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Abstract. The problem of channel estimation, in large-
scale multiple input single output orthogonal frequency divi-
sion multiplexing (MISO-OFDM) systems, is studied in this
paper. In order to take full advantage of the sparse property,
an intermediate random vector is introduced to control the
sparsity of the estimation of the channel state information
(CSI) based on the maximum a posteriori estimator. Af-
ter carefully designing the prior probability density function
(PDF) of the intermediate random vector and the unknown
CSI conditioned on it, the sparse optimization problem over
the CSI is constructed. The Bayesian inference theory is ap-
plied to relax the optimization problem by calculating an ap-
proximated PDF with simpler form. After that, variational
message-passing (VMP) is used to obtain the solution in it-
erative analytical form. Furthermore, block sparse structure
is implemented to improve the performance. Simulation re-
sults demonstrate the merit of proposed algorithm over the
traditional ones.
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1. Introduction
One of the key problem of wireless communica-

tion is to improve the spectrum efficiency due to its
scarcity [1], [2]. Recently, multiple-input-multiple-output
orthogonal frequency divisionmultiplexing (MIMO-OFDM)
has gained great development to address that problem. Up-
to-date research efforts have found that MIMO systems us-
ing a large number of antennas can improve the transmis-
sion performance significantly. Against this background, the
large-scale MISO (multiple-input-single-output) technology
has been viewed as a promising technology for current and
future wireless communication systems [3]. However, the
complexity of obtaining the accurate channel state informa-
tion (CSI) increases heavily as the number of antennas, which

makes it difficult to use this technology in practical sys-
tems [4–6]. One important reason is that the number of
unknown variables becomes so large that too much spectrum
resources need to be used. Therefore, we need to study on
higher efficiency CSI estimation algorithms. Fortunately, the
problem can be relaxed by the fact that the outdoor wireless
channel always exhibits a sparse structure, which means that
only a small fraction of the paths of the impulse response
of the channel have feasible values [7]. In this situation,
the problem of channel estimation can be transformed into
a sparse estimation problem [8].

A lot of published works have addressed the sparse es-
timation problem. Compressed sensing (CS) is viewed as
a promising method to solve this kind of problem. Based on
the sparse structure of CSI, the problem of the large-scale
MISO channel estimation can be constructed as an l1 norm
constrained optimization problem known as Least Absolute
Shrinkage andSelectionOperator (LASSO).Also, the greedy
algorithm is a useful approach to solve this, such as Orthog-
onal Matching Pursuit algorithm and Subspace Pursuit algo-
rithm [9], [10]. Besides, the sparse Bayesian learning (SBL)
is another kind of approach to obtain sparse solution [11]. It
aims at finding a sparse maximum a posteriori (MAP) esti-
mate of unknowns, resulting in higher accuracy of estimation.

The Bayesian sparse estimation algorithm has been
proven to be an effective tool to solve the problem
of sparse channel estimation in single-input-single-output
(SISO)-OFDM [12]. Besides SISO-OFDM systems, recent
research indicates thatMISO systemwould also have a sparse
CSI structure. What’s more, it always has a common chan-
nel support between different transmit-and-receive antenna
pairs, due to the similar path delay induced by the so closely
located antennas [13]. Furthermore, the channel statistical
properties, such as spatial covariance and time correlation,
can be used to improve the estimation performance. Taking
this into consideration, a block sparse structure based model
of the channel vector is also studied in this paper.

The contribution of this paper is as follows:

Firstly, the optimization problem over sparse CSI estimation
by means of intermediate random variables is constructed.
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Secondly, both the general case and the block-sparse-
structure based algorithm is introduced, using the theory of
variational message passing (VMP).

Finally, an iterative analytical form of the channel estimator
is obtained.

Notation: Let CN(y|J,C) be the complex multivariate
Gaussian probability density function (PDF). Also, diag(x)
denotes the diagonal matrix created from vector x. LetAm be
the matrix consisted of the first m columns of matrix A. Let
Ga(x |a, b) = ba

Γ(a) x
a−1e−bx be the Gamma PDF. Let Kv(•) be

the modified Bessel function of the second kind with order v,
and A ⊗C represent the Kronecker product of the two matri-
ces A and C. Finally, let < f (x)>p(x) denote the expectation
of function f (x) with respect to the density p(x).

