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Abstract. Efficient video compression algorithms in ad-
vancedmultimedia broadcasting systems are in high demand.
In the last decades, different video compression tools have
been developed which can influence the final Quality of Ex-
perience in different ways. his paper has two goals. The
first goal is to present a study of different compression algo-
rithms available for stereoscopic 3D videos. The second goal
is to present the possibilities in the creation of new stereo-
scopic models. The well-established video codecs (AVC,
MVC, HEVC and MV-HEVC) are considered as encoders.
Generic objective video quality metrics are used to ana-
lyze the compression efficiencies of the considered codecs,
extended with results from subjective tests. The correla-
tions between the objective and subjective scores are ana-
lyzed statistically. Due to unsatisfactory results of generic
2D metrics for the stereoscopic sequences used in the test,
new objective models are presented. Such models show im-
proved correlation with subjective stereoscopic video quality.
The validation, verification and a description of models are
presented in detail.

Keywords
3D video coding, AVC, MVC, HEVC, MV-HEVC,
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1. Introduction
Nowadays, interest in excellent video quality is rapidly

increasing. Such interest is closely related to the provided
video services in Standard and High Definition (SD and HD)
formats and in the future in Ultra HD (UHD) or Three-
dimensions (3D). UHD and 3D are emerging video formats
with specific features. It is evident that flexible and highly
efficient video coding algorithms are very important to dis-
tribute video content in such formats and in a required qual-
ity [1]. As an example, we can state the scenario where we
are strongly limited by transmission data rate, which is often
the case in wireless networks. Furthermore, we may be lim-
ited in the maximum amount of transferred data, so-called
Fair User Policy (FUP), in mobile networks [2].

Today’s display units already reach technical proper-
ties that are close to the resolution limits of the human
eye. Enhanced display qualities, such as Ultra HD, High
Dynamic Range (HDR), High Frame Rate (HFR), and wide
color gamut are already approaching the limit of Human Vi-
sual System (HVS) in terms of user experience for 2D video.
An appropriate approach to represent a real 3D view can be
one of the next research directions. For instance, holographic
displays and volumetric displays.

Video compression tools play a key role in the ful-
fillment of both multimedia content provider’s requirements
(e.g. bandwidth needed for transmission) and users’ require-
ments (transparent video quality). When using any com-
pression tool, it is important to find a balance between the
compression ratio and user’s Quality of Experience (QoE).
A high compression ratio can significantly reduce the amount
of data in the processed video but results in high degrada-
tion of video quality. The assessment of such a degrada-
tion is especially important for 3D visual content which has
been receiving attention in many fields of interest (e.g. TV
broadcasting, security, medicine). Consequently, accurate
evaluation of stereoscopic 3D video quality by objective and
subjective metrics is highly required [3]. Despite the fact
that today’s interest of stereoscopic television seems to be
out of date, new publications that deal with this issue keep
appearing – as an example, we can refer to publication [4].

The paper aim is to explore the performance of recent
and emerging compression tools for 3D stereoscopic video,
namely H.264 Advanced Video Coding (AVC) [5], H.264
Annex H - Multiview Video Coding (MVC), H.265 High
Efficiency Video Coding (HEVC) [6] and H.265 Annex G -
Multiview High Efficiency Video Coding (MV-HEVC) [7].
For this purpose, appropriate subjective test sessions have
been realized. Well established 2D objective video quality
metrics are then compared with scores from the subjective
test. Moreover, gathered results are statistically analysed.
Based on subjective test results and commonly used 2D met-
rics, models of 3D stereoscopic metrics are developed to best
describe the quality of stereoscopic videos. Our general de-
velopment of objective models can also be applied to non-3D
video types, such as UHD, etc. The results presented in this
paper are a continuation of our earlier work published in [8].

DOI: 10.13164/re.2019.0207 SIGNALS



208 J. KUFA, O.KALLER, O. ZACH, ET AL., OBJECTIVE MODELS FOR PERFORMANCE COMPARISON OF. . .

The rest of this paper is organized as follows. The
related state-of-the-art and the main contributions of this
research paper are described in Sec. 2. The test setup is
described in Sec. 3, including the used subjective video qual-
ity method, its setup and the whole realization. Section 4
contains the results of the objective metrics and subjec-
tive test and their further evaluation and discussion. Sec-
tion 5 describes the proposal and verification of our mod-
els for stereoscopic video. Finally, conclusion remarks are
outlined in Sec. 6.

2. Related Work
There are several possibilities how to encode stereo-

scopic video content. Each view of the stereo pair can be
encoded separately as an independent video sequence using
common video coding algorithms for 2D video sequences.
Another possibility is to use video coding algorithms specif-
ically designed to support multiple views. These algorithms
usually consider the similarity of both views which can lead
to significant bitrate savings. Also, specialized video coding
algorithms for 3D exist which can take advantage of depth
maps if present. The following paragraphs relate to previ-
ously published works regarding video coding of 3D content
for multimedia purposes and related Quality of Experience.

