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Abstract. The discrete polynomial-phase transform (DPT) 
method estimates chirp rate and central frequency of LFM 
signal based on sequential estimation of polynomial phase 
parameters. This method uses Nonlinear Least Squares 
(NLS) technique (based on FFT) to estimate phase param-
eters of the LFM signal. Although NLS enjoys a high level 
of statistical accuracy, it entails high computational load. 
In this paper, in order to enhance the precision of estima-
tion and also to reduce the computational load in DPT 
method, a technique called "combined" is proposed and 
used in DPT method in order to estimate chirp rate and 
central frequency of LFM signal. The combined technique 
firstly provides an initial estimate of frequency interval 
based on NLS criterion in single-exponential mode, then is 
using initial estimation and Random Basis Functions 
method (RBF). Simulation results are presented to demon-
strate better performance of DPT method by combined 
technique in order to estimate phase parameters of LFM 
signal as compared with the existing techniques. 
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1. Introduction 
The linear frequency modulation (LFM) signal is rec-

ognized with its two main parameters, the central fre-
quency and the chirp-rate. Due to their widespread role in 
the frequency domain, LFM signals are of considerable use 
in radar [1], Sonar [2], ISAR [3], [4], communications [5], 
ultrasound [6] and geodesy [7] and many other areas. 

The imaging of moving targets using synthetic aper-
ture radar (SAR) is a specific application that also moti-
vated the study of LFM signals. In order to form an output 
image in SAR, in all algorithms, it is necessary to estimate 
the azimuth direction parameters of the SAR, which in-
clude the Doppler centroid frequency and the azimuth FM 
rate [8]. Having accurate information about the phase pa-

rameters of the LFM signal is necessary in the imaging of 
moving objects [9–11].The phase parameters of the LFM 
signal in all of the above applications contain important 
information and their estimation is very significant. 

There are many techniques available to estimate the 
phase parameters of the LFM signal based on the maxi-
mum likelihood criterion (ML) [12]. The ML estimation of 
these parameters entails the optimization of a nonlinear 
cost function, which requires high computational load. ML 
[13] is in category of non-correlation algorithms. There are 
various suboptimal methods that are designed for the se-
quential estimation of the phase parameters with less com-
putation. Among these techniques, there are the least-
squares technique [14], the technique of decreasing order 
[15], and the cyclostationary approach [16] [17]. Also, 
based on the discrete polynomial-phase transform (DPT), 
an effective technique has been developed by Peleg and 
Porat [18]. Among these different methods, the focus of 
this paper is on the DPT method.  

The aim of this paper is enhancement of DPT method 
in order to estimate chirp rate and central frequency of 
LFM signal with high precision and to reduce computa-
tional load. The algorithms for sequential estimating of 
phase parameters reduce the order of polynomial in the 
exponent of complex exponential to a lower order polyno-
mial. Using the frequency estimation techniques, the higher 
order parameter can be estimated. Then, by neutralizing the 
effect of the higher order parameter in the input data, it 
estimates the lower order parameter. This operation contin-
ues until all of the complex exponential parameters are 
estimated. In this study, a technique called "combined" is 
proposed and used in DPT method. Combined technique 
used NLS and RBF methods which are common methods 
for frequency estimation of a noisy complex exponential. It 
is also shown that the accuracy of the DPT method with 
combined technique is close to the Cramer-Rao lower 
bound (CRLB) as compared with the existing techniques 
and produces accurate estimation result.  

The paper is organized as follows. In Sec. 2, the se-
quential estimation of phase parameters is described. The 
NLS and RBF methods, which both are used by the com-
bined technique, are illustrated in Sec. 3. In Sec. 4, the 
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proposed method is presented and the simulation results of 
DPT method based on NLS, RBF and combined technique 
(in the MATLAB software) are presented and compared in 
Sec. 5. The computational complexity of the above-men-
tioned methods is compared in Sec. 6. Finally, conclusions 
are given in Sec. 7. 