2. System Model
We consider a downlink transmission scenario with

a base station and several terminals. The base station and
the terminals are equipped with Nt transmit antennas and one
single received antenna, respectively. The transmission sym-
bols are organized in frames where the preamble signals and
data symbols are time multiplexed. Each frame contains one
preamble signal and several data symbols. At the beginning
of each frame, the pilot symbols, which can be expressed as
rl = [rl(0),rl(1), · · · ,rl(M − 1)]T,1 ≤ l ≤ Nt, are assigned
to the M subcarriers in every transmission block, where l
denotes the l-th antenna.

These pilot signals in frequency domain can be trans-
formed into time domain by the inverse discrete fourier trans-
form (IDFT). Therefore, the time-domain preamble signals of
the l-th antenna can be written as sl = 1√

Nt
FHrl,1 ≤ l ≤ Nt,

where 1√
Nt

ensures the unit transmit power, and F denotes the
order-M normalization DFT matrix with

F(a, b) = e
−2(a−1)(b−1)iπ

M .

Without loss of generality, in order to distinguish the pream-
ble signals from different antennas, it is assumed that sl , si
for l , i. The cyclic prefix (CP) is also inserted to avoid inter
symbol interference (ISI).

After removing CP, the matrix-form received signal in
time domain can be written as

q =
Nt∑
l=1

Hlsl + n

where q is the received preamble signal of length M , and Hl

is the cyclic matrix composed by the l-th CSI vector, i.e. l-th
transmit-receive antenna pair.

The l-th CSI vector can be expressed as hl =

[hl(0), hl(1), · · · , hl(L − 1)]T, where L denotes the maximum
delay spread of the CSI. Additionally, n denotes the sampled
noise vector, the elements of which are independent and iden-
tically distributed complex Gaussian vector with zero mean
and variance σ2

n .

After performing DFT operation on the received sig-
nal q, its frequency-domain form vector y can be written as

y = Fq

=

Nt∑
l=1

1
√

Nt
FHl(FHrl) + w.

(1)

Since Hl is a cyclic matrix, (1) can be rewritten as

y =
√

N
Nt

Nt∑
l=1

diag(Fmhl)rl + w (2)

where w = Fn is the noise vector in frequency domain.
Considering the property of diagonal matrices, diag(Fmhl)rl
in (2) can be further rewritten as RlFmhl with Rl = diag(rl).
Furthermore, by stacking all of the channel coefficients as
an aggregate channel vector h = [hT

1 ,h
T
2 , · · · ,h

T
Nt
]T, (2) can

be expressed as
y = Ah + w (3)

where

A =
√

N
Nt
[R1Fm,R2Fm, · · · ,RNtFm].

The equation (3) describes the linear relationship between
the unknown vector h and the observation vector y. Since
M < LNt, it is of high difficulty to obtain the unknowns from
the observation vectors exactly.

3. Sparse Channel Estimation
In this section, we introduce a new method based on

VMP algorithm to solve the problem of (3).

3.1 Bayesian Prior Model for Sparse Channel
Estimation
Using maximum a posterior (MAP) algorithm, the

sparse channel estimation h can be written as the solution
of

hhhMAP = arg max
hhh

p (hhh |y )

= arg min
hhh

{− log p (y |hhh ) − log p (hhh)} . (4)

Since h is sparse, we need to introduce some constraint con-
ditions to utilize the sparse structure of h in (4) in order to get
better performance. What we need is a kind of mechanism
that can control the sparsity of the solution of (4). Inspired
by [12], the Bayesian prior model can be used as a useful
tool to achieve this. According to this model, we introduce
an intermediate random vector χ first.

Based on χ, the prior p(h) can be demonstrated by
a two-layer hierarchical structure, including a conditional
prior p(h|χ) and a p(χ), as shown in

p(b) =
∫

p(b|χ)p(χ)dχ.
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The core of this model is to find some proper distribution
p(χ) and p(h|χ). By carefully designing p(h|χ) and p(χ),
the sparsity of the solution can be controlled by χ, e.g., the
larger the element of χ is, the more closer to zero the cor-
responding element of h is. Meanwhile, when p(χ) and
p(h|χ) have some proper form, we can construct inference
algorithms to obtain analytical expressions. Furthermore, it
contributes to simplification of the computation.

