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Abstract. Direction of arrival (DOA) estimation perfor-
mance may degrade substantially when linear frequency 
modulation (LFM) signals are spectrally-overlapped in 
time-frequency (TF) domain. In order to solve this problem, 
the single-source TF points selection algorithm based on 
Wigner-Ville distribution (WVD) and Hough transform is 
studied in this paper. Firstly, the signal intersections in TF 
domain can be solved based on the Hough transform. Sec-
ondly, by removing multiple-source TF points at intersec-
tions according to the empirical threshold value which is 
calculated by using the statistical experiment method, we 
can get single-source TF points set. Then, based on the 
Euclidean distance operator, single-source TF points set 
belonging to each signal can be obtained according to the 
property that TF points of the same signal have the same 
eigenvector. Finally, the averaged spatial TF distribution 
matrix is constructed and DOA estimation is realized 
based on the multiple signal classification (MUSIC) algo-
rithm. In this way, the proposed algorithm can resolve the 
TF non-disjoint LFM signals because it can automatically 
select single-source TF points set of each signal. Simula-
tion results illustrate that the proposed algorithm possesses 
higher angular resolution and has pretty good DOA esti-
mation precision compared with existing algorithms. 
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1. Introduction 
Direction of arrival (DOA) estimation is widely used 

at radar, speech, sonar, communication and other detection 
equipment [1–5]. For the narrowband signals, traditional 
subspace algorithms which include the multiple signal 
classification (MUSIC) algorithm [1] and the estimation of 
signal parameters via rotational invariance techniques 

(ESPRIT) [2] have been verified as efficient estimation 
techniques. Linear frequency modulation (LFM) signals 
have many good characteristics, such as carrying a large 
amount of information and possessing better detection 
performance, which makes it being widely used in elec-
tronic countermeasures. However, subspace-based algo-
rithms have limitations with regard to dealing with LFM 
signals which are wideband and non-stationary. So it is 
very important to study the DOA estimation of LFM sig-
nals. TF analysis tools are widely used to deal with LFM 
signals because it can take full advantage of the non-sta-
tionary property of LFM signals [6]. Previous TF analysis 
is mainly applied to signal waveform restoration in blind 
source separation. Belouchrani et al. firstly proposed the 
concept of spatial time-frequency distribution matrix 
(STFD) based on Wigner-Ville distribution (WVD) [7] and 
then a series of DOA estimation algorithms based on STFD 
matrix have been proposed [8–11]. These algorithms use 
the STFD matrix to replace the covariance matrix in the 
MUSIC method, which forms the TF-MUSIC algorithm. 
Compared with the MUSIC algorithm, TF-MUSIC can 
provide better DOA estimation performance since the TF 
distribution spreads the noise power while localizing the 
source energy in TF domain. Early TF-MUSIC algorithms 
are based on the narrowband signal model, and gradually 
extend to the wideband signal model [12], [13]. 

In order to construct the STFD matrix, it is necessary 
to select the single-source TF points of each signal in TF 
domain. When the signals are TF-disjoint, many references 
have proposed efficient single-source TF points selection 
methods [14], [15]. The reference [14] obtained the single-
source TF points by using the clustering algorithm. In [15], 
Heidenreich applied morphological image processing to 
detect instantaneous frequency segments of each signal. 
The detected IF segments are combined based on a boot-
strap resampling technique, and the linking IF segments 
belonging to a single source are then used for DOA estima-
tion. Although these two methods all can correct select the 
single-source TF points, they only can be used when the 
signals are TF-disjoint. 
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When the signals are non-disjoint (i.e., spectrally-
overlapped) in TF domain, the studies of single-source TF 
point selection algorithms are not very full. In [16–18], the 
authors extracted single-source TF points based on STFT 
distribution. However, due to the contradiction between 
time resolution and frequency resolution, the description 
accuracy of STFT is low in TF domain, which results in 
poor DOA estimation performance. In addition, the refer-
ence [19] used the forward-backward spatial smoothing 
(FBSS) algorithm to eliminate the influence of multiple-
source TF points in TF domain. Although the algorithm 
can estimate the DOAs of LFM signals, the estimation 
accuracy is low owing to the spatial smoothing process. 
Due to the fact that WVD can more accurately describe the 
TF distribution of LFM signals, the WVD has been widely 
used to select single-source TF points. [20–21] explained 
how to avoid the cross-term TF points and obtain the auto-
term TF points, but single-source TF points selection prob-
lems are not involved. [22] proposed single-source TF 
points selection algorithm based on improved clustering 
algorithm. Although the algorithm achieves blind source 
separation of signals, it is just used in the speech signal 
process. In this paper, we mainly study the DOA estima-
tion of LFM signals. 

