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Abstract. It has been well known that Massive multiple-
input-multiple-output (MIMO) radar can provide an excel-
lent performance in direction of arrival (DOA) estimation.
However, the significant increasing data size will seriously
reduce the computational efficiency in practical application.
Although compressed measurement can reduce data size and
computational complexities, improper compression will en-
hance the environment noise. In this paper, a robustmeasure-
ment matrix is designed to reduce data size and environment
noise. Different from the general compressed sensing (CS)
schemes, the optimization function is established by consider-
ing the overall mutual coherence of dictionary and the energy
of measurement matrix, which is more suitable for noisy envi-
ronment. The optimization function is highly non-convex due
to the rank shrinkage of measurement matrix. To solve this
problem, an alternating minimization scheme based on ma-
trix factorization and Principal Component Analysis (PCA)
is proposed. Moreover, the structure of measurement ma-
trix is designed for massive MIMO receiver. Furthermore,
numerous results demonstrate this scheme has a better esti-
mation performance than random measurement method and
general CS schemes in the noisy environment.

Keywords
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1. Introduction
Direction of arrival (DOA) estimation is an important

research topic of array signal processing [1]. Currently,
massive multiple-input-multiple-output (MIMO) radar has
been widely concerned because of its benefits, such as large
aperture, high degrees of freedom (DOF) and super resolu-
tion [2–4]. Although massive MIMO has great advantages
in DOA estimation, its application will also be limited by
the increasing data size of received signal. Thus, compu-
tational complexity is necessary to be concerned due to the
high dimensional matrix operations. However, it is diffi-
cult to avoid these operations from an algorithm perspective.

In order to guarantee the efficiency and effectiveness of mas-
sive MIMO system, reasonably reducing measurement di-
mension is a feasible way.

Changing array structure is one of the most common
ways to reduce measurement dimension. Compared with
uniform linear arrays (ULA), the sparse linear arrays can
achieve the equivalent performance using fewer physical an-
tennas [5–7]. The nested array [8], [9] and the co-prime
array [10] are the two most famous structures. However, it’s
hard to reconfigure the array structure of an existent massive
MIMO. In order to reconfigure, the compressed measure-
ment matrix is designed in hardware to replace changing
exist structure [11]. In addition, compressed sensing (CS)
technique provides a new perspective for selecting the opti-
mal measurement matrix.

According to CS theory, the low mutual coherence be-
tween sparse dictionaries will provide a well recovery per-
formance. Generally, the random matrices such as Gaussian
or Bernoulli distributions which have excellent incoherence
property can be adopted as measurement matrix [12]. A ran-
dom measurement matrix based on Gaussian distribution is
designed in [13]. However, the average mutual coherence of
random matrices are not the lowest. In [14], an alternating
minimization algorithm is proposed to optimize measure-
ment matrix, which can reduce the average mutual coherence
between equivalent sparse dictionaries and provide a better
recovery performance than random matrices. The equian-
gular tight frame (ETF) criterion is used to design the mea-
surement matrix in [15–18], which has lower average mutual
coherence than [14]. Furthermore, the closed-form solution
of above optimization problem is given in [18], which can
avoid a heavy searching. However, these schemes are de-
signed based on a noiseless model, which will result in a bad
estimation performance at low SNR. There are some stud-
ies about measurement matrix design for enhancing system
robustness [19–21]. A measurement matrix of compressed
array is designed in [19] based on Cramer-Rao bound (CRB)
with the prior information of received signals. Although the
estimation performance of this method approaches to CRB,
it is not suitable for unknown noise. In [20], measurement
matrix is optimized by maximizing the mutual information
of the signal, which can enhance the robustness of DOA
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estimators. However, it also need to know the distributions
of targets and the SNR of environment. In [21], measure-
ment matrix is designed by taking sparse representation error
into consideration. Although this optimization scheme can
suppress the noise without any prior information, a heavy
linear searching steps are performed during each iteration of
alternating method.

In this paper, we propose a novel approach to design the
robust measurement matrix which can reduce the computa-
tional complexity of DOA estimators in noisy environment.
Different from the traditionalmeasurementmatrices [13–18],
we take both mutual coherence of dictionary and the energy
of measurement matrix into consideration which can provide
an excellent performance in the case of low SNR. Moreover,
this algorithm does not require any prior information of tar-
gets and environment. Comparedwith [21], themeasurement
matrix can be figured out by matrix factorization method
and Principle Component Analysis (PCA), which can avoid
a heavy linear searching. Numerical results demonstrate the
superiority of proposed scheme.