Then the joint PDF can be decomposed as

p(y , h, χ, σ) = p(y|h, σ)p(σ)p(h|χ)p(χ) (5)

where
p(y|h, σ) = CN(y|Ph, σ2I)

based on (3). Furthermore, let the conjugate prior

p(σ) = Ga(σ |c, d)

and

p(h|χ) =
LNt∏
l=1

p(hl |χl)

with
p(hl |χl) = (

ρ

πχl
)ρ exp(−ρ

|hl |2

χl
),

respectively. Also, it is assumed that p(χ) =
LNt∏
l=1

p(χl)where

p(χl) = Ga(χl |ε,ηl). Thenwe can use the product of the gen-
eralized inverse Gaussian (GIG) to compute the prior of h as

p(h; χ) =
∫ ∞

0
p(h|χ)p(χ)dχ =

LNt∏
l=1

p(hl; ε,ηl)

with

p(hl; ε,ηl) =
2

πΓ(ε)
η
ε+1

2
l
|hl |ε−1Kε−1(2

√
ηl |hl |).

3.2 VMP Based Sparse Channel Estimation
In this section we present a VMP algorithm for estimat-

ing h in (3).

In fact, the PDF p(hhh|y) in (4) can be written as

p(hhh|y) =
∫

p(ΩΩΩ|y)dχχχdηηηdσσσ,

by regarding χχχ, ηηη, and σσσ as nuisance parameters and “inte-
grating them out”, where Ω is a set including all unknown
variables, i.e., ΩΩΩ = {h, χ, σ}. However, it is always diffi-
cult to compute the integration to obtain the joint probability
density function p(ΩΩΩ,y). Fortunately, the variational theory
is an effective way to relax this. The core of the variational
theory is to find auxiliary probability q(ΩΩΩ) to substitute the
true probability p(ΩΩΩ,y) by VMP method [12]. The VMP
algorithm is an iterative scheme that attempts to compute
the auxiliary PDF q(ΩΩΩ) by minimizing the Kullback-Leibler

(KL) divergence KL(q(ΩΩΩ)| |p(ΩΩΩ,y)). The KL divergence is
used to evaluate the extent of approximation between q(ΩΩΩ)
and p(ΩΩΩ,y). Furthermore, we assume that

q(ΩΩΩ) = q(h)q(χχχ)q(ηηη)q(σ).

To clearly encode the factorization of p(ΩΩΩ,y), the factor graph
is shown in Fig. 1 [14]. In Fig. 1, the factor nodes gi can be
expressed as gy = p(y|h, σ), gh = p(h|χ), gχ = p(χ), and
gσ = p(σ), respectively.

Based on Fig. 1, q(ΩΩΩ) can be computed by VMP algo-
rithm as follows

q(ΩΩΩi) ∝
∏

gn ∈SΩΩΩi

m(gn → ΩΩΩi). (6)

In (6), SΩΩΩi
is the set including all factor nodes whose

neighbor is the factor node ΩΩΩi and m(gn → ΩΩΩi) denotes the
message from factor node gn to variable nodeΩΩΩi with

m(gn → ΩΩΩi) = exp(E(ln gn,
∏
j

q(ΩΩΩj)),ΩΩΩj ∈ Sgn\{ΩΩΩi})

(7)

where Sgn is the set composed by the variable nodes that
neighbour the factor node gn.

Using (6), the unknowns can be calculated iteratively
by viewing the other variables as constant, which are shown
as follows.

1) Update of q(h): Combining (6) and Fig. 1, the compu-
tation of update of q(h) can be written as

q(h) ∝ m(gy → h)m(gh → h)

where
mgy→h = exp(E(ln p(y |h, σ),q(σ)))

∝ exp(−ρ〈σ〉q(σ) ‖y − Ah‖22)

and

mgh→h = exp(〈ln p(h|χ)〉q(χ)) ∝ exp(−ρhHV (χ)h),

respectively. Multiply these messages, and the auxiliary PDF
q(h) can be written as

q(h) = CN(h|
_

h, Σ̂h) (8)

where Σ̂h =
(
< σ>q(σ)AHA + V (χ)

)−1
(9)

_

h =< h>q(h) =< σ>q(σ)Σ̂hAHy. (10)
In equation (9), V (χ) is defined as

V (χ) = diag{E(χ−1
1 ,q(χ)) · · · E(χ−1

N ,q(χ))}.