When multiple LFM signals are non-disjoint in TF 
domain, the TF domain contains noise TF points, cross-
term TF points and auto-term TF points. The noise TF 
points and cross-term TF points can be eliminated based on 
the corresponding algorithms [23]. The auto-term TF 
points contain single-source TF points and multiple-source 
TF points. According to [19], by carrying singular value 
decomposition (SVD) of the STFD matrix, we can obtain 
the signal subspace matrix. The matrix is column full-rank 
at the single-source TF points and the rank is equal to the 
number of signals. At the multiple-source TF points, the 
signal subspace matrix behaves as the rank deficiency, 
which means that the rank is less than the number of sig-
nals. Theoretically, if the number of signals is known, then 
single-source TF points can be selected according to the 
size of the signal subspace matrix rank by traversing the 
entire TF domain. However, in practice, the number of 
signals is unknown. Although the number of signals can be 
estimated based on the information theory criterion, the 
estimation accuracy is affected by many factors. Once the 
estimation is wrong, the subsequent DOA estimation will 
fail, and this method is very complicated. Since the distri-
bution shape of LFM signals is multiple straight lines in TF 
domain, which reminds us of the Hough transform that 
detects straight lines in the image processing. Based on the 
Hough transform, the intersections of signals in TF domain 
can be obtained. Then, taking the intersection as the center, 
multiple-source TF points can be removed based on the 
empirical threshold value which can be calculated by using 
the statistical experiment method, and single-source TF 
points are reserved. Then, according to the property that 
the TF point of the same signal have the same eigenvector, 
single-source TF points belonging to each signal can be 
obtained. Finally, the STFD matrix is constructed for each 

signal, and DOA estimation is performed based on the 
MUSIC algorithm. 

The remainder of the paper is organized as follows: 
Section 2 formulates the WVD model of LFM signals. 
Section 3 illustrates how to select single-source TF points. 
The numerical simulations and discussions are carried in 
Sec. 4. Section 5 performs experimental verification and 
Section 6 concludes the paper. 

2. WVD Model of LFM Signals 

In this paper, we consider a uniform linear array 
(ULA) has M sensors. Assuming that N far-field LFM 
signals imping on the ULA, and the array element spacing 
is d. The LFM signal sn(t) is defined as 

 2
0( ) exp( j2 j )n n ns t f t t     (1) 

where fn0 and γn denote the initial frequency and modulated 
frequency of the nth signal respectively. fn(t) = fn0 + γnt is 
the instantaneous frequency. If γn = 0, the LFM signal 
becomes common single-frequency signal. 

Assuming that the first element is set as the phase 
reference point which is located at the coordinate origin, 
then, the time delay of the nth signal on the mth sensor 
respecting to the reference sensor can be expressed as 

 ( 1) cos( )n
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  .  (2) 

So the received signals of the mth sensor is written as 

 1

2
0

1

( ) ( )

exp j2 ( ) j ( ) .

N

m n nm
n

N

n nm n nm
n

S t s t

f t t



   





 

     




  (3) 

Considering the effects of additive white Gaussian 
noise nm(t). The mth sensor output is 

 ( ) ( ) ( )m m mx t S t n t  .  (4) 

More compactly, (4) can be modeled as 

 ( ) ( ) ( ).t t t X AS N  (5) 

X(t) is M  1 array output vector and S(t) is N  1  
LFM signals vector. N(t) is M  1 noise vector. 

1 1[ ( ( )), , ( ( ))]N Nf t f t A a a  is the manifold vector and 
T

1( ( )) [exp( j ( )) , , exp( j ( )) ]n n n n n nMf t f t f t   a  is the 

steering vector of the nth source at time t, where ()T is the 
transpose operator. 

In 1932, Wigner proposed the WVD in quantum me-
chanics field [24] and Ville introduced WVD to signal 
analysis field in 1948. WVD is a very effective TF analysis 
tool. For the signal s(t), rs(t,) = s(t + ) s*(t – )  is the 
instantaneous autocorrelation of s(t), where  denotes the 
time delay and ()* is the complex conjugate operator. The 
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continuous WVD is defined as the Fourier transform of 
rs(t, ), 

 * j4WVD ( , ) ( ) ( )e df
s t f s t s t    

 


   .  (6) 

In the actual system, by sampling X(t) at the sampling 
rate fs, we can obtain the discrete vector X(k) from X(t). 
Assuming L is the sampling data length, then discrete 
pseudo WVD (DPWVD) of X(k) can be expressed as 

 
( 1) 2

*
XX

( 1) 2

( , ) 2 ( ) ( ) exp j4
L

l L

k f k l k l fl


 

   D X X .  (7) 

In the free of noise, substituting (5) into (7), we can 
obtain 

 H
XX SS( , ) ( , ) ( , ) ( , )k f k f k f k fD A D A   (8) 

where DXX and DSS are array output STFD matrix and 
signal STFD matrix, respectively. 