2. Sequential Estimation of Phase 
Parameters 
The techniques developed in [15], [16] and [19] are 

based on sequential estimation of polynomial phase param-
eters. An LFM signal can be modeled as (1) 

     2
r 0exp j 2 0.5   x t a k t f t   

, (1) 

       , 0 , . . .  , 1y t x t n t t N    . (2) 

In this equation, n(t) is the white Gaussian noise with zero 
mean and variance of σ2. The received saturated signal-to-
noise is y(t). Chirp rate is kr and central frequency is f0. The 
objective is to estimate kr and f0 from available finite and 
noisy samples. Having the parameters kr and f0, the ampli-
tude a can be estimated directly, which is due to the linear 
relationship between the signal and its amplitude. The 
algorithms for sequential estimating of phase parameters 
reduce the order of polynomial in the exponent of complex 
exponential to a lower order polynomial. Using the fre-
quency estimation techniques, the higher order parameter 
can be estimated. Then, by neutralizing the effect of the 
higher order parameter in the input data, it estimates the 
lower order parameter. This operation continues until all of 
the complex exponential parameters are estimated. If the 
noise-free signal is defined as (1), we can define r(t) as 
follows: 

        *
r    exp j 2  2 0.5  ,

0 , . . .  , 1  .

r t x t x t A t k

t N

  



        
  

 (3) 

In this equation, the complex amplitude A is defined as 
a2 exp[j (f0τ + krτ

2)]. τ is a positive integer and the sign 
star (*) represents the conjugate of the complex operator. 
With respect to (3), it can be seen that the signal r(t) is 
a sinusoidal signal with frequency of τkr. And transform 
r(t) is similar in form to the one developed in [19]. 

Therefore, it is possible to estimate kr using frequency 
estimation methods and following that the demodulated 
signal of x(t) can be considered as follows: 

      
 

2

0

  exp j 2  0.5   

exp j2 .

rz t x t k t

a f t





   


 (4) 

In (4), k̂r represents the estimation of chirp rate. In the case 
of k̂r = kr, we can obtain the parameter f0 using the gener-
ated signal z(t) and a frequency estimation method. If the 
parameter kr is estimated with an error, this error will also 
affect the estimation of f0. 

3. Nonlinear Least Squares (NLS) and 
Random Basis Function (RBF) 
Methods  

3.1 Random Basis Functions (RBF) 

The RBF method attempts to match the input data 
with a linear combination of basis functions. The basis 
functions have non-linear parameters. The RBF method can 
also be extended when we have some non-linear functions 
[20]. It is assumed that y(t), t = 0,…,N – 1 is the received 
data and the basis function that we want to fit the data with is 

    ;   ,             0,1,. . . , 1s t A t t N     (5) 

in which A is the complex amplitude and ∅ሾݐ; ીሿ is the 
basis functions, which is a function of non-linear and 
unknown parameter of T

1 2 ,. . . ,, p      θ . In this method, 

to estimate the frequency f0 of a complex sinusoidal, the 
function s[t] will be as following:  

    0exp j2s t A f t      (6) 

where A is the unknown complex amplitude, θ = [f0] and φ 
is the initial phase. By minimizing (7), A and f0 are 
computed: 

      
1

2

0 0
0

, exp j2
N

n

J A f y t A f t 




    . (7) 

If a complex sine is embedded in Gaussian white 
complex noise, the NLS estimator used in (7) is equivalent 
to the maximum likelihood estimator (ML) [21]. The ML 
estimator firstly minimizes (7) on the amplitude and then 
on the frequency f0. When we have a complex exponential, 
the process of estimating the frequency using ML estimator 
will be equal to finding the frequency at which the peri-
odogram is maximized (which is computed by FFT) [22]. 
In this estimation the data and basis functions are consid-
ered to be complex. To perform the minimization of (7) 
optimally, we first start by minimizing the following ex-
pression: 

          
1

2

1 2 1 1 2 2
0

, ; ;  .
N

t

J A A E y t A t A t





 
       

 
  (8) 