In recent years, numerous studies have focused on ex-
ploring the possibilities of encoding stereoscopic 3D video
content. Hannuksela et al. [9] offer an extensive overview of
the MultiView extension of the High Efficiency Video Cod-
ing standard. MV-HEVC is capable of encoding multiple
views together without using a depth map and is also able
to encode stereoscopic 3D video. The overview of the 3D
extension of HEVC (3D-HEVC) is presented in [10]. As 3D-
HEVC is designed for encoding 3D content, it utilizes both
the stereo pair and the information from the depth map and
camera configuration. Results of software evaluations sug-
gest that it is possible to achieve about 52% coding efficiency
gain on average when using 3D-HEVC compared to standard
MVC. A special case is described in [11], where an exten-
sion of 3D-HEVC considering circular camera arrangement
is proposed.

2.1 Objective Metrics and Models in
Stereoscopic 3DTV
Possibilities of using common 2D objective metrics for

stereoscopic videowere examined in [12] and [13]. In the first
paper, the impact of encoding artefacts in stereoscopic video
quality has been evaluated with three 2D objective metrics.
The evaluation was done using Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity (SSIM) and Visual Informa-
tion Fidelity- pixel domain (VIFp). The results show that
only the VIFp results were highly correlated with subjec-
tive data among selected objective metrics. The paper [14]
investigates the reliability of objective quality metrics com-
monly used for the quality assessment of 2D media, in the
context of stereoscopic 3D Video. The consistency between

objective and subjective measures is evaluated by the Pear-
son linear correlation coefficients (PLCC). In [15], the use of
2D objective metrics for 3D quality assessment has been ex-
plored. Two objective metrics, Video Quality Metric (VQM)
and Perceptual QualityMetric (PQM), have been investigated
and their alignment to the Mean Opinion Score (MOS) has
been analyzed. In that paper, unlike ours, the video sequences
were encoded only by using the AVC encoder. Based on the
statistical Pearson correlation (PCC) analysis, PQM corre-
lates better with MOS than VQM, 0.78 versus 0.97. Results
also indicated that the correlation is strongly content depen-
dent. In another work, Han et al. [16] proposed an extended
no-reference objective stereoscopic 3DVideo QualityMetric
(eNVQM) for 3D video quality assessment. Performance of
eNVQM was studied in comparison with two 2D objective
video quality metrics, SSIM and VQM. The PCC analy-
sis showed that eNVQM has better accuracy, PCC equal to
0.944, in terms of human perception for stereoscopic video,
compared to two current common assessmentmethods. Pear-
son correlation for SSIM was 0.911 and 0.932 for VQM.

2.2 Subjective Assessment in
Stereoscopic 3DTV
The authors of [17] analyzed the possible use of Ab-

solute Category Rating (ACR) for 3D stereoscopic content.
A study of subjective quality of monoscopic and stereoscopic
video in adaptive streaming in [18] presents a comparative
analysis of different bitrate adaptation strategies in adaptive
streaming in 2D and 3D scenarios. We can observe that if the
experiment was done on monoscopic video content then no
statistical differences were found when changing the bitrate
in an abrupt or a gradual way. Also, high quality oscilla-
tions were hardly perceptible if there is not so much coding
bitrate difference. Tests on stereoscopic video confirms that
switching from 3D to 2D could be the best option to re-
duce the bitrate, while the inverse behavior does not provide
a significant improvement to QoE. Paper [19] studied the
response of the HVS to compressed stereoscopic sequences
and compared the visibility of artifacts in 3D and 2D views
(individually left and right eye views) over a different range
of bitrates. The 2D and 3D MOS from the test showed that
there is a bitrate threshold above which compression arti-
facts tend to be suppressed in the 3D view when compared to
the classic 2D view. The correlation between objective met-
rics and subjective tests is highly depending on the features
of the used video sequences. It is therefore appropriate to
perform extensive tests with different methods (subjective),
codecs and videos.

Based on the brief state-of-the-art presented above, our
paper tries to answer the following points:

1) Which 2D objective metrics correlate best with
the users Mean Opinion Score (MOS) for stereoscopic 3D
videos, based on additional statistical analyzes?

2) Can any 2D objective metrics be optimized for better
3D accuracy? Alternatively, can a model be created that has
a better correlation with stereoscopic 3D video sequences?
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3. Experimental Setup
This section briefly describes the setup of our experi-

ment. The video sequences used for the test, parameters of
encoders and used objective metrics for rating the quality of
video sequences are outlined.