The remainder is arranged as follows. The spatial sparse
signal model and the measurement model of DOA estimation
system are established in Sec. 2. The optimization criterion
and the specific optimization procedures of proposed algo-
rithm are presented in Sec. 3. Simulation results are used to
prove the validity of proposed scheme in Sec. 4. The Sec-
tion 5 conclude the whole paper.

Notations: Boldface upper-case letters, boldface lower-
case letters and non-boldface letters respectively denote ma-
trices, vectors and scalars. C denotes the complex number
field. In denotes a n× n identity matrix, 0m×n denotes an all-
zero matrix. (·)−1, (·)T and (·)H represent inverse, transpose,
conjugate transpose operators of matrix or vector. Tr(·) de-
notes the trace of matrix, respectively. | | · | |F denotes the
Frobenius norm of a matrix.

2. System Model
In this section, the spatial sparse signal model and the

measurement model are established.

2.1 Signal Model
Consider that there are P far-field narrow-band uncorre-

lated signals impinging on a N-element uniform linear array
(ULA) from directions θ = [θ1, θ2 · · · , θP]. The array re-
ceived signals x(t) can be described as

x(t) =
P∑

p=1
a(θp)sp(t) + n(t) = A(θ)s(t) + n(t) (1)

where A(θ)=[a(θ1),a(θ2), · · · ,a(θP)] ∈ C
N×P is the array

manifold, a(θp) = [1,e
−j2πd sin(θp )

λ , · · · ,e
−j2π(N−1)d sin(θp )

λ ]T is the
steering vector corresponding to the p-th signal, λ denotes
the carrier wavelength, d represents the distance between ad-
jacent elements, s(t)=[s1(t), s2(t), · · · , sP(t)]T ∈ CP×1 denotes
the signal vector, n(t) ∈ CN×1 denotes the noise matrix.

If we divide the spatial domain into L (P � L) grids,
the sampling signal of all grids can be considered as the
sparse signal. Then the sparse signal model of DOA can be
expressed as

x(t) = DS(t) + n(t) (2)

where D = [a(θ1),a(θ2), · · · ,a(θL)] ∈ CN×L is the
sparse dictionary, S(t) ∈ CL×1 denotes the spatial sparse
signal vector.

2.2 Measurement Model
The above model is established under the condition of

a dedicated radio frequency (RF) receiver chain for each an-
tenna element. To reduce the data size and the number of
RF receiver chains, a measurement matrix Φ can be designed
in the masssive MIMO receiver. The measurement matrix
is a M × N, (M < N) complex matrix, which can be ex-
pressed as

Φ=


W11ejω11 W12ejω12 · · · W1Nejω1N

W21ejω21 W22ejω22 · · · W2Nejω2N

...
...

. . .
...

WM1ejωM1 WM2ejωM2 · · · WMNejωMN


(3)

whereW and ω respectively denote the amplitude and phase.
Furthermore, the amplitude and phase can be implemented
by amplifier and phaser in hardware. The architecture of
measurement system can be represented in Fig. 1.

It is worth noting that Φ can compress the N-element
array into a M-dimensional measurement. The compressed
measurement can be expressed as

y(t) = Φx(t) ∈ CM×1. (4)

Additionally, the measurement compression ratio β can
be defined as

β=
N
M
. (5)

With substituting (2) into (4), the measurement model
is derived as

y(t) = ΦDS(t) + Φn(t), (6)

where Φ ∈ CM×N is the measurement matrix. Obviously,
the application of Φ can extremely reduce the data size and
the computational complexities of DOA estimators. How-
ever, inappropriate dimensionality reduction operation will
lead to performance loss and increase noise. Thus, choosing
optimal Φ is the key operation to ensure estimation accuracy.
In next section, an algorithm is proposed to design optimal
measurement matrix Φ.
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Fig. 1. The architecture of measurement system.

3. Measurement Matrix Design Based
on CS
In this section, the optimization problem is formulated.

In addition, an alternating minimization scheme based on
matrix factorization and PCA method is proposed to design
measurement matrix.

3.1 The Optimization Criterion and Problem
Formulation
According to CS theory, the equivalent dictionary E is

defined as
E = ΦD (7)

where Φ ∈ CM×N (M < N) is the measurement matrix,
D ∈ CN×L is the sparse dictionary. Then the mutual coher-
ence of equivalent dictionary mentioned in [14] is defined as

µ(E) ∆= max
1≤i,j≤M

��EH
i Ej

��
‖Ei ‖2

Ej


2

(8)

where Ei and Ej are the i-th and j-th columns of E, respec-
tively. If the columns of E have been normalized, the Gram
matrix G ∆

= EHE can be used to express mutual coherence.