2) Update of q(χ): According to (7) and Fig. 1, the update
of q(χ) can be expressed as

mgh→χ = exp(〈p(h|χ)〉q(h))

∝

LNt∏
l=1

χ
−ρ
l

exp(−ρχ−1
l

〈
|hl |2

〉
q(h))
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Fig. 1. A factor graph of the signal model of the joint PDF of (5).

Fig. 2. A factor graph of the signal model of the joint PDF
of (17).

and
mgχ→χ = exp(〈p(χ |η)〉q(η))

∝

LNt∏
l=1

χε−1
l exp(−χl 〈ηl〉q(η)).

Then the expression of q(χ) can be obtained as

q(χ) =
LNt∏
l=1

χ
ε−ρ−1
l

exp(−χ−1
l ρ < |hl |

2>q(h) − χlηl) (11)

where the auxiliary probability q(χ) can be viewed as the
product of GIG PDF with order ε − ρ. Therefore, the
< χi

l
>q(χ) is given by [15]( 〈
|hl |2

〉
q(h)

〈ηl〉q(η)

) i
2 Kε−ρ+i(2

√
〈ηl〉q(η)

〈
|hl |2

〉
q(h))

Kε−ρ(2
√
〈ηl〉q(η)

〈
|hl |2

〉
q(h))

. (12)

3) Update of q(σ): From (7) and Fig. 1, it can be easily
obtained that

q(σ) = Ga(σ |ρM + c, ρ < ‖y − Pb‖22 >q(h) + d).

Then we have

< σ>q(σ) =
ρM + c

< ‖y − Pb‖22 >q(h) + d
. (13)

4. Bayesian Block-Sparse Channel
Estimation

4.1 Block-Structured Channel Model
As the number of transmit antennas increases, channel

estimation performance may be degraded significantly, due
to the increment of the length of the aggregate channel vector
and the limited pilot signal size.

Specially, due to the close antenna spacing at the base
station, the times of arrival from different transmit antennas
are similar to each other. With the limited sampling reso-
lution at the receiver, the nonzero tap locations of each CSI
vector are considered identical [16], that is

supp(hi) = supp(hj), i , j (14)

where supp(hi) is defined as the length−L support vector for
the i-th vector hi, and

supp(hi)(k) =
{

1 hi(k) , 0
0 hi(k) , 0 , 1 ≤ k ≤ L (15)

where supp(hi)(k) is the k-th element in hi . Based on this
analyses, let G be the number of the nonzero values in hl .
Without loss of generality, it is assumed that the numbers
of nonzero value of h satisfies (G × Nt) � (L × Nt) and
(G × Nt) < M in (3). Thus, the aggregate channel vec-
tor h can be rearranged into b = [bT

0 , · · · ,b
T
L−1]

T with
bl = [h1(l), · · · ,hNt (l)]

T. Furthermore, the equation (3) can
be rewritten as

y = Pb + w (16)

where P = [P0,P1, · · · ,PL−1]

and Pl = [al,al+L, · · · ,a(Nt−1)L+l]. Also, al is the (l + 1)-th
column vector of matrix A. In this situation, the new vector
b exhibits block sparsity. It means that among the L blocks
of vector b, only a small number of bl in the multiple channel
vectors {bl}

L−1
l=0 are nonzero vectors.

Based on the assumption of the wide sense stationary
uncorrelated scattering (WSSUS) model, the blocks can be
viewed as independent of each other, which implies that we
only need to consider the internal correlation of blocks.

We aim at obtaining the estimation of b in (16). Since
b has the feature of block sparsity, it is meaningful to in-
troduce the block-sparse structure into the sparse estimation
problem (16) to improve the system performance. In this sec-
tion, we will propose a variational message passing (VMP)
based Bayesian-block-sparse channel estimation algorithm to
estimate b with the given observation y.