3.1 Video Sequences
As the source of stereoscopic 3D video sequences, we

have used four samples which are available in databases [20]
and [21], to make our research have a wider range of uses.
hese videos are used as an original dataset for our test. The
additional four video sequences were used at another subjec-
tive test for the verification of the proposed objective mod-
els [21]. All these sequences were in Full HD resolution
(1080p) for each view and had a frame rate of 25 frames
per second (fps). The length of each video sequence be-
fore encoding was adjusted to 10 seconds, which is a typical
length used in subjective video quality studies. The selected
video sequences cover a wide variety of contents as can be
seen from the Spatial Information (SI) and Temporal Infor-
mation (TI) in Fig. 1. The figure also contains one frame
of each corresponding sequence. Both parameters SI and TI
were calculated according to ITU-T P.910 [22]. The average
value of depth for 5, 50 and 95% for each video sequence
was calculated, as can be seen in Tab. 1. According to the
obtained results, for instance, in the case of video Train, 95%
of pixels will have a depth (shift of pixels) of 15.27. In other
case, video Basketball will have 5%of the pixels with a depth
of −10.59. For the calculation of the average value of depth,
software StereoPhoto Maker was used1. The average value
of the depth of the videos varies considerably.

Image depth Videosequence

[%] Basketball Poznan Train Wishing
Hall Well

Depth d05 −10.59 −40.95 8.17 −24.06
Depth d50 −3.96 −24.25 12.40 −11.63
Depth d95 3.66 −12.54 15.27 18.56

Tab. 1. Average depth of video sequences.
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Fig. 1. Spatial and temporal indexes of used sequences.

The content of the video sequences can be described as
follows:

• Basketball: Basketball players playing in the street.
A moving camera with a wide shot. Fast and unpre-
dictable movements. Different physics including jump-
ing players and ball in the air.

• PoznanHall: A view into a school corridor with
a slightly moving camera and a walking man in the
foreground. Slow and predictable movements.

• Train: Static view of a train station with an approaching
train with a detailed view of the overhead wire. Slow
motion video and predictable movement of the train.

• WishingWell: Fountain with coins on the bottom and
moving leaves on the surface. A lot of small waves on
the water and reflections from the water.

3.2 Encoding Parameters
As input to encoders, only bitrates were defined together

with searchingmotion rangewithout any other system param-
etermodification andwithout any tuning of the encoders. The
quality profile was set to the highest quality because we were
focusing only on the quality of encoding, not the encoding
speed. Encoders selected other parameters automatically by
itself. A summary of video encoders settings used in en-
coding is provided in Tab. 2. Target bitrates were adjusted
between 0.5Mbps and 4Mbps. The target bitrate applies to
one view only. Let us give an example for the 1Mbps bitrate:
For the 2D encoder, the total bitrate 1 + 1Mbps was set. For
multiview encoders, the stream of both views was 2Mbps.
This means that the total data rate is the same. The searching
range for HEVC-based encoders was set to 64 pixels to take
full advantage of these modern encoders.

3.3 Objective Video Quality Metrics
A specific feature of stereoscopic 3D videos is a broad

variety of imaging technologies available. They have a differ-
ent structure of image data and different types of compression
standards. Currently, there is no widespread general objec-
tive 3Dmetric. Therefore, widely established general metrics
like PSNR, SSIM, and VQM are commonly used. Also more
advanced metrics for exist a particular type of content or
compression that achieve better results for their specific area
of use. However, the intention of this contribution is to cre-
ate a general method for stereoscopic content. The PSNR is
a very simple metric based on differences of the correspond-
ing pixel values [23]. The value of PSNR was computed
for the luminance component only. The SSIM computes the
structural differences in the pictures reflecting basic proper-
ties of the HVS [23]. Finally, VQM compares the original
characteristics with the processed characteristics of the video
sequences and then it produces VQM scores. The range
can be from 0 (no perceived deterioration) to approximately
1 (maximum perceived deterioration). A general model was
used for our case [24].

1www.stereo.jpn.org/eng/stphmkr
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Codec AVC MVC HEVC MV-HEVC
Implementation x264 r2597 FRIM x64 1.25 HM 15 HTM 15.1
Profile High High Main Main
Level 5.1 4.0 5.1 None
Preset Very Slow 1 (quality) / /
Search Range 32 32 64 64
GOP Size 8 25 8 8
Entropy coding CABAC CABAC CABAC CABAC

Tab. 2. Parameters of used encoders.