3. Single-source TF Points Selection 
Method Based on Hough Transform 
The non-disjoint TF distribution of LFM signals in 

TF domain can be described as Fig. 1. Figure 1(b) repre-
sents that signals are largely overlapped in TF domain, and 
the reference [19] has proposed efficient DOA estimation 
method. Therefore, we mainly study that signals are tiny 
non-disjoint in TF domain, which means that there always 
exist most TF points that are only associated with this sig-
nal, as is shown in Fig. 1(a). 

We consider that two LFM signals S1(t), S2(t) impinge 
on the ULA, then the signal STFD matrix DSS can be 
expressed as 

 1 1 1 2

2 1 2 2
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where DS1S1(t ,f) and DS2S2(t ,f) denote the signal auto-term 
TF points, DS1S2(t ,f) and DS2S1(t ,f) denote the signal cross-
term TF points. According to (8) and (9), DXX can be 
written as 

 1 1 1 2

2 1 2 2

S S S S H
XX

S S S S

( , ) ( , ) ( , )t f t f t f
 

  
 
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Equation (10) represents the distribution of array out-
put STFD matrix, which includes cross-term and auto-
term. Auto-term consists of single-source TF points and 
multiple-source TF points. The cross-term is caused by the 
bilinear operation of the WVD transform. 

Figure 2 shows different types of TF points distribu-
tion in the smoothed TF domain. Type1 represents noise-
term TF points and Type2 represents cross-term TF points. 
Type3 represents multiple-source TF points and Type4 
represents  single-source  TF points.  Among  four  types of 

 
                                 (a)                                              (b) 

Fig. 1. TF distribution condition of LFM signals. (a) Tiny 
non-disjoint LFM signals. (b) Largely non-disjoint 
LFM signals. 

 
Fig. 2. Different kinds of TF points distribution (Type1: noise 

TF points, Type2: cross-term TF points, Type3: 
multiple-source TF points, Type4: single-source TF 
points). 

TF points, according to [6], only Type4 are required for 
subsequent DOA estimation and the rest are distracters.  

In order to improve the SNR of TF distribution, 

X X
1 1

i j

M M

i j 

 WVD WVD is used for TF analysis. In the 

following section, the noise-term, cross-term and multiple-
source TF points are eliminated in turn, and the single-
source TF points belonging to each signal can be obtained. 
Then the STFD matrix is constructed and DOA estimation 
is achieved. 

3.1 Obtaining Auto-term TF Points 

Since LFM signals have ideal energy aggregation 
effect, DXX is very large at the TF ridgeline and DXX is 
close to zero at other TF points. Let X be the TF support 
domain of X(t), which satisfies 

 XX X

XX X

( , ) 0 ( , ) ,

( , ) 0 ( , ) .

t f t f

t f t f

 
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D

D
  (11) 

By filtering out the noise TF points, we can obtain the 
TF points which have enough energy. One way to do this is 
as follows: for each sampling time-slice (t, f) of DXX, the 
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following criteria can be performed for all frequency 
points. We can obtain new TF points set CA, which in-
cludes auto-term TF points and cross-term TF points. 

 XX F
1 X

XX F

( , )
( , )

max ( , )

p q

p q

p
f

t f
t f

t f
 

D

D
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where ║║F is the Frobenius norm and ε1 is the empirical 
threshold value, typically, ε1 = 0.05 when SNR = 10 dB [22]. 

In order to eliminate the cross-term TF points, we use 
the pre-whitening processing method [14]. For each TF 
point (t, f), Σ and V are eigenvalues and eigenvectors of the 
STFD matrix respectively. Defining W =Σ–½VH as the 
whitening matrix, so that 

 H H( )( )  WA WA UU I   (13) 

where ()H is the conjugate transpose operator. U = WA is 
N  N unitary matrix and I stands for the identity matrix. 
Pre-multiplying and post-multiplying (8) by W, we can get 
the whitened STFD matrix D̃XX(t, f)  

H H H
XX XX SS

H
SS

( , ) ( , ) ( , )

( , ) .

t f t f t f

t f

 



D WD W WAD A W

UD U
  (14) 

If (tc, fc)  CA is the cross-term TF point, then there 
are 

    H
XX c c SS c ctrace{ ( , )} trace{ ( , ) } 0t f t f D UD U   (15) 

where trace{} denotes the trace operator. By setting an ap-
propriate threshold value, the cross-term TF points can be 
eliminated. Thus, we can obtain auto-term TF points set A 
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( , )

( , )

t f
t f
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D
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where ε2 is an empirical value and is related to the noise. 
Typically, ε2 = 0.85 when SNR = 10 dB [23].  