To guarantee the recovery accuracy, the low bound of
mutual coherence

√
L−M

M(L−1) , (M � L) is chosen as the recov-
ery condition. The equiangular tight frame (ETF) is proposed
to design measurement matrix which is satisfied the recovery
condition [15], [16]. Moreover, the optimization problem
with the ETF criterion can be depicted as

min
Φ, H∈Hε

‖G −H‖F (9)

where theH ∈ CL×L is the target of Grammatrix that belongs
to following domain

Hε
∆
=

{
H

��H = HH ,H(i, i) = 1,max
i,j
|H(i, j)| ≤ ε

}
, (10)

in which ε is a constant to control mutual coherence.

In practice, if Φ is only chosen by following the ETF
criterion, the noise term (Φn) will be enhanced in noisy en-
vironment. To suppress the increasing noise (Φn), the value
of ‖Φn‖2F should be taken into consideration in measurement
matrix design [21]. However, it is hard to obtain the precise
information of environment noise. Then the following norm
property can be used to suppress ‖Φn‖2F.

‖Φn‖2F ≤ ‖Φ‖
2
F ‖n‖

2
F . (11)

Therefore, we can suppress the ‖Φn‖2F by minimizing ‖Φ‖2F.
Moreover, the robust optimization problem can be estab-
lished as

min
Φ, H∈Hε

‖G −H‖F + γ ‖Φ‖2F , (12)

where the γ is a trade-off parameter.

3.2 Optimization Design of Robust
Measurement Matrix
Different from the dictionary in traditional CS, the over-

complete sparse dictionary D is designed by its real array
structure and the grids of spatial domain. Note that the grid
number of spatial domain (L) should be bigger than the num-
ber of antennas (N). From the physical structure of array
manifold, we notice that the sparse dictionary D has full row
rank. With singular value decomposition (SVD), the sparse
dictionary D can be decomposed into

D = U
[

ΛN×N 0N×(L−N )

]
VH (13)

where ΛN×N is the singular value matrix of the sparse dic-
tionary, U and V are matrices with proper dimensions. For
convenience of calculation, the ΛN×N can be reprocessed
by

[Λ]k ,k=
{ ��[Λ]k ,k ��, if

��[Λ]k ,k �� ≥ δmin
δmin, otherwise (14)

where [Λ]k ,k denotes the k-th (k ≤ N) entry of ΛN×N , δmin
denotes a small constant. Then the sparse dictionary D̃ can
be normalized by

D̃ =
√

N
D
‖D‖2F

. (15)

The Gram matrix can be calculated by
G̃(Φ) = D̃HΦHΦD̃. (16)

The target Gram matrix H can be constructed by

H(i, j) =


1, if i = j
G̃(i, j), if

��G̃(i, j)
�� ≤ ε, i , j

ε · sign(G̃(i, j)), otherwise
(17)

where H(i, j) denotes the off-diagonal entry of H, G̃(i, j)
denotes the the off-diagonal entry of G̃.

Consequently, the optimization problem (12) can be
rewritten as

min
Φ,H

H − D̃HΦHΦD̃
2
F + γ ‖Φ‖

2
F . (18)



RADIOENGINEERING, VOL. 28, NO. 1, APRIL 2019 279

By defining T=ΦHΦ, the problem (18) is equivalent to

min
T,H

H − D̃HTD̃
2
F + γTr(T)

s.t. rank(T) ≤ M,T ≥ 0.
(19)

Clearly, the above function of Φ is highly non-convex.
Thus, the linear search method cannot be directly used to
achieve the optimal. To solve this problem, the non-convex
problem (19) can be relaxed to

min
T,H

H − D̃HTD̃
2
F + γTr(T). (20)

It is worth noting that the cost function of T is convex
for every fixed H. Then the gradient ∇T f (T,H) and the sec-
ond order gradient ∇2

T f (T,H) of the cost function in terms
of T can be respectively calculated as

∇T f (T,H)=2(D̃D̃HTD̃D̃H−(D̃HD̃H−
γ

2
IN)), (21)

∇2
T f (T,H)=D̃D̃HD̃D̃H>0. (22)