3.4 Subjective Test Setup
All subjective video quality assessment was conducted

in a special test room. Laboratory conditions were set up
according to ITU-R BT.500-13 [25] including a room with
controlled lighting. For the subjective experiment, a plasma
stereoscopic television (Panasonic TX-P42GT20E) was used
to display stereoscopic 3D video content. The television’s
active shutter 3D system with a Full HD double frame rate
was used. In contrast to polarization 3D system, this method
of 3D view does not reduce the resolution. It is its biggest
advantage. The video format structure of the Frame Packing
3D was used. It conveys to two "full resolution" 1080p video
signals, one for each eye, to the TV. This method is marked
as Full High Definition 3D (FHD3D). The interface used
between TV and PC was HDMI 1.4 which is capable to suc-
cessfully transfer FHD3D. The peak luminance of the display
was adjusted to 200 cd/m2. The viewing distance of the par-
ticipants from the display, according to ITU-R BT.2022 [26],
is the height of the picture multiplied by 3.2. In our case, the
optimal viewing distance is 1.7 meters (see Fig. 2). In the
subjective test, only one participant was in front of the televi-
sion to eliminate the effect of different observation positions.

As the pretest 3D sequences in three qualities were
played. These sequence were different from the sequences
used during the test. Observers had an overview of how the
3D movie could look. Sequences were randomly played for
each participant who did not know about the details (the used
encoder or bit rate). The observers were asked for evaluating
the quality of the played video using a simple five point dis-
crete scale in the range from 1 (Bad) to 5 (Excellent). Whole
tested sequences were evaluated by all participants for the
best consistency of results. Participants rated the quality on
sliders which were connected to the master computer (see
Fig. 2). This computer also controls the media computer
from which the video sequences were played.

3.5 Participants and Color Vision Test
A total group of 37 observers participated in the

stereoscopic 3D subjective test. Two of them were fe-
male. The youngest participant was twenty years old and
the oldest one was forty-two years old. Overall, eight of
them had some experience with video quality assessment.
Next, five observes previously participated in stereoscopic
3D video quality assessment tests. University students
and employees were recruited with an average age of 24.

HDMI 

Ethernet

1

5

Viewing distance 1.7 m

Slider
Participant

USB

Panasonic TX-P42GT20E 3DTV Media PC with SSD disk 

Master PC

Fig. 2. Block diagram of the subjective test setup.

The youngest participant was 20 years old and the oldest was
42 years old. Color blindness (Ishihara test) of all partici-
pants was tested as well as their ability of stereoscopic vision
(Randot stereotest) [27]. Three people who did not pass the
tests were not included in the final evaluation.

4. Experimental Results
The results obtained from the objective metrics, subjec-

tive test and additional correlation tests are evaluated, com-
pared and discussed in this section.

4.1 Coding Efficiency According to the
Objective Metrics
The results show that the performance of standard codec

andmutual comparison is highly content dependent. For sev-
eral content types, the multiview coding gain is significant,
while for other contents the multiview coding only brings un-
desired overhead with no performance improvement. Over-
all, the codecs belonging to the same standard exhibit very
similar performance with differences in PSNR in the order of
1 to 3 dB. Results obtained from objective metrics and sub-
jective test are shown in Fig. 3. The MOS has been evaluated
together with the 95% confidence interval. A detailed analy-
sis of the results is published in [8].
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4.2 Coding Efficiency Evaluation Based on the
Subjective Test
Advanced results and analysis of subjective tests for all

sequences and codecs are presented in Fig. 4. Legend in the
figure is presented as follows: "First is the numbering and
after that is the name of the video sequence, used encoder
and target bitrate. The last columns presents the MOS". For
example, in the first row, the second line is the sequence
"Basketball" encoded by AVC with bitrate 1Mbps. The cen-
tral red mark in MOS is the median, the edges of the blue
box are the 25th and 75th percentiles. The most extreme data
points, without outliers, are the blackwhiskers. Outliers (Red
Cross) are plotted individually. The following lines describe
the subjective test results in Fig. 4:

Basketball: The performance of AVC and MVC is very
similar. In addition to the highest bit rate, there MVC is bet-
ter. For HEVC and MV-HEVC, the quality is the same for all
bitrates. There is no increase in quality between the bit rates
2 and 4Mbps. The results of the subjective tests correspond
approximately to the objective metrics.

PoznanHall: In the case of the HEVC codec, there
is a gradual increase in quality with higher bit rates. On
the other hand, with MV-HEVC, the quality was similar for
all bit rates.

Train: The coding efficiency of HEVC and MV-HEVC
is similar. Bit rate higher than 1Mbps does not cause pre-
dicted improvement in the QoE. In the case where bit rate
is higher than 2Mbps, then the coding efficiency is similar
for all codecs. There is no coding gain of the multiview
codecs.

WishingWell: The performance ofMVC is significantly
better than AVC. It is a situation in which the codec is able
to exploit multiview coding potential. Similar results were
obtained for codecs HEVC and MV-HEVC.

The results of the Wilcoxon signed-rank test [28] are
presented in Tab. 3. This test did not reject the hypothesis
that AVC andMVC have similar coding efficiency. The same
result is also obtained for HEVC and MV-HEVC. The H.265
standard was designed to produce a 50% less bitrate com-
pared to H.264 standard for the same image quality [6]. The
hypothesis that H.265 generation needs half the bitrate to
compare to H.264, for the same quality also in stereoscopic
video, has been proved (p equal to 0.31). If the value
of p would be very small then the hypothesis would have
not been proved (for example, number 0.02).