Assuming that the unknown parameter Θ is in the in-
terval [–a, a]. Thus, the interval for the parameter Θ is 
divided into two equal intervals. The probability density 
function for Θ1 is assumed to be a uniform distribution in 
the interval [–a, 0] and the uniform distribution of Θ2 for 
the interval [0, a]. Then, using the minimization of (8), we 
obtain the estimates for the amplitudes A1 and A2. Through 
computing the power associated with the amplitude of each 
interval, the interval with higher power is selected as a new 
interval. Again, we divide the selected frequency interval 
into two equal intervals and obtain the estimated power of 
the two new intervals. We select the more powerful one as 
a new interval in which the nonlinear parameter is availa-
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ble. After repeating the above steps, regarding the expected 
accuracy, we consider the complex exponential frequency 
equal to the value in the middle of the last interval.  

Repetitions are guaranteed to converge to the esti-
mated frequency, it is because of this fact that in each step 
the frequency interval at which the nonlinear parameter 
exists, is halved. The estimation of the two amplitudes A1 
and A2 is done by simply estimating the least squares in 
each step. The reason for this is that amplitudes are linear 
functions. In the estimation of A1 and A2, which minimizes 
(8), the data vectors, amplitude, and estimated parameter 
are defined as follows: 
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. (9) 

H(Θ) is a random and complex matrix and its dimension is 
N × 2. With this definition, equation (9) is obtained as 
follows: 

        H
J E     

 
A y H a y H a .  (10) 

In order to compute the amplitude a, using complex 
derivative property, we have: 
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After solving (11) we have: 

      H HˆE E         H H a H y .  (12) 

With respect to the right-hand side of (12) from (9) 
we have 
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  (13) 

It is also assumed that Θ1 and Θ2 are independent of 
each other. In the complex exponential form, we have  

Θ = F0,    1 0 ; exp j2t F t     ,   2

1 E ; 1t  
 

. The 

frequency in the RBF method is considered to be between  

–0.5 and 0.5. In order to find E [∅ [t; Θ]], we use (13) and 
(14) and consider a uniform PDF for F0 in the frequency 
interval of [f1, f2] that gives us (14) and (15): 
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in which B = f2 – f1 and μ = (f2 + f1)/2 are the bandwidth and 
center of the frequency interval, respectively. Using (12), 
(14) and (15), equation (16) can be achieved. In this 
equation, s

(1)[t] =sin(B(1)t)/  (B(1)t).  
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 (16) 

In [23], by matching available data and complex exponen-
tial functions with random frequency and by performing 
below steps, the amount of complex exponential frequency 
is estimated. For estimation of a complex sine in noise, the 
following stages can be considered:   

For the first step, from k steps, which is shown with 
the superscript (1), the first frequency interval f1l

(1)= –0.5, 
f1u

(1)= 0, and the second interval f2l
(1)= 0, f2u

(1)= 0.5 is cho-
sen. The center of the first and second frequency intervals 
is equal to μ1 = –1/4 and μ2 = 1/4 and the frequency band-
width is chosen to be B(1) = 0.5. 

In Step 2 by using (16), we estimate the complex 
amplitude of two intervals chosen in the previous step. In 
Step 3, from the previous two intervals, we choose the 
interval with higher power A(1)2A(1)2, and then divide 
it into two separate intervals. In this stage, f2l

(2), f2u
(2), f1l

(2), 
f1u

(2), μ1
(2), μ2

(2), B(2)= B(1)/2 = 1/4 must be ascertained. 
When we compare the absolute value of the two 
amplitudes, the effect of φ is removed and knowing its 



RADIOENGINEERING, VOL. 28, NO. 1, APRIL 2019 233 

 

value is not important anymore. Thus, an RBF estimator 
can be used for any signal with an arbitrary initial phase. In 
Step 4 based on the third steps' estimated interval and 
according to the upper and lower limits of the new interval, 
we repeat the first and second steps. This will continue as 
long as the bandwidth is narrowed enough. Notice that in 
each step, the bandwidth decreases to 1/2 of the previous 
step and therefore the bandwidth of the last interval is 1/2k. 