4.2 Bayesian Prior Model for Block-Sparse
Estimation
Since b has a block-sparse structure, the covariance

matrix Bl is introduced to describe the character of the cor-
relation between the elements of bl . Similar to [17], it is
assumed that B = Bl for all l. In this situation,

p(bl |χl,B) = (
ρ

πχl
)Ntρ |B|−ρ exp(−ρbl

H(χlB)−1bl).

Then the PDF of b can be written as

p(b|χ,B) =
L∏
l=1
(
ρ

πχl
)
Ntρ
|B|−ρ exp(−ρbl

H(χlB)−1bl).

(17)
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Also, p(χ) is written as

p(χ) =
L∏
l=1

p(χl)

with p(χl) = Ga(χl |ε,ηl). Thus the computation of the prior
of b is

p(b; B) =
L∏
l=1

∫
p(bl |χl,B)p(χl)d χl .

The factor graph of the block-sparse model is shown in Fig. 2.
The factor nodes gi can be expressed as gy = p(y|b, σ),
gb = p(b|χ,B), gχ = p(χ), and gσ = p(σ), respectively.

4.3 VMP-Block-Sparse Channel Estimation

Using VMP algorithm, the calculation of each variable
is as follows.

1) Update of q(b): Since

q(b) ∝ m(gy → b)m(gb → b)

where

mgy→b = exp(E(ln p(y |b, σ),q(σ)))
∝ exp(−ρ〈σ〉q(σ) ‖y − Pb‖22)

and

mgb→b = exp(〈ln p(b|χ,B)〉q(χ)) ∝ exp(−ρbHV (χ)b) ,

respectively. Multiply these messages, and the auxiliary PDF
q(b) can be written as :

q(b) = CN(b|
_

b, Σ̂b) (18)

where Σ̂b =
(
< σ>q(σ)PHP + V (χ)

)−1
(19)

_

b =< b>q(b) =< σ>q(σ)Σ̂bPHy. (20)

In equation (19), V (χ) is defined as

V (χ) = diag{B−1E(χ−1
1 ,q(χ)) · · · B−1E(χ−1

N ,q(χ))}.

2) Update of q(χ): Since

mgb→χ = exp(〈ln p(b|χ,B)〉q(b))

∝

L∏
l=1

χ
−ρNt
l
|B|−ρ exp(−ρ

〈
bl

H χ−1
l B−1bl

〉
q(b)
)

where

mgχ→χ = exp(〈p(χ |η)〉q(η)) ∝
L∏
l=1

χε−1
l exp(−χl 〈ηl〉q(η)).

Then the expression of q(χ) can be written as

q(χ) =
L∏
l=1

χ
ε−ρNt−1
l

exp(−ρ
〈
bl

H χ−1
l B−1bl

〉
q(b)

− χl < ηl>q(η)) (21)

where q(χ) can be viewed as the product of GIG PDF with
order ε − ρNt. Therefore, the < χi

l
>q(χ) is given by [15]

< χil>q(χ) = (
e
f
)
i
2

Kε−ρNt+i(2
√

e f )

Kε−ρNt (2
√

e f )
(22)

where e =
〈
bl

HB−1bl

〉
q(b)

and f =< ηl>q(η). For modified
Bessel function, we have

Km(x) ≈
1
2
Γ(m)(

x
2
)−m for m > 0, x → 0 (23)

and
dKm(x)

dx
+

m
x

Km(x) = −Km−1(x). (24)

Therefore, < χ−1
l
>q(χ) with i = −1 can be written as

< χ−1
l >q(χ) =

ρNt − ε

e
where e can be further deduced as〈

bl
HB−1bl

〉
q(b)
= Tr[B−1(

_

Σ
l

b +
_

bl(
_

bl)
H)].

3) Update of B: In order to improve the estimation perfor-
mance, the covariance matrix B can be constrained, which is
inspired by [17]. A possible form in [17] assumes that the
covariance matrix is a Toeplitz matrix. The matrix B is as-
sumed to have a non-stochastic variable in this paper because
of its statistical characteristic. According to equation (17),
the expression of updating B can be derived as

log p(b|χ,B) ∝ −ρ log(|X|Nt |B|L)−ρbH(X−1⊗B−1)b (25)

where X = diag(χ1, · · · χL). The derivative of (25) with
respect to B, is given by

∂(log(p(b |χ,B)))
∂B = −ρLB−1

+ ρ
L∑
l=1

1
〈χl 〉q(χ)

B−1(
_

Σ
l

b +
_

bl(
_

bl)
H)B−1.