3.2 Extracting Single-source TF Points 

At the signal intersections, signals are coherent owing 
to same frequency, which brings the rank deficiency of the 
signal subspace matrix. If the intersections are selected to 
construct STFD matrix, then subsequent DOA estimation 
will fail. Therefore, our goal is to remove multiple-source 
TF points and obtain single-source TF points set belonging 
to each signal. 

In theory, two LFM signals only have one intersection 
in TF domain. However, since the sampling data is discrete 
and finite, the TF distribution is somewhat wide, which is 
called the TF ridgeline. TF ridgeline reflects energy aggre-
gation effect of LFM signals. So there exist multiple TF 
points around the intersection. In order to obtain single-
source TF points, multiple-source TF points need to be 
removed according to the empirical threshold value. 

 
Fig. 3. The Hough transform schematic. (a) Plane coordinate 

domain. (b) Parameter coordinate domain. 

Hough transform detects straight lines by using the 
voting algorithm in TF domain. The basic idea is to map 
the plane coordinate system into the parametric coordinate, 
which makes the mapped results easier to detect. 

 
1 2(( , ), ( , , , )) 0mF t f a a a  .  (17) 

In the plane coordinate system, the line satisfies spe-
cific parameters (a1, a2,…,an) and (t, f) is located at the 
line. After mapping into the parameter domain,  is the 
distance between the line and the coordinate origin and  is 
the angle between  and sampling time axis. There exists 
the following relationship  

 cos( ) sin( )t f    .  (18) 

Equation (18) shows that a point in the plane coordi-
nate system corresponds to a curve in the parameter coordi-
nate system. The different points of the same line in the 
plane coordinate system intersect at a point in the parame-
ter coordinate system, as is shown in Fig. 3. 

Figure 3 shows that three points A, B, C of the same 
line in the plane coordinate domain can be mapped into 
three curves and the curves intersect at one point D. By 
integrating along with different , we can obtain the Hough 
transform. Therefore, Hough transform is a kind of projec-
tion integral essentially. 

After making the Hough transform, there exist many 
curves in the parameter coordinate domain and these 
curves have multiple intersections. We can set appropriate 
threshold value and carry accumulation statistics, then P 
peak points can be searched, which are denoted as 
(1, 1),…, (P, P). P peak points correspond to P line 
segments in the plane coordinate domain.  

Assuming that P line segments in TF domain have Q 
(Q  P (P + 1)/2) intersections (t1, f1), (t2, f2),…, (tQ, fQ), then 
the mathematical equation which each line segment satis-
fies can be calculated based on the endpoint coordinate 

 

1 1

2 2

=

=

= N N

f k t b

f k t b

f k t b


 


 


  (19) 

where k1, k2,…, kN and b1, b2,…, bN are slopes and 
intercepts of lines, respectively. 
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Assuming that there are n signals at the intersection 
(tq, fq), multiple-source TF points can be removed by set-
ting threshold value ε3. Thus, we can obtain single-source 
TF points set S = i, i = 1,2,…,n  of all LFM signals, 
and i denotes the TF points set of the ith signal. The 
threshold value ε3 is related to the snapshots LS and sam-
pling rate fS and initial frequency f0 and frequency modula-
tion rate γ of LFM signals. When the incident signals and 
sampling rate are determined, only snapshots can affect ε3. 

In order to completely remove multiple-source TF 
points and reserve as many single-source TF points as 
possible, for two LFM signals in Fig. 4, we can quantita-
tively calculate the empirical threshold value ε3 by using 
the statistics experiment method. We consider that two 
LFM signals are non-disjoint in TF domain, which means 
that the number of signals is two. By traversing all auto-
term TF points, the rank of the signal subspace matrix can 
be solved at each TF point, which is defined as R. We 
know that R is equal to the number of signals at the single-
source TF points and R is less than the number of signals at 
the multiple-source TF points. Therefore, we count the 
number of R = 2 in TF domain, i.e., the number of single-
source TF points, which is denoted as NS. Similarly, we can 
also count the number of R = 1 in TF domain, i.e., the num-
ber of multiple-source TF points, which is denoted as NM. 
NS and NM are standard quantities in the free of noise 
condition. 