And in Step 5, after repeating the steps for k times, the 
estimated frequency is equal to the midpoint of the last 
frequency interval, or in other words: 

     0 u l
ˆ 1

.
2

k kf f f    (17) 

3.2 Nonlinear Least Squares Method 

In general, NLS is a criterion in which the parameters 
of the signal model are chosen in such a way that the sum 
of squares for the difference between the model and the 
data is minimized. Following that, this criterion considers 
the amount of selected parameters as the estimation of 
signal parameters. This criterion is also used in estimating 
complex single or multi exponential parameters in noise. 
Suppose that the signal model is obtained from the sum of 
several complex exponentials at time t, it is defined as: 

    
1

exp j   .
p

k k k
k

x t t  


       (18) 

x(t) is equal to the sum of p noise-free complex exponen-
tials. Here αk is the amplitude, ωk is the angular frequency 
and φk is the initial phase of the k-th complex exponential. 
The value of ωk is in the interval [–π, π], φk is a non-ran-
dom phase in the interval [–π, π] and αk > 0. Also, y(t) is 
the input data in time t which is obtained from saturation of 
x(t) with n(t) noise. 

      y t x t n t  .   (19) 

To estimate the complex exponential parameters, we 
must minimize the function f in (20) based on the unknown 
parameters of the problem: 

      
1

2

0

,
N

t

f a y t x t




  .  (20) 

In the case that f  is a nonlinear function of {ω, φ}, the 
method that determines the unknown parameters by mini-
mizing (20) is called the nonlinear least squares (NLS) 
method. Equation (20) depends on the three parameters 
{αk}, {φk}, and also {ωk}. We can write the function f  in 
(20) as the vectorial form of (21) to (25): 

   exp j ,K k kA a     (21) 

 T
1 [ , ., ]  ,pA A a   (22) 

 y = [y(0) ,…,y(N – 1)]T,  (23) 
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 
 

  
 
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B


  



  (24) 

    H
 .f   y aB y aB   (25) 

Equation (25) is the vectorial form of (20) in which 
the matrix B is a Vandermonde matrix, and if p < N, is full 
rank. The number of complex exponentials is p and the 
number of the input data is N. With the above definitions, 
we can write (25) as (26): 

   
 

H1 1H H H H H

1H H H H .

f
 



              



a B B B y B B a B B B y

y y y B B B B y

 (26) 

In order to minimize equation f, the value of ω must be 
chosen in such a way that maximizes the third term in (26): 

   1H H Harg max  , ˆ



    

y B B B B y  (27) 

   1H
ˆ

Hˆ .|a  



 B B B y   (28) 

In the case that input signal includes a complex 
exponential, according to the NLS general solution in (27) 
and (28), the frequency estimation will be as follows: 

      
21

0

ˆ x ,e p j
N

p
t

y t t  




    (29) 

  arg ma ˆ .ˆ x p
     (30) 

According to (29) and (30), the estimated frequency 
equal to the value that maximize ̂ߔ (). Also, the term 
inside the absolute value sign in (29) can be expanded 
using Fast Fourier Transform (FFT). Equations (29) and 
(30) represent a nonparametric method known as periodo-
gram [24]. 

4. Proposed Method 
In the DPT method, in order to estimate the parame-

ters of the LFM signal, r(t) and z(t) are formed to estimate 
the chirp rate and the central frequency, respectively. Z(t) 
and r(t) are samples of complex exponentials with fre-
quency corresponding to these parameters. Then, by using 
the NLS method, in the special case of single-exponential 
mode, we estimate these two parameters. In the single-ex-
ponential mode, the NLS method is exactly equal to the 
periodogram method. The periodogram method that uses 
FFT to reduce the computations, have some problems: 
1) the MSE of the estimated frequency is limited due to the 
frequency bin errors over the constant length of FFT. 
2) The high rate of computation in this method.  
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In this paper, in order to enhance performance of DPT 
method in terms of estimation chirp rate and central fre-
quency of the LFM signal, we propose and use combined 
technique. Like the RBF method, combined technique 
seeks the estimation of complex exponential frequency 
with an acceptable accuracy but with less computation 
compared to NLS in single-exponential mode. The main 
problem with the RBF method is related to low SNRs, 
which is related to the minimum inaccurate estimation of 
an interval of a step (among k steps) which is caused by the 
low signal power-to-noise power ratio. In this condition, 
the estimator will be in the wrong interval and conse-
quently the estimated frequency would be wrong. In the 
combined technique, first, by using (31) and (32), initial 
estimation from frequency interval in which there is com-
plex exponential, is obtained. Then by using initial esti-
mated frequency interval and RBF method, complex expo-
nential frequency will be estimated. 

