; ,
u
kI

u u i u i u i
k k k k k k k k

i

 


   


  x x P   (26) 

where  x;m,P  denotes a multivariate Gaussian distri-
bution defined over the variable vector x  with mean vector 
m  and covariance matrix P . Additionally, the predicted 
multi-Bernoulli mixture contains 1kI   Bernoulli compo-
nents, each composes a probability of existence | 1

i
k kr  , 

a mean | 1
i
k kx  and covariance | 1

i
k kP  as follows 

    1

| 1 | 1 | 1
1

, , .
kI

i i i
k k k k k k

i
r



   
x P   (27) 

The updated intensity of the unknown targets is 

  , , ,

1

; ,
u
kI

u u i u i u i
k k k k

i

x 


  x P   (28) 

where  , ,
| 11u i u i

k d k kp    , , ,
| 1

u i u i
k k kx x , , ,

| 1
u i u i
k k kP P  and 

1
u u
k kI I  . 

Here, the updated multi-Bernoulli mixture with Ik 
Bernoulli components can be divided into two parts as 
follows 

    1

1
, ,

kI
i i i

k k k
i

r



x P   (29) 

and  

   
1 1

, ,
k

k

I
i i i

k k k
i I

r
 

x P   (30) 

where 1k k kI I M  . 

In the first part, i.e., (29), for missed tracks kj M i   

with  11, , ki I   , 

   ,= ,i j i j
k k kr p i r   (31) 

 
 

 
| 1,

| 1 | 1

1
,

1 1

i
k k di j

k i i
k k k k d

r p
r

r r p


 




  
  (32) 

 | 1= ,i i
k k kx x   (33) 

 | 1
i i
k k kP P   (34) 

where  j
kp i  is the marginal association probability. 

In the second part, i.e., (30), for existing tracks and 
new tracks 1ki I j   with  1, , kj M  , 

  
1

,

0

,
kI

i j h j
k k k

h

r p h r




    (35) 

  
1

, ,

0

1
,

kI
i j h j h j
k k k ki
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p h r
r





 x x   (36) 

      1 T, , , ,
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



   P P x x x x   (37) 

where 
 , 1,h j

kr    (38) 

  ,
| 1 | 1 ,h j h j h

k k k k k k   x x K z Hx   (39) 

 ,
| 1 | 1,h j h h

k k k k k  P P KHP   (40) 

   1T T
| 1 | 1

h h
k k k k



  K P H HP H R   (41) 

and H is the measurement matrix for  11, , kh I   ; 

 0,
0,

,j
k j

k

C
r

w
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kI

s
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C c
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    (46) 

  ,
| 1 ; , ,u s

s k k d sc p  v 0 S   (47) 

 ,
| 1,i u s

k k k v z Hx   (48) 

 , T
| 1 ,u s

s k k S HP H R   (49) 

   1, T
| 1 ,u s

s k k s


K P H S   (50) 

 , ,
| 1 | 1.

u s u s
s k k s k k  P P K HP  (51) 

The marginal association probabilities kp  at time k  
can be computed by the LBP algorithm according to the 
association weights kw , namely,  

  ,
| 1 | 11 1 ( )i j i i i

k k k k k d kw r r p g     z   (52) 

for kj M i   with  11, , ki I   , and 

 
0, ,j fa
kw C     (53) 

  ,
| 1 ,j j

j

b j b
k k k d bw r p v;0,S   (54) 

 | 1,jbj
k k k v z Hx   (55) 

 | 1
j

j

b
b k k S HP H R   (56) 

for  1, , kj M   and  11, ,i kb I   .  

Finally, pruning and estimation are needed to reduce 
the computational burden. Only MB components with j

kr  
larger than a threshold p

th  (e.g. 410  in [12]) are retained in 
the next prediction step. Meanwhile, a MB component is 
considered to exist at time k  when j

kr  is large than 

a threshold d
th  (e.g. 0.8 in [12]). Then, the estimation ˆ

kX  
at time k  can be obtained. 

4. Simulation Results 
The performance of the IMOMB/P filter is demon-

strated in a challenging scenario where six targets cross 
each other in a certain region. The true trajectories are 
shown in Fig. 1. The sampling period T  is set to be 1 s, 
and targets follow a linear Gaussian model  

 1k k k x Fx w   (57) 

where 
T

, , , ,, , ,k x k x k y k y kp p p p    x  consists of the position and 

velocity of a target at time k  and  k w 0,Q . F  and 

kQ  are computed by 

 2 2

1
,

0 1

T


 
  
 

F I   (58) 

 
3 2

2 22

/ 3 / 2

/ 2
k

T T
q

T T


 
  

 
Q I   (59) 

where 0.01q  . It is assumed that the position of a target is 
observed with a Gaussian noise 

 k k k z Hx v   (60) 

where   2 21 0  H I  and  2 2k v 0, I . The intensity 
function for undetected targets is assumed to be 

   10u k x 0,P , where 2 2diag 100 ,1,100 ,1   P . The 

birth intensity function is    0.05b k x 0,P , where the 

birth intensity uses the same covariance in  u k x .  s kp x  
is set to be 0.999. In this work, only the cases with 

   0.5,0.7,0.9d kp x  and    10,50c k z  are considered. 