Hypothesis about Rejection of p
MOS the hypothesis [-]

AVC ≈MVC 0 0.6483
HEVC ≈MV-HEVC 0 0.4616

Codecs H.264 vs. H.265 compression efficiency in stereoscopic video
H.265 has double compress efficiency 0 0.3128

Tab. 3. Results of Wilcoxon signed-rank test.

The results show that the scattering of the test subject’s
evaluation in the subjective test is large [29], [30]. For this
reason, itwas necessary to evaluate the participantswho acted
as outliers. We have used the whisker method for outlier val-
ues detection. Whisker (w) extends the interval of quartiles
(Q25, Q75) by w on both sides. The whiskers are lines ex-
tending above and below each box (Q25–Q75). Whiskers are
drawn from the ends of the interquartile ranges to the fur-
thest observations within the whisker length. Observations
beyond the whisker length are marked as outliers. In our
case of normal distribution, w is equal to 1.5, which would
correspond 99.3 percentiles coverage of values. An outlier
is a value that is more than 1.5 times the interquartile range
away from the top or bottom of the box [31].

There are two hypotheses about outlier rate. First, there
is a difference in variance of QoE evaluation among the se-
quences. Second, the variance is larger at the beginning
and at the end of the testing session, due to disorientation
and fatigue. A hypothesis was tested concerning uniform
distribution of outliers through sequences and time.

The Hi-square goodness-of-fit tests against discrete uni-
form distribution, in the case of sequences and time, have
rejected this proposition at a significance level of 0.05 [32].
We can prove that in our subjective test, after significantly
lower outlier parts (first 8 video sequences) the rest of the
evaluation time has uniform outlier rate. This hypothesis can
be seen in Figs. 5 and 6. In these figures, the blue color indi-
cates the results which were below the permissible deviation.
The results marked in yellow color are those that were above
the error of the mean. The data from participants, which has
more than 10 % of outlier evaluations, was excluded. The
number of participants not included in the final evaluation is
four, which amounts to 11.8% of the test base.

4.3 Correlation of Subjective and Objective
Metrics for Stereoscopic 3D Video

After evaluating the coding efficiency, it is necessary to
determine which 2D metric has the greatest correlation with
the subjective 3D test. For these purposes, Spearman’s Rank
Order Correlation Coefficient (SROCC) and PCC were ap-
plied to the results [33]. Other evaluation methods of models
performance, with respect to subjective tests, for objective
quality assessment are described in [29]. These analyses
are used to determine the correlation between objective and
subjective metrics.

The correlation scores are between +1 and −1, where
−1 and +1 mean total positive and negative linear correla-
tion respectively, and 0 denotes no linear correlation. Next
possible method for evaluation of results is based on ROC
curves [34]. The VQM objective metrics has negative val-
ues in correlation, because their lower score indicates higher
video quality.
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(a) Results of PSNR metrics.
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(b) Results of SSIM metrics.
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(c) Results of VQM metrics.
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Fig. 3. Video quality measured by objective metrics and subjective test.
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Video PSNR SSIM VQM
sequence Pearson Spearman Pearson Spearman Pearson Spearman
Basketball 0.980 0.919 0.965 0.899 −0.974 −0.892
PoznanHall 0.261 0.442 0.293 0.472 −0.502 −0.484
Train 0.606 0.648 0.848 0.696 −0.802 −0.648
WishingWell 0.872 0.939 0.888 0.965 −0.877 −0.905∑

0.261 0.226 0.462 0.415 −0.511 −0.407
Seq.- 1.,3.,4. 0.608 0.625 0.672 0.702 −0.815 −0.792

Tab. 4. Spearman’s rank order correlation coefficient and Pearson correlation coefficient.
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Fig. 5. Dependence of the number of outliers on the sequence.
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Fig. 6. Number of outliers depending on playing time.

The correlation analysis was firstly applied to each se-
quence separately (see Tab. 4). Due to the fact that we need
a universal metric, the correlation value was then calculated
across all sequences. The results show that the correlation de-
pends on the video content. The video "PoznanHall", which
is from another video database, has a different correlation
than other videos. It may also be due to the fact that the
video has a large stereoscopic parallax (see Tab. 1). For
some viewers, it could be distracting and therefore the video
has a non-standard rating. For this reason, in the last row
of the Tab. 4, the "PoznanHall" sequence is omitted and the
resulting score, just in this row, is calculated without it.