Obviously, the optimal T with fixed H of problem (20)
can be achieved under the condition ∇T f (T,H)=0. Thus, the
optimal T′opt can be derived as

T′opt=Ã−HQÃ−1 (23)

where Q=(D̃HD̃H−
γ
2 IN) and Ã=ÃH=D̃D̃H. Additionally, Ã

is a N × N full rank matrix. With the eigenvalue decompo-
sition (EVD), Ã can be decomposed into

Ã=UΣ2UH (24)

whereU andΣ2 denote the eigenvector matrix and eigenvalue
matrix respectively. Then the target T′opt can be rewritten as

T′opt = UΣ−2JΣ−2UH (25)

where J=UHQU. It is also worth noting that T′opt is the
solution of (20), not the solution of (18). In another word,
when the rank of T′opt is larger than M , the optimal Φ can
not be decomposed from T′opt. Principal Component Anal-
ysis (PCA) method is a classical dimensionality reduction
method, which can approximate the original matrix by ignor-
ing the small eigenvalues. Thus, we reconstruct the target
T′opt by PCA method. By decomposing J=VTΛ2VH

T , the
eigenvalue of J can be changed into

Λ̃2=


Λ2, if rank(Λ2) ≤ M[

Λ2
M 0
0 0

]
, otherwise (26)

where Λ2
M consists of M largest eigenvalues of J. Moreover,

the new target can be derived as

T∗opt = UΣ−2VT Λ̃2VH
T Σ−2UH. (27)

Hence, the optimization problem (18) can be con-
verted into

min
Φ

T∗opt − ΦHΦ
2
F . (28)

Remark that the above optimization problem (28) can be
solved by exhaustive searching method. To avoid a heavy lin-
ear searching steps, we can use a matrix factorization method
to get the nearest solution Φ′opt. Furthermore, when H and D̃
are fixed, the closed-form solution of (28) can be derived as

Φ′opt = UM

[
Λ̃M×M 0M×(N−M)

]
VH
T Σ−2UH (29)

where UM is an arbitrary unitary matrix with proper dimen-
sion. Then we use an alternating minimization algorithm to
get the optimal, which was mentioned by [22], [23]. More-
over, the convergence of the alternatingminimizationmethod
can be found in [22], [23]. The initial Φ0 is chosen as a ran-
dom matrix. Generally, ε is chosen as the low bound of
mutual coherence. Above all, the robust measurement ma-
trix design algorithm is concluded as follow:

• Step 1: Select sparse dictionary D, the control constant
ε, thethreshold δmin and the trade-off parameter γ.

• Step 2: Initialize measurement matrix Φ with Φ0.

• Step 3: Normalize D to D̃ with (15).

• Step 4: Calculate the Grammatrix G according to (16).

• Step 5: Construct target Gram matrixH based on (17).

• Step 6: Compute the optimal target T′opt with (23).

• Step 7: Reconstruct T∗opt on the basis of (27).

• Step 8: Figure out the nearest solution Φ′opt with (29).

• Step 9: Update Φ with the nearest solution Φ′opt, and
then go to the Step 4 unless the measurement matrix
reaches the optimal Φopt.

Remark that the optimal measurement matrix will be
rewritten as (3) and fixed in hardware by phasers and am-
plifers. Hencely, this proposed scheme is off-line, which
means the proposed scheme will radically reduce the compu-
tational complexities of DOA estimators without considering
its own.

4. Simulation Results
In this section, some simulations are presented to ver-

ify the effectiveness of the proposed scheme. The random
measurement method [13], the Elad’s algorithm [14] and
the LZYCB algorithm [18] are compared with the proposed
scheme.

In the simulations below, MVDR algorithm is exploited
to estimate DOA. The MVDR spatial spectrum estimator can
be described as

PMVDR(θ) =
1

bH(θ)R−1
yy b(θ)

(30)
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where Ryy =
1
T

T∑
t=1

y(t)yH(t) denotes the covariance matrix

of the signal, T is the snapshots, b(θ) = Φa(θ) is the steering
vector. The following root mean square error (RMSE) is used
for performance measure

RMSE =

√√√
1

MtP

Mt∑
m=1

P∑
p=1

(
_

θm,p − θp

)2
(31)

where the Mt is the number of Monte-Carlo and the P is
target number. Moreover, we suppose that the massive array
is chosen as a 50-element ULA and the distance between
adjacent elements is half of wavelength.