 
 

  ML arg maxˆ ,f Y


     (31) 

      
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N

t

Y y t t  




    (32) 

We show the FFT length used to compute (32) with 
NFFT-syn. The value of NFFT-syn is chosen to be small because 
of this fact that we use periodogram only to achieve 
an initial estimation of the complex exponential frequency, 
and also, due to this fact that in order to avoid extra com-
putation, it is not necessary to use a large FFT length. If fd 
is the estimated frequency using periodogram, the consid-
ered interval for estimating the frequency based on the 
RBF method is: 

 
d d

FFT_syn FFT_syn

1 1
,  

2 2
f f

N N

 
   

 
 . (33) 

In RBF method, when two sub-frequency intervals are 
small, the error associated with the interval selection de-
creases due to the reduction of the noise power. According 
to the estimated interval and equation (16), we compute the 
amplitudes of two sub-intervals resulted from the main 
interval in (33). In the next stage, each sub-interval which 
has higher power will be considered as the new interval, 
and these steps will be repeated like the RBF method. Sim-
ulation results of the aforementioned methods will be pre-
sented in the next section. 

5. Simulation Results 
Simulation results illustrate and compare performance 

of DPT method with NLS, RBF and Combined techniques 
in terms of estimation chirp rate and central frequency of 
the LFM signal. The performance is compared with CRLB 
inverse as shown in [18]. In Fig. 1 and 2, while the central 
frequency is 0.2 and chirp rate is 0.1, the performance of 
the DPT method for the LFM signal is shown. The number 
of input samples is 20 and the number of independent tests 

to compute MSE inverse for each value of SNR is 100,000. 
The FFT length for the NLS method is 256. Figure 1 shows 
MSE inverse and CRLB inverse in DPT method for esti-
mating the chirp rate of the LFM signal, while, the SNR of 
the input signal changes. Figure 2 shows the changes of 
MSE inverse values for estimating the central frequency of 
the LFM signal. In the DPT method, we have the estima-
tion of the chirp rate by using the NLS method. As can be 
seen in Fig. 1 and 2, MSE inverse values in the DPT 
method reach to a constant value after a specific SNR and 
we will have an increasing difference between MSE in-
verse and CRLB inverse in higher values of SNR, which 
cause a gap between MSE inverse and CRLB inverse. The 
reason to this issue is the NLS estimation problem with 
single complex exponentials (periodogram based on FFT). 
In Fig. 2, because of the chirp rate estimation error, MSE 
inverse values in central frequency estimation don’t con-
verge to CRLB inverse.  

In Fig. 3, for two methods (DPT with NLS and DPT 
with RBF), MSE inverse versus SNR of the chirp rate es-
timation for a signal with the chirp rate of 0.1 and the cen-
tral frequency of 0.2 can be seen. According to this figure, 
in DPT with  RBF method, the steps of  RBF method is 15 and 

  

Fig. 1.  MSE inverse versus SNR, for chirp rate estimation of 
the LFM signal in DPT method (kr = 0.1, f0 = 0.2)  

 
Fig. 2.  MSE inverse versus SNR, for central frequency 

estimation of the LFM signal in DPT method (kr = 0.1, 
f0 = 0.2). 
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Fig. 3.  MSE inverse versus SNR for chirp rate estimation of 

the LFM signal, using DPT with NLS and DPT with 
RBF methods. 

 
Fig. 4.  MSE inverse versus SNR for central frequency 

estimation of the LFM signal, using DPT and NLS and 
DPT with  RBF methods. 

 
Fig. 5.  MSE  inverse versus SNR for chirp rate estimation of 

the LFM signal, using DPT with NLS and DPT with 
combined methods. 