Let the threshold value ε3 gradually increases under 
different SNR, we count the number of single-source TF 
points Ns and the number of multiple-source TF points Nm. 
Then successful removing rate of multiple-source TF 
points Pm and information loss rate of single-source TF 
points Ps are defined along with different SNR and ε3. 

 , .M m S s
m s

M S

N N N N
P P

N N

 
    (20) 

When the SNR is 5 dB, 10 dB, 15 dB respectively 
and ε3 vary from 1% to 10%, we calculate Pm and Ps versus 
different SNR and ε3 by carrying 1000 times Monte Carlo 
simulations, and the results are shown in Fig. 4. In 
Fig. 4(a), with the increase of the threshold value ε3, Pm 
rapidly increases. Pm is close to 1. When ε3 = 6%, which 
means that multiple-source TF points are completely re-
moved. In addition, the higher SNR is, the larger Pm is at 
the same ε3, which means better removing effectiveness of 
multiple-source TF points. In Fig. 4(b), with the increase of 
threshold value ε3, Ps firstly remains unchanged and then 
slowly increases, which is consistent with the practical 
situation. Because there are multiple-source TF points at 
the intersections. Only ε3 increase to somewhat size, single-
source TF points will be loss. What is more, due to Ps is 
not sensitive to the SNR, so Ps is basically same at differ-
ent SNR. In this paper, the threshold value ε3 needs to 
satisfy the case that Pm = 100% and Ps is as small as possible. 
If single-source TF points are overmuch removed, it has 
little impact on DOA estimation. Once multiple-source TF 
points are not completely removed, which will result in the 
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(a) Successful removing rate of multiple-source TF points. 
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(b) Information loss rate of single-source TF points. 

Fig. 4. Calculating the empirical threshold value ε3.  

failure of DOA estimation. So we take the empirical 
threshold value as ε3 = 6% when SNR = 10 dB. In the fol-
lowing simulation analysis, we will verify the correctness 
of ε3 = 6% in the DOA estimation. Due to the TF energy 
aggregation effect of WVD, no matter how the initial fre-
quency and modulated frequency of LFM signal change, 
ε3 = 6% can be applied to all WVD. Therefore, in the prac-
tical application, we remove multiple-source TF points in 
the set [tq – ε3Ls, tq + ε3Ls] and obtain single-source TF 
points set. 

3.3 Constructing STFD Matrix 

For the signal STFD matrix, the diagonal elements 
have a larger value and the remaining elements are close to 
zero at the single-source TF points [14]. Therefore, based 
to (8), the single-source TF points set i of each signal 
satisfies 

 ( , ) ( , ) ( , )
i i

H
XX S S i i it f t f t f  D D a a .  (21) 

For two TF points (tj, fj) and (tk, fk) in i, equation (21) 
can be written as 

 
H

XX

H
XX

( , ) ( , ) ,

( , ) ( , ) .
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i i

j j S S j j i i

k k S S k k i i

t f t f

t f t f





D D a a

D D a a
  (22) 

Equation (22) indicates the STFD matrix DXX of dif-
ferent TF points of in i have same eigenvector ai. For any 
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TF point (tp, fp) of i, we can calculate the main eigenvalue 
(tp, fp) and corresponding principal eigenvector a(tp, fp) 
from the STFD matrix DXX. Without loss of generality, we 
can make the first element of a(tp, fp) real and positive, 
namely 
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    (23) 

where am(tp, fp) denotes the mth element of a(tp, fp). 

For single-source TF points set S, mathematically, 
we decide any two TF points (ti, fi) and (tj, fj) to belong to 
the same signal if they have the following relationship 

 
4d( ( , ), ( , ))i i j jt f t f  a a   (24) 

where d() is the distance operator, which denotes the 
Euclidean distance between (ti, fi) and (tj, fj). ε4 is an empiri-
cal threshold. Typically, ε4 = 0.05 when SNR = 10 dB [14]. 
By traversing the entire set S, we can obtain the single-
source TF points i of each signal. 

In order to make full use of the single-source TF 
points, we calculate the averaged STFD matrix D̅i(t, f)  
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1
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i
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t f t f i N
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where Σi are the number of single-source TF points in i. 
D̅i(t, f) is similar to the covariance matrix in the subspace-
based algorithm. So we construct spectrum search function 
and carry DOA estimation based on the MUSIC algorithm. 
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where a(, ) is steering vector and Un is the noise 
subspace. 