In the first simulation, we discuss the convergence and
selection of alternating iteration number in different trade-
off parameters. The compression ratio is chosen as 5. The
spatial domain grid is divided into 0.1◦. Then the value
of cost function (18) during optimization iteration is shown
in the Fig. 2.

From Fig. 2, we can notice that the proposed scheme
has the same convergence rate in different γ. Moreover, when
the iteration number is larger than 50, Φ can be considered
as approaching optimal. Thus, the iteration number can be
properly chosen as 50.

In the second simulation, we discuss the effect of com-
pression ratio with different SNR. We assume that there is
one target. The searching step is 0.01◦. The number of snap-
shots is fixed to T = 100. In each case, 5,000 Monte-Carlo
are carried out. Finally, the effect of compression ratio in
different SNR are shown in Fig. 3.

Figure 3 demonstrates that the estimation accuracy will
decrease with the increasing compression ratio. Thus, it
is important to choose a proper compression rate follow-
ing different needs. To trade off the performance and data
size, the compression ratio is chosen as 5 in the follow-
ing simulations.

In the third simulation, we discuss the selection of trade-
off parameter γ in different SNR. Other conditions are same
as the second simulation.

According to Fig. 4, the trade-off parameter γ = 1 is
optimal when the range of SNR is−15 dB to−5 dB. However,
Figure 5 shows that the DOA performance has less related
to γ in the high SNR. Thus, it is proved that the constraint
‖Φ‖2F has less effect on the DOA estimation at high SNR. To
improve the robustness in noisy environment, the γ is chosen
as 1 in the following simulations.

In the fourth simulation, different measurement
schemes are compared under multi-target conditions. In
Fig. 6 and Fig. 7, we assume that there are 9 signals imping-
ing from directions θ = [−8◦,−6◦,−4◦,−2◦,0◦,2◦,4◦,6◦,8◦],
the SNR is set as 20 dB. The other conditions are followed
by the second simulation.
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Fig. 2. The value of cost function versus iteration number.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−2

10
−1

10
0

Trade−off parameter (γ)

R
M

S
E

 (
d

e
g

)

SNR=−15dB

SNR=−10dB

SNR=−5dB

Fig. 4. The trade-off parameter γ in low SNR.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−3

10
−2

10
−1

Trade−off parameter (γ)

R
M

S
E

 (
d

e
g

)

SNR=0dB

SNR=5dB

SNR=10dB

SNR=15dB

Fig. 5. The trade-off parameter γ in high SNR.



RADIOENGINEERING, VOL. 28, NO. 1, APRIL 2019 281

From Fig. 6, we can see that the proposed scheme and
the LZYCB can provide higher resolution than other com-
pressed schemes in the white noise. Furthermore, Figure 7
shows that the proposed scheme can also maintain high reso-
lution in Gaussian colored noise. To illustrate the superiority
of proposed scheme clearly, the RMSE of different schemes
versus target numbers with SNR = 10 dB is shown in Fig. 8.
In each case, 1,000 Monte-Carlo are carried out.

From Fig. 8, we can see that the proposed scheme can
provide a higher precision than the LZYCB algorithm and
Elad’s algorithm. Moreover, the performance of proposed
scheme can even surpass original high-dimension measure-
ment under the fewer targets condition.

In the last simulation, we compare the DOA accuracy of
different schemes versus SNR. Assume that there are 3 sig-
nals impinging from directions θ = [−3.15◦,0◦,3.15◦] in this
simulation. The RMSE versus SNR under white noise and
color noise are shown in Fig. 9 and Fig. 10, respectively. For
each case, 1,000 Monte-Carlo are carried out.

From the Fig. 9, we can know that the proposed scheme
has better estimation performance than other compressed
schemes at low SNR. Note that the proposed scheme can
reduce the mutual coherence between dictionaries, which re-
sult in a better performance than original high-dimension
measurement in the high SNR. In Fig. 10, it is also proved
that the proposed scheme has the ability to suppress the en-
vironment noise and provide well performance.
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5. Conclusions
In this paper, a robust measurement scheme is proposed

to reduce computational complexity and suppress noise for
DOA estimation in aMassiveMIMO system. In this scheme,
the optimization function is established by minimizing the
mutual coherence of spatial sparse dictionary and the en-
ergy of measurement matrix. To solve this non-convex opti-
mization problem, an alternating minimization scheme based
on matrix factorization and Principal Component Analysis
(PCA) is proposed. The specific optimization steps and the
structure of measurement matrix are proposed. Simulation
results prove the superiority of proposed scheme.
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