The Optimal Subpattern assignment (OSPA) distance 
[17] is used to evaluate the performance of the tracking 
algorithms which is defined as 

  
1

1

1
, min ( , ) ( )( )[ ]

i
n

mc c p p p
p i

i

d d c n m
n  

  X Y x y   (61) 

where  1, , m X x x  and  1, , n Y y y  are finite subsets. 

p  and c  are set to be 2 and 100, respectively. The simula-
tions are implemented by MATLAB R2015b on Intel Core 
i3-7100 3.90 GHz processor and 8 GB RAM. 

To verify the validation of the proposed filter, 200 
Monte Carlo trails with different pd and λc are performed. 
The OSPA distances of the MOMB/P and IMOMB/P fil-
ters are shown in Fig. 2 where logarithmic coordinate sys-
tem is used to get the difference distinctly. From the re-
sults, it can be seen that the IMOMB/P filter outperforms 
the MOMB/P filter in most cases. The reason is that the 
IMOMB/P filter has more accurate missed detection 
hypothesis probabilities in the marginal association prob-
abilities, which allows measurement information be nor-
mally used in the update step. At the same time, both 
MOMB/P filter and IMOMB/P filter can clearly response to 
cardinality changes and are robust to the coalescence. 
During the long time coalescence, the OSPA distance of 
these two filters are almost the same. This is because the 
MOMB/P update is performed by the judge step. When pd 
is 0.9, as shown in Figs. 2(e) and 2(f), these two filters 
almost have same performance and can both track well. It 
is because that the missed detection hypothesis probability 
in the marginal association probability is small with high 
pd, which is close to the accurate missed detection hypothe-
sis probability. Compared to the MOMB/P filter, the pro-
posed filter perfects much better in cases with pd = 0.5 and 
pd = 0.7. Hence, the IMOMB/P filter improves upon the 
performance of the MOMB/P filter, especially with lower 
pd values. When pd is fixed and λc increases from 10 to 50, 
such as, Figs. 2(a) and 2(b) with pd = 0.5, both of them can 
achieve good tracking performance even though the OSPA 
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Fig. 1. True target trajectories with pd = 0.7, λc = 10. 

Trajectories are shown in small circles and 
measurements are shown in points. 

distances of these two filters are both larger. It can be seen 
that the IMOMB/P filter is also robust to higher λc. When 
pd = 0.7 and λc = 50, the average run time of each time step 
of the MOMB/P filter and the IMOMB/P filter are 0.0021 s 
and 0.0023 s, respectively. These two filters are both effi-
cient. It is due to the fact that they are based on the LBP 
algorithm with high efficiency. Although the computation 
efficiency of the IMOMB/P filter is slightly lower than that 
of the MOMB/P filter, it does not affect the real-time per-
formance. 

Figure 3 shows the cardinality estimation of these two 
filters where 500 Monte Carlo trails are performed with 
pd = 0.7 and λc = 10. In Fig. 3(a), it can be seen that both 
MOMB/P filter and IMOMB filter can response clearly to 

cardinality changes. To see the difference between the 
MOMB/P filter and IMOMB/P filter, the partial enlarged 
detail of Fig. 3(a) is shown in Fig. 3(b) where the cardinal-
ity estimation of the proposed filter is closer to the true 
cardinality than that of the MOMB/P filter. The reason for 
this is that measurement information can be fully used in 
the update step to avoid the loss of tracking targets. Fur-
thermore, the proposed filter has less bias in cardinality 
estimation than the MOMB/P filter, as shown in Fig. 3(c). 
Therefore, the IMOMB/P filter can improve the cardinality 
estimation accuracy of the MOMB/P filter. 

5. Conclusion 
Through the analysis the disadvantages of the 

MOMB/P filter, the IMOMB/P filter has been proposed in 
this paper, which gives more accurate marginal association 
probabilities by considering measurement information in 
missed detection hypotheses. The simulation results have 
shown that the proposed filter can achieve better perfor-
mance than the MOMB/P filter, especially with lower val-
ues of pd. Although the proposed filter is robust to coales-
cence, it also has large error from the inaccurate associa-
tion weights during the coalescence. This is because the 
covariance estimation of the target state is too large when it 
is interfered by the measurements of the others. The prob-
lem may be solved by increasing the number of iterations 
in the LBP algorithm. Possible direction for future research 
includes the problems in the coalescence. 

 

   
 a 0.5, 10d cp      0.5, 50b d cp     c 0.7, 10d cp    

   
   0.7, 50d d cp      0.9, 10e d cp      0.9, 50f d cp    

Fig. 2. OSPA distances of two different filters. 
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(b) Cardinality estimation. 

 
 (c) The cardinality estimation of two different filters. 

Fig. 3. The cardinality estimation of two different filters. 
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