For the readers’ convenience, the procedure of single-
source TF points selection algorithm based on Hough 
transform is summarized as follows: 

(1) Filter out noise based on empirical threshold value ε1. 

(2) Eliminate cross-term TF points of WVD based on 
pre-whitening algorithm and obtain auto-term TF 
points. 

(3) Remove multiple-source TF points based on Hough 
transform and obtain single-source TF points. 

(4) Classify signals according to the Euclidean distance 
operator and get single-source TF points i of each 
signal. 

(5) For every signal, calculate the averaged STFD matrix 
D̅i(t, f) in i , then construct the spectrum search 

function P() = 1/(aH()UnUn
Ha()) based on the 

MUSIC algorithm. 

4. Simulation and Results 
In order to verify the performance of the proposed 

algorithm, the following simulations are carried. We con-
sider that three spectrally-overlapped LFM signals come 
from angles: –20°, 0° and 20°. The ULA has 8 elements 
and array element spacing d is half of wavelength, which 
corresponds to the lowest frequency of LFM signals. The 
sampling rate is 360 MHz and snapshots are 512. The fre-
quency distribution of three signals are [80, 140] MHz, 
[20, 100] MHz, [160, 30] MHz respectively, and all signals 
have normalized amplitudes. The proposed algorithm is 
implemented by a PC with AMD Phenom™ IIX6 1055T 
Processor 2.8 GHz CPU and 8 GB RAM by running the 
MATLAB codes. Due to the fact that the calculations of 
Hough transform have been integrated as the functions of 
MATLAB, we just need to use these functions when we 
implement the proposed algorithm.  

4.1 The TF Distribution of Multiple LFM 
Signals 

Assuming there are two intersections between three 
LFM signals, then the TF distribution is shown in Fig. 5(a). 
Firstly, we apply the proposed algorithm to remove cross-
term TF points, and we can obtain auto-term TF points 
distribution in Fig. 5(b). According to the analysis of Fig. 4, 
multiple-source TF points can be eliminated based on 
ε3 = 6%. Then we can obtain single-source TF points 
distribution in Fig. 5(c). Finally, single-source TF points of 
each signal can be classified by using the Euclidean 
distance operator, as is shown in Fig. 5(d). 

4.2 The Analysis of Empirical Threshold 
Value 

The proposed algorithm involves four empirical 
threshold values. The threshold value ε1 eliminates the 
effect of noise in TF domain, which is related to the SNR. 
We take ε1 = 0.05 when SNR = 10 dB, and ε1 has been 
verified by [22]. The threshold value ε2 removes cross-term 
TF points. The bigger ε2 is, the more complete cross-term 
TF points will be eliminated. But too big ε2 will result in 
the loss of the auto-term TF points. Therefore, we take 
ε2 = 0.85 when SNR = 10 dB in this paper and ε2 has been 
verified by [23]. Typically, ε4 = 0.05, which is also verified 
by [14]. This paper firstly proposes the concept of 
threshold value ε3, in order to completely remove multiple-
source TF points and reserve as many single-source TF 
points as possible, this paper uses the statistical experiment 
method. In the above analysis, we take ε3 = 6%. Multiple-
source TF points may be residual when ε3 is too small, 
which will result in the failure of DOA estimation. When ε3 
is too big, the algorithm can correctly estimate the DOA. 
However, the loss of single-source TF points will bring the 
reduction of SNR. Figure 6(a), 6(b) and 6(c) simulate the 
spatial distribution of DOAs when ε3 = 4%, ε3 = 6%  
and ε3 = 10%, respectively. It can be seen from Fig. 6 that the 
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(a) TF distribution of LFM signals. 
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(b) Auto-term TF points distribution. 
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(c) Single-source TF points distribution. 
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(d) Single-source TF points distribution of each signal. 

Fig. 5. TF distribution of three LFM signals. 

DOA estimation will be wrong when ε3 = 4%, since 
multiple-source TF points are not completely removed, 
which is consistent with the analysis in Fig. 4(a). When 
ε3 = 6% or ε3 = 10%, correct DOA estimation all can be 
achieved, but Figure 6(b) has stronger spectral peak energy 
aggregation. Therefore, in order to obtain better SNR, we 
generally take ε3 = 6% in the practical application. 
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(b) 3 6%   
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(c) 3 10%   

Fig. 6. Spatial spectra distribution versus threshold value 3 . 
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4.3 The Spatial Angular Resolution and DOA 
Estimation Accuracy Analysis of Different 
Algorithms 