The correlation between objective and subjective meth-
ods is plotted in Fig. 7. The black markers represent the
video "Basketball", whereas red, green and blue colors in-
dicate videos "PoznanHall", "Train" and "WishingWell", re-
spectively. After a thorough comparison of all objective and
subjective scores, it can be concluded that in our case the
VQM objective metric best reflects the user’s QoE for com-
pressed stereoscopic 3D videos.
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Fig. 7. Dependence of objective metrics on the subjective test.
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5. Innovative Models for Stereoscopic
3D Video Content
Although the VQM metric has the highest correlation,

it is still not ideal for evaluating stereoscopic 3D videos. We
thus propose our own model, which better models our sub-
jective test results. Such a model should provide sufficient
general predictions at least for content with similar param-
eters as the used video sequences. This section describes
the model proposal, validation and verification of the mod-
els, and a description of each proposed model is provided
at the end.

We have several objective parameters specifying Source
Referent Contents (SRCs) as SI, TI and disparity. Other pa-
rameters describe our interventions –Hypothetical Reference
Conditions (HRCs) as PSNR, SSIM or VQM coefficients.
All the available sequence parameters (potential regressors)
are summed up in Tab. 5. The column titled "Depth de-
scription" contains four parameters related to content depth.
The first three are the quantiles (d05, d50, d95) of dispar-
ity distribution. The fourth parameter is disparity dynamic
range, defined as d95 − d05. The disparity is calculated for
a sufficient amount of significant corresponding pixels by the
Speeded-Up Robust Features (SURF) algorithm [35]. The
last column contains seven coefficients whose linear combi-
nation forms the VQM value.

2D Depth 2D VQM
parameters description metrics coefficients

SI d05 PSNR si_loss
TI d50 SSIM hv_loss

d95 VQM hv_gain
dDR color1

si_gain
contati
color2

Tab. 5. Available objective parameters of the sequences.

We have only 64 samples of MOS, which is the re-
sponse variable. To avoid over-parametrization, it is nec-
essary to reduce the number of regressors. A good model
needs about a hundred observations to one regressor. Accord-
ing to [36], to detect reasonable size effects with reasonable
power, 10–20 samples per parameter are needed. The dispro-
portion between the number of potential model parameters
and "training" data is also the main reason of that why we
focused on linear modeling.

5.1 Model Estimation Methods
The simplest and very common model estimation

method for the General Linear Model (GLM) is Ordinary
Least Squares (OLS). The OLS method minimizes the sum
of squared residuals, which are the differences between the
observed values and the estimated values of the quantity of
interest. In our case, these values are the median of subjec-
tively estimated quality (MOS) and the modeled MOS value.
As we cannot exclude the correlation of regressors, Gener-

alized Least Squares (GLS) has been utilized as the model
estimationmethod [36], [37]. There are two criteria onwhich
regressors have been selected into our models: Akaike infor-
mation criterion and coefficient of determination [38].

The Akaike Information Criterion (AIC) is a measure
of the relative quality of statistical models for a given set of
data. AIC is based on minimizing the relative information
lost when a given model is used to represent the process that
generated the data. It sets the proportion between the good-
ness of fit of the model and the complexity of the model.
This level of parsimony is a function of input data sample
relevance in a population. The AIC coefficient does not
keep any absolute information about model quality, but the
model with the lowest AIC is relatively best from the tested
set. The coefficient of determination R2 is the proportion
of variance explained by the model to the variance of ex-
plained (modeled) variable. In the case of linear regression
with statistically independent regressors, R2 is the square of
the coefficient of multiple correlations between model output
and independent (explanatory) variables. The coefficient of
determination is increasing with the number of regressors,
even if they do not bring other new information. To choose
a model with the optimal number of parameters, the adjusted
R2 is used. The adjusted R2 (≈ R̃2) is the best estimate of
the degree of relationship in the basic population. The coef-
ficient R̃2 determines how our linear model would describe
the population if we had ideal data samples.

The flowchart in Fig. 8 shows the process of setting
models (left column), their verification (middle one) and
validation (right column). First, the regressors are chosen
from Tab. 5 at the base of the criteria mentioned in pre-
vious paragraphs. Secondly, the model is set by the GLS
model estimation method. The standard deviation per sam-
ple (σ), sometimes in literature called as Root Mean Square
Error (RMSE), is calculated. Here, RMSE is the ideal point
estimation of σ.

Fig. 8. Model setting / verification and validation process.
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Fig. 9. Scatter diagram - residual plot of relative error of MOS.

In the case ofmodel verification, the dataset is randomly
divided into 8 parts (literature recommends 5–10, a divisor
of 64 was chosen). The model is set to training data (7/8 sub-
part of original data) and σ1 is calculated from verification
data (1/8 subpart). After 8 repetitions, the arithmetic mean
value of σ1−8 is calculated, called true error estimation (E).
Figure 9 shows a residual plot, the scatter plot of verification
samples deviations. It demonstrates how the observed val-
ues differ from the point of best fit. We can obtain a good
overview about model bias and homoscedasticity.