Thus, we obtain the rule of updating of B as

B =
1
L

L∑
l=1

_

Σ
l

b +
_

bl(
_

bl)
H

〈χl〉q(χ)
(26)

where
_

bl is the l-th block in
_

b (with the size of Nt × 1), and
_

Σ
l

b is the l-th diagonal block in Σ̂b (with the size of Nt × Nt).
Furthermore, B can be substituted by a Toeplitz matrix with

B = Toeplitz([1,r, ...,rNt−1])

=


1 r r2 · · · rNt−1

r 1 r · · · rNt−2

...
...

...
. . .

...
rNt−1 rNt−2 rNt−3 · · · 1


(27)
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where
r ∆= sign(

a1
a0
)min{|

a1
a0
|,0.99}.

Also, a0 and a1 are the average value of the elements along
the main diagonal and the sub-diagonal of the matrix in (26),
respectively.

4) Update of q(σ): It can be easily obtained that

q(σ) = Ga(σ |ρM + c, ρ < ‖y − Pb‖22 >q(h) + d).

Then we have

< σ>q(σ) =
ρM + c

< ‖y − Pb‖22 >q(h) + d
. (28)

5. Simulation
In this section, the performance of the proposed VMP

algorithm is evaluated. Meanwhile, we compare the normal-
ized mean square error (NMSE) of the proposed algorithm
and the traditional ones. The measurement matrix P in sec-
tion II is given with dimension M = 560, Nt = 8, L = 128,
and the number of the nonzero values in hl isG = 20 in Fig. 3.

Figure 3 shows the performance of NMSE among OMP
algorithm, SP algorithm and the proposed VMP algorithm
versus the signal-to-noise ratio (SNR). It can be observed that
the proposed VMP channel estimate algorithm outperforms
the other traditional estimation methods as SNR increases.
As shown in Fig. 3, the proposed VMP algorithm shows bet-
ter performance compared with SP algorithm when SNR is
relative small. Besides, with the increase of SNR, the gap be-
tween the proposed algorithm and the SP algorithm becomes
smaller, for the sake that the affection of the noise is almost
negligible when SNR becomes large enough. In Fig. 3, it can
be seen that the SP algorithm performs not only better than
OMP algorithm but also than VMP algorithm when ε = 1.
However, with appropriate choice of the value of ε, the pro-
posed VMP algorithm achieves significant performance gain
over the others.

Additionally, the performance with different ε is also
shown in Fig. 4. It can be seen that with the decrease of ε
the performance of the VMP algorithm is improved. That
is because the parameter ε controls the sparsity properties,
and the case ε = 0 encourages a sparser solution than ε > 0.
Specifically, by considering the sparse block structure of the
channel vector, the complexity of proposed method can be
reduced significantly.

In Fig. 5, we set the dimension of P with M = 560,
Nt = 60, L = 30. And the number of the nonzero values in
hl is G = 4. Comparing Fig. 4 and Fig. 5, it can be easily
found that with the increasing of the number of the trans-
mission antennas, the performance of all of the algorithms
decreases. However, the proposed algorithm shows better
robustness than the others. The performance of the proposed
VMP algorithm achieves significant performance than the
others even when ε = 1.
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Fig. 3. Performance comparison of NMSE of the algorithms
with 8 antennas.
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Fig. 4. Performance comparison of NMSE of the Block-sparse
algorithms with 8 antennas.
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Fig. 5. Performance comparison of NMSE of the Block-sparse
algorithms with 60 antennas.
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6. Conclusion
This paper studies a Bayesian-VMP sparse channel es-

timation algorithm for large scale MISO-OFDM systems.
By introducing an intermediate random vector and carefully
choosing the PDF based on it, the sparsity-inducing prior of
the unknown vector is modelled. After that, an optimiza-
tion problem over CSI is constructed. The VMP algorithm
is proved to be an effective way to solve the optimization
problem. Simulations indicate the merits of the proposed
algorithm over traditional ones. The proposed algorithm is
proved to be an effective solution of estimating the sparse
channel parameters in large MISO-OFDM systems.
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