In order to analyze the angular resolution and DOA 
estimation accuracy of the proposed algorithm, the compar-
ison between the proposed algorithm, the TF-MUSIC algo-
rithm [8] and the TF-FBSS-MUSIC algorithm [19] are 
presented in Fig. 7 and Fig. 8. The cross-term TF points of 
TF-MUSIC algorithm and TF-FBSS-MUSIC algorithm are 
also eliminated based on the pre-whitening algorithm [14]. 
In addition, we assume the TF points of the TF-MUSIC 
algorithm are available. We select the TF points at the TF 
ridgeline to estimate DOAs. We consider that two spec-
trally-overlapped LFM signals come from angles: –5° and 
5°. The frequency distribution of two signals are 
[80, 140] MHz, [160, 30] MHz respectively. The spatial 
spectrum distribution of three algorithms is shown in 
Fig. 7(a). It can be seen that three algorithms all can 
achieve correct DOA estimation, and the proposed algo-
rithm has the strongest spectral peak energy aggregation. In 
order to further analyze DOA estimation precision, the 
root-mean-square error (RMSE) is introduced. M stands for 
the number of Monte Carlo simulations and N is the num-
ber of signals. m̂n  is the estimated value of n in the mth 

simulation. 

 2
DOA

1 1

ˆ( ) .
M N

mn n
m n

RMSE MN 
 

    (27) 

The Cramer-Rao Lower Bound (CRB) is also 
introduced in following simulations [25]. We carry 1000 
times Monte Carlo simulations and Figure 7(b) shows that 
the DOA estimation RMSE of two LFM signals along with 
SNR when the array element spacing is 10°. We can see 
from Fig. 7(b) that the RMSE of three algorithms decrease 
rapidly with the increase of the SNR. In general, the TF-
FBSS-MUSIC algorithm has the worst estimation precision, 
followed by the TF-MUSIC algorithm. The proposed 
algorithm has the highest DOA estimation precision. 
Because the TF-FBSS-MUSIC is a kind of dimension 
reduction algorithm due to perform the spatial smoothing 
algorithm, which results in the loss of the array aperture. As 
a result, the estimation accuracy is reduced. The TF-MUSIC 
algorithm performs DOA estimation only by using the TF 
points at the TF ridgeline. When the SNR is larger, the 
estimation precision is close to the proposed algorithm. 
However, when the SNR is smaller, the estimation accuracy 
is poor owing to the distracters. In addition, it is not realistic 
to assume that the TF points are available at the TF ridgeline. 
The proposed algorithm extracts single-source TF points of 
each signal by removing the cross-term TF points and 
multiple-source TF points, and calculates the averaged 
STFD matrix of the all TF points belonging to each signal. 
So the proposed algorithm has the best DOA estimation 
precision. 

The incident angles are reduced to –0.5° and 0.5°, and 
other simulation conditions remain unchanged. The spatial 

spectrum distribution of the proposed algorithm is shown 
in Fig. 8(a) when SNR is 10 dB. It can be seen that the 
proposed algorithm can still distinguish two signals. The 
mainly reason is that the single-source TF points of each 
signal are extracted based on Hough transform. Although 
the signals are closely-spaced, they are still distinctly dis-
tributed in the TF domain. In the same way, the RMSE 
versus SNR is shown in Fig. 8(b). We can see that the 
proposed algorithm still has the best DOA estimation preci-
sion. When the signal spacing is smaller or the SNR is 
lower, the estimation performance will become poor. 

According to the simulation results of Fig. 7 and 
Fig. 8, we can see that the proposed algorithm has good 
angular resolution, which can up to 1° when SNR is 10 dB. 
Compared with the TF-MUSIC algorithm and the TF-
FBSS-MUSIC algorithm, the proposed algorithm has 
higher DOA estimation accuracy. We consider that the 
ULA has M sensors and N far-field LFM signals imping on 
the ULA. The snapshots are LS. In the TF-FBSS-MUSIC 
algorithm, we assume that the sub-array elements are P 
(P < M). The computational complexity of several algo-
rithms is analyzed in Tab. 1. We can see from Tab. 1 that 
the TF-FBSS-MUSIC algorithm has the lowest  computation 
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(a) Spatial spectra distribution of three algorithms. 
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(b) The RMSE of DOAs estimation versus SNR. 

Fig. 7. The estimation results (DOA spacing: 10°). 
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(a) Spatial spectra distribution of proposed algorithm. 
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(b) The RMSE of DOAs estimation versus SNR. 

Fig. 8. The estimation results (DOA spacing: 1°). 
 