5.2 Validation
The right column of the flowchart in Fig. 8 describes

the process of model validation. For this purpose, a valida-
tion dataset has been added - other video sequences than
those used in the subjective test. The validation videos
(SRC 1–8) come from RMIT3DV - an uncompressed stereo-
scopic 3D HD video library. This database has been pro-
vided by RMIT University in Melbourne [21]. From the
sequences, those whose (potential regressors) parameter val-
ues are within the range of the original data values have
been chosen. As validation data (SRC 1–8), the sequences
3D_01, 3D_03, 3D_05, 3D_16, 3D_17, 3D_29, 3D_42,
3D_48 were used. The HRC applied on selected sequences
was HEVC with four levels of compression ratio (2x [250,
500, 750, 1000] kbps). The validation data is fully inde-
pendent. The subjective tests have been done with other
respondents. Once again, the ACR subjective method was
used. Furthermore, the same display technology and test
environment have been used.

The dynamic range adjustment is the second step done
with the set of model. The full-reference objective video
quality metrics as SSIM, VQM, Moving Pictures Quality
Metric (MPQM) [39], Noise Quality Measure (NQM) [39]
tend to be global QoE models. The generality of the met-
rics goes against accuracy, even in very complex models.
Our goal was to make the most accurate model with limiting
data amounts.

VQM

Model with maximized 7R2

Crossoptimized model

median MOS

Q25 % Q75

SRCx

Observed data Model

Fig. 10. Validation chart - The MOS values of validation data
and their model’s predictions.

Although the respondents are trained to set their qual-
ity dynamic range, they tend to utilize the full range of the
QoE scale. This is the reason, why we decided to adjust
the dynamic range of our model to validate the data opti-
mally [24, 40, 41].

Validation is done by calculating the standard deviation
of themodel results andMOSvalues. The bar graph in Fig. 10
shows MOS values and a gray box containing 50% of voted
quality values. Three various point estimations of MOS, as
the three corresponding linear models results, are plotted as
color cross marks. The colored background refers to the val-
idation content SRCs 1–8. Each colored surface contains the
MOS values of four HRCs applied on one sequence.

5.3 Created Models
The details of the models are described in this sub-

section. Each block of text describes an individual model
including its properties and differences from others. Table 6
sums up the model’s accuracy and verifications. Correlation
coefficient was calculated from original and validation data,
therefore, they did not correspond to results from Tab. 4.
The σ denotes the standard deviation per sample. It is cal-
culated for the original (training) data, verification data and
through both datasets (designated

∑
). The standard deviation

has not been calculated for the PSNR metric. This metric
does not have defined range. Unlike, for example SSIM
metric, where the value ranges from 0 to 1. The standard
deviation for model VI. cannot be calculated separately for
original and validation data because both datasets are used
as the input data of the model.



RADIOENGINEERING, VOL. 28, NO. 1, APRIL 2019 217

MODEL Description Regressors R̃2 σ / sample [%] PCC
[-] Original data Validation data

∑
[-]

PSNR Generic PSNR PSNR 0.376 - - - 0.411
SSIM Generic SSIM SSIM 0.489 46.54 43.09 45.4 0.547
VQM Generic VQM VQM 0.592 32.06 15.65 26.6 −0.567

I. VQM optimized si_loss, hv_loss, hv_gain, color1, 0.577 13.8 25.51 17.7 0.631si_gain, contati, color2
II. AIC minimized PSNR, SI, TI, color2, d50 0.842 8.57 26.37 14.5 0.713
III. aR2 maximized VQM, TI, si_gain, d95 0.847 8.51 21.00 12.7 0.811
IV. VQM adjusted VQM 0.249 19.36 13.94 17.6 0.671
V. Crossoptimized TI, hv_gain, color1 0.276 19.65 12.71 17.3 0.675

VI. Full-data model SI, si_loss, si_gain, contati, 0.772 - 10.9 0.889color2, d05, d50, dDR

VII. Original-data model SI, si_loss, si_gain, contati, 0.682 12.13 22.36 18.1 0.695color2, d05, d50, dDR

Tab. 6. Models description, their standard deviation per sample and Pearson Correlation Coefficient.

Model VQM – is a classic VQM, according to the rec-
ommendation. It serves us as the reference for other mod-
els, due to the fact that it had the highest precision from
the general metrics. The deviation per sample is more than
two times higher for our original data than for the validation
dataset. This indicates that our original dataset is very hetero-
geneous, which it really is (original sequences are comprised
of two different databases).

Model I – is a linear combination of VQM coefficients,
optimized for the original data. There are two aspects to
demonstrate this model. First, VQM could be improved by
training on particular data. The original coefficients of the
VQM metric have been established for general 2D video se-
quences and their analog/digital distortions caused by trans-
mission/broadcasting. Therewas improve of theVQMmodel
by training it on a specific type of data (stereoscopic 3D se-
quences in HD resolution). Secondly, there was a lack of data
samples to do this VQM optimization properly. The model
is overparameterized and loses its generality, which is mani-
fested by the increase of deviation on the validation dataset.