 
 

Fig. 6. MSE inverse versus SNR for central frequency 
estimation of the LFM signal, using DPT with NLS 
and DPT with combined methods. 

 
Fig. 7. MSE inverse versus SNR for chirp rate estimation of 

the LFM signal using DPT with NLS,DPT with RBF 
and DPT with combined methods.  

 
Fig. 8. MSE inverse versus SNR for central frequency 

estimation of the LFM signal, using DPT with NLS, 
DPT with RBF and DPT with combined methods.  
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the FFT length of the NLS is 256. In Fig. 4, MSE inverse 
versus SNR of the central frequency estimation is illus-
trated for two methods (DPT with NLS and DPT with 
RBF). As can be seen, in estimation of central frequency 
and chirp rate, MSE inverse and the CRLB inverse in DPT 
with RBF method are closer than the DPT with NLS 
method in higher SNR. In Fig. 4, it is quite clear that the 
frequency estimation error decreases due to the high preci-
sion in the chirp rate estimation process. 

Therefore, DPT with RBF method has a better per-
formance in higher SNRs as compared to DPT with NLS. 
On the other hand, as it is clear from Figs. 5 and 6, com-
pared to DPT with NLS method, MSE inverse in DPT with 
combined method has become closer to CRLB inverse and 
also in Fig. 6, the central frequency estimation error has 
decreased because of high precision in the chirp rate esti-
mation in DPT with combined method. For better compari-
son, DPT method with all the three techniques are shown in 
Fig. 7and 8. In the lower SNRs, the DPT with combined 
method has better results compared to DPT with RBF. Also 
in this method, the MSE inverse are closer to the CRLB 
inverse.  

6. Computational Complexity 
For the RBF method, k is number of steps and com-

putations must be repeated for k (4N + 8) times, while in 
periodogram it will be 1.5NFFT log2(NFFT) + NFFT times, and 
as we know its accuracy increases for higher values of 
NFFT. In each method, the complex vector of r(t) with the 
length of N – τ, requires 3(N – τ) times of multiplication 
and summation for each repeat. The combined technique 
uses the NLS in the case of single complex exponential 
with a small FFT length (NFFTsyn), and k – kFFTsyn 	steps 
according to the RBF method. Also, we consider the kFFTsyn  
value to be NFFT_syn = 2k

FFTsyn. N is the number of input sam-
ples. Table 1 shows the computational load of DPT method 
with NLS, RBF and combined technique for N = 12, 
NFFT = 256, ksyn = 11 and NFFTsyn = 32 as follows.  
 
 
 

The number of complex 
multiplication and summation

The method 
parameters Method 

 
 

FFT 2 FFT

FFT

1.5 log

3 1 3361

N N

N N



  
 

N = 12  

NFFT = 256 

DPT with NLS 
(periodogram 
based on FFT) 

   4 8 3 1
929

k N N  


 N = 12 
k = 16 DPT with RBF 

 

 FFT_syn

syn

FFT_syn FFT_syn2

4 8

1.5 log

3 1 921

k N

N N

N N

 
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N = 12 

ksyn = 11 
NFFTsyn = 32 

DPT with 
Combined 

Tab. 1. Computational load of DPT with NLS (based on FFT), 
DPT with RBF and DPT with combined methods for 
chirp rate estimation. 

7. Conclusions 
This paper proposes and uses a novel combined tech-

nique in order to increase precision of estimation of the 
phase parameters of the LFM signal in DPT method. The 
combined technique attempts to estimate complex expo-
nential frequency with less computations. The results of the 
simulations show that the error of the central frequency 
estimation has decreased due to the higher accuracy in the 
estimation of chirp rates using DPT with RBF and DPT 
with combined methods (compared to DPT with NLS). 
Also, it can be seen that in lower SNRs, the DPT with 
combined technique has better results than DPT with RBF, 
and MSE inverse are closer to CRLB inverse. And accord-
ing to the computational table, the DPT with RBF and DPT 
with combined methods have less computational load than 
the DPT with NLS (periodogram based on FFT) method. 
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