Algorithm Computation Complexity 

TF-FBSS-MUSIC [19] O(NP2LS
2log2LS)  

TF-MUSIC [8] O(NM2LS
2log2LS)  

The proposed method O(NM2LS
2log2LS + Δ)  

Tab. 1. Comparison of computation complexity. 

complexity. The TF-MUSIC algorithm and the proposed 
algorithm have similar computational complexity. Δ is the 
increased calculation owing to select the single-source TF 
points and Δ is much smaller than NM2LS

2log2LS. In sum-
mary, the TF-MUSIC algorithm is not practical to assume 
that the TF points are available at the ridgeline, and the TF-
FBSS-MUSIC algorithm possesses poor estimation accu-
racy. In contrast, the proposed algorithm has higher estima-
tion accuracy and acceptable computational complexity, 
which will have broad application prospects in the 
engineering. 

5. Experimental Verification 
In order to verify the effectiveness of the proposed 

method, we carry out the experiment in the standard micro- 

Computer

Turnable 8 channels 
digital receiver

Data collector
Signal 

generator 2
Signal 

generator 1

Standard horn

ULA with 8 sensors

 
Fig. 9. The sketch map of the experimental platform. 

wave anechoic chamber. It should be noted that the refer-
ence [19] has constructed the hardware experimental plat-
form, and we use the same platform to verify the proposed 
algorithm. The sketch map of the platform is shown in 
Fig. 9. 

We consider that the ULA has eight sensors and two 
LFM signals imping on the ULA. The eight channels digi-
tal receiver receives signals from the ULA and stores sig-
nals into the data collector, then, the computer can use the 
proposed algorithm to estimate DOAs of the signals. In the 
standard microwave anechoic chamber, the turntable is 
controlled by the computer and the distance between the 
horn and the turntable is 17 m. The standard horns are 
respectively located at –10° and 10° relative to the ULA. 
We use two signal generators to produce two LFM sig- 
nals whose  frequency  distributions are [30, 120] MHz and 

 
(a) TF distribution after eliminating noise. 

 
(b) TF distribution after removing cross-term. 
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(c) Peak distribution in the parameter domain. 

 
(d) Line detection result based on Hough transform. 

 
(e) Single-source TF points set of each signal. 
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(f) The spatial MUSIC spectrum of LFM signals. 

Fig. 10. The sketch map of the experimental platform. 

[120, 30] MHz, respectively. The amplitude of the signals 
is 0 dBm. The sampling frequency of the data collector is 
300 MHz and the sampling snapshots are 1024. Based on 
the proposed algorithm, the TF distribution results of two 
LFM signals are shown in Fig. 10. 

After eliminating noise, the TF distribution is shown 
in Fig. 10(a). Based on the pre-whitening algorithm, it can 
be seen that the cross-term points are basically removed in 
TF domain, as it is shown in Fig. 10(b). In addition, the TF 
energy aggregation of LFM signals is pretty good. Fig-
ure 10(c) shows two searched peaks which is indicated by 
white and Figure 10(d) shows the detected two line seg-
ments. The blue and red are endpoints of detected line 
segments respectively. By removing multiple-source TF 
points, Figure 10(e) shows the single-source TF points set 
belonging to each signals. Then, the averaged spatial TF 
distribution matrix is constructed and DOA estimation is 
realized based on the multiple signal classification 
(MUSIC) algorithm. It can be seen from Fig. 10(f) that 
DOA estimations are –9.92° and 10.13°, which are in 
accordance with the sets. The experimental results show 
that the proposed algorithm can efficiently deal with the 
spectrally-overlapped LFM signals and has a broad appli-
cation prospect. 

6. Conclusion 
In order to achieve the DOA estimation when multi-

ple LFM signals are non-disjoint in TF domain, this paper 
proposes the single-source TF points selection algorithm 
based on the WVD and Hough transform. Firstly, we use 
the threshold value ε1 to filter out the noise. Then we elimi-
nate cross-term TF points of WVD based on the pre-
whitening algorithm. In order to completely remove multi-
ple-source TF points and reserve as many single-source TF 
points as possible, this paper firstly proposes the concept of 
threshold value ε3 by using the statistical experiment 
method. Since the proposed algorithm can automatically 
select single-source TF points set belonging to each signal, 
it has higher spatial resolution and pretty good DOA esti-
mation accuracy compared with existing methods. 
Although the current algorithm is only applicable to LFM 
signals which satisfy the straight line distribution in TF 
domain, generalized Hough transform can detect other 
forms of signals with different shapes, such as sinusoidal 
FM signal and frequency-shift-keying signal. Therefore, 
the proposed algorithm has broad application prospect in 
the electronic countermeasures. 
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