Model II – it has been estimated for our original data.
The regressors have been chosen for minimum AIC of the
model. More precisely, the AICc coefficient has been min-
imized, which is preferable in the case of small amounts of
data samples (less than 40 samples per 1 coefficient of the
model). The coefficients of a linear model for the original
data are [7.72,3.47,2.46,1129,−32.10]. They are ranked in
the same order as the regressors in the Tab. 6. This model is
quite well-fitted to our data which is indicated by the adjusted
coefficient of determination. However, the validation of this
model shows an estimated error value 26%, which is more
than in the case of the optimized VQM model. Validation
with an independent dataset confirms the concerns that this
model is not general enough.

Model III – it includes the regressors which have been
chosen based on criteria of the maximum adjusted coefficient
of determination. Validation of this model brings better re-
sults than the previous one. A scatter plot also indicates

good homoscedasticity, even if one of the model coefficients
is VQM. The coefficients of regressors for the original data
are [−99.162,0.844,470.542,35.254]. The result of valida-
tion of thismodel is not cogent (the sample standard deviation
is 21%). The author’s opinion is that it may be due to the
difference between the datasets.

Model IV – it is the VQM value, whose dynamic range
is adjusted separately to both datasets. The same process of
dynamic range adjustment is done for validation data of mod-
els I.–V. The dynamic range of the modeled data (MOS val-
ues) is the additive information of the model. So, the model’s
results should be compared with adjusted MOS values to get
relevant information about the model’s selective accuracy.

Model V – it has been established to improve the val-
idation dataset results. On the other hand, is not desirable
to lost the benefit of two independent datasets which provide
information about the generality of the model. The cross-
optimization process has been done. From all the models (all
the regressor combinations) this have been set to the origi-
nal data, the algorithm chose the one which has the lowest
sample standard deviation for validation data. The algorithm
of cross optimization chose the regressors, which have the
most similar influence on the modeled MOS value over both
datasets. The resulting model is not optimal for any of the
datasets, nor for the conjugate dataset, but we do not lose the
possibility of validation.

Model VI – it is the optimal model for the conjugate
dataset (which includes both original and validation data).
The model has been set to a minimum of sample standard
deviation and 8 regressors. Although 8 regressors is a rea-
sonable large value for 96 sample of the conjugate dataset,
we can deduce nothing about the generality of this model.

Model VII – it is the similar model as the "Model VI"
but trained only for the original dataset. The model has the
same regressors as before mentioned model. It can be ob-
served that the model has very good results for original data,
but worse results are for validation data.
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6. Conclusion
Regarding the above-mentioned facts and obtained ob-

jective and subjective scores, answers to the questions from
the Sec. 2 are as follows:

1) After a thorough comparison of all objective and sub-
jective scores, it can be concluded that the VQM objective
metric best reflects the user’s QoE for stereoscopic 3D video
content. However, even this metric does not reach a very
high correlation with our subjective test. For more details see
the results in Tab. 4 which shows a statistical comparison of
objectivemetrics and subjective tests. From the point of view
of outlier rate, it can be concluded that our assumption, that
the variance of results is larger at the beginning and at the end
of the testing session, due to disorientation and fatigue, was
wrong. It was proved that in the subjective test, after a signifi-
cantly better beginning part (first 8 video sequences), the rest
of the evaluation has uniform outlier rate. Dependence of the
number of outliers on the sequence was not significant. Re-
sults of objective metrics and subjective tests are available at
https://www.vutbr.cz/www_base/vutdisk.php?i=145778aa4d.

2) For better modeling of our results, seven new mod-
els of objective metrics were created. These models have
been validated and verified on other stereoscopic 3D video
sequences (see Sec 5.2) and compared to the general VQM
model. In general, we can state that the models that had the
smallest error for our sequences were less accurate on other
databases. On the other hand, models that were less accurate
had a wider usable scope on other databases. Table 6 lists the
most important data of our models, such as model descrip-
tions, regressors, and their standard deviations. "Model III"
has the highest correlation with MOS for our dataset. This
model, compared to a general VQMmetric that had 32% de-
viation, had only 8% standard deviation. When we consider
our source data and validation data, then "Model VI" had the
smallest standard deviation. On the other hand, the most re-
gressors are included in this model and the model is trained
on the original input video sequences as well as on validation
sequences. The model, which is the most balanced in all
areas, is "Model V. The standard deviation for the original
sequence is one third lower than for the general VQM. The
deviation for the validation data is also slightly lower than for
the classic VQM.Another benefit is that only three regressors
enter the model calculation. "Model V", for these reasons,
can be determined as the most appropriate model due to its
great versatility and sufficient accuracy.
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