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Abstract. In this paper, we address the problemof direction-
of-arrival (DOA) estimation with the arbitrary array. The
manifold separation technique (MST) is employed to trans-
form the arbitrary array into a virtual array with Vander-
monde manifold on which the spatial annihilating filter re-
construction method can be applied. When building the op-
timization problem for annihilating filter reconstruction, we
propose the general solution modeling which can reduce the
truncation error inMST to a negligible level. Finally, the spa-
tial annihilating filter is reconstructed under the structural
total least square (STLS) framework with the multiple mea-
surement vectors structural total least norm (MMV-STLN)
approach and the DOAs are estimated from the filter coeffi-
cients. Numerical simulations have verified the new proposed
method adapts well to the low signal-to-noise ratio (SNR),
limited snapshots and closely-spaced sources scenarios and
can handle the coherent signals.
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1. Introduction
DOAestimation is regarded as one of the key techniques

in various areas, such as wireless communication, radar and
sonar [1]. For the array geometry, the uniform linear array
(ULA) is preferred due to the Vandermonde structure of its
array manifold. Owing to this specific structure, it is al-
lowed to adopt some fast DOA estimation algorithms , such
as root-MUSIC [2] and ESPRIT [3] which belong to the sub-
space type method, root-WSF (also called MODE) [4], [5]
and IQML [6] which are the fast implementations of the max-
imum likelihood (ML) method. However, we may face other
array geometries without Vandermonde structure for certain
applications and even the Vandermonde structure of ULA
can be destroyed by the array imperfections [7].

Several methods were proposed to map the physical
planar array to the virtual array with Vandermonde struc-
ture. The first is the beamspace transform [8] which is based
on the phase mode excitation principle [9]. However, there
exists residual error in this model due to the beam aliasing
and this residual error can only be reduced by increasing the
number of sensors. Besides, this method is only applicable
to the uniform circular array (UCA). The second is the array
interpolation method [10] which maps the physical array to
a virtual array. Unfortunately, for this method, the mapping
error will lead to a biased DOA estimation [11]. Further-
more, when the field of interest (FOV) is large, sector-by-
sector processing is needed, which is known to be sensitive
to out-of-sector sources [12].

Another approach for array mapping is the wavefield
modeling principle which is reported in [13–15]. This ap-
proach has been termed the MST in [16]. It takes advantage
of the spatial periodicity of the sensor response and approxi-
mates each component of the steering vector by its truncated
Fourier series. Then the real manifold can be approximated
by the product of the array sampling matrix composed of
the Fourier series coefficients and a Vandermonde coefficient
vector composed of Fourier bases. In [14], aMST based root-
MUSIC is proposed and the Fourier series truncation error
therein can be reduced to a negligible level by increasing the
order of Fourier basis. In [16], the MST based root-MUSIC
was further studied to cope with array imperfections. In [17],
the MST was extended to convert the MUSIC null spectrum
of the arbitrary array to its Fourier domain and proposed
a new search-free DOA estimation algorithm. However, the
above methods all belong to the subspace type methods. As
we know, the subspace type methods perform poorly in cases
like low SNR and limited snapshots and they have to be com-
bined with the spatial smoothing [18] to handle the coherent
sources, which reduces the effective array aperture. The ML
method does not have these shortcomings. For the arbitrary
array, withMST, theMLmethod also has efficient implemen-
tations. In [19], it is suggested MST can be combined with
root-WSF. Nevertheless, that method requires the pseudo-
inverse of the array sampling matrix therein should be a left
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inverse, which means the array sampling matrix cannot be
a fat matrix (more columns than rows) and will limit the or-
der of the Fourier basis, leading to a non-negligible model
truncation error.

Spatial annihilating filter reconstruction is anotherDOA
estimation method originally designed for ULA and it is
equivalent to the deterministic maximum likelihood (DML)
estimator of DOA [20], which ensures that it performs well
both for coherent sources and under low SNR and limited
snapshots scenarios [21]. In this paper, we extend the spa-
tial annihilating filter reconstruction method to the arbitrary
array. The arbitrary array is transformed into a virtual ar-
ray with Vandermonde manifold by the MST. While building
the optimization problem on the virtual array for the annihi-
lating filter reconstruction, the general solution modeling is
proposed to reduce the truncation error in MST to a negli-
gible level. Then the optimization problem is solved under
the STLS framework with the MMV-STLN approach and the
DOAs are estimated from the reconstructed filter coefficients.
Compared with the previousMST based subspace type meth-
ods, the new method adapts well to the low SNR,limited
snapshots and closely-spaced sources scenarios and can han-
dle the coherent signals. Compared with the previous MST
based ML methods, the model truncation error in the new
method can be neglected.

Notations used in the paper are introduced as follows.
(·)T, (·)H and (·)+ are denoted as the transpose, conjugate
transpose and pseudo-inverse operator, respectively. ‖ · ‖2
and ‖ · ‖F denote the `2 norm and the Frobenius norm, respec-
tively. (∗) and ⊗ are the convolution, and Kronecker product
operator respectively. vec(·) is the operator that builds a col-
umn vector by stacking the column vectors of a matrix below
one another and IN is the N × N identity matrix. aj denotes
the jth element of a. Ai, j denotes the element at ith row and
jth column of A.

2. Signal Model and Manifold
Separation Technique
Consider an M-element arbitrary array exposed to

K far-field narrowband sources. The sensors are lo-
cated at the x-y plane of the Cartesian coordinate system
and the Cartesian coordinate vector of the mth sensor is
[rm cos(φm),rm sin(φm)] where [rm, φm] is its polar coordi-
nate vector. The sources come from the x-y plane with the
DOAs ϕ = [ϕ1, ϕ2, . . . , ϕK ]which are within [−π, π]. Set the
coordinate origin as the phase reference point and the array
output vector at snapshot n can be written as

y[n] = A(ϕ)s[n] + ε[n] (1)

where A(ϕ) = [a(ϕ1),a(ϕ2), . . . ,a(ϕK )] is the manifold
matrix, a(ϕ) ∈ CM×1 is the steering vector, s[n] =
[s1[n], s2[n], . . . , sK [n]]T is the signal vector, and ε[n] ∈
CM×1 is the Gaussian noise vector which is temporally and
spatially white with variance σ2.

Since the array geometry is arbitrary, there is no Van-
dermonde structure in the steering vector a(ϕ). However,
noticing the spatial periodicity of 2π of each element in a(ϕ),
we can express its mth element am(ϕ) using the Fourier series
expansion as

am(ϕ) =
+∞∑

q=−∞

gm,q exp(jqϕ) (2)

and the Fourier series coefficient the gm,q can be written as

gm,q =
1

2π

∫ 2π

0
am(ϕ) exp(−jqϕ)dϕ. (3)

If the array is imperfect (i.e., steering vector has no
analytical expression), gm,q can be approximated by the dis-
crete Fourier transform (DFT) of spatial uniform samples of
am(ϕ) [16] based on the spectrum concentration of am(ϕ) ac-
cording to the effecitve aperture distribution function (EADF)
concept [22].

If the array is perfect, we can write am(ϕ) as

am(ϕ) = exp [jβrm cos(ϕ − φm)] (4)

where β = 2π/λ and λ is the signal wavelength. Substituting
(4) into (3) and using the Jacobi-Anger expansion, we can
write gm,q as

gm,q =
1

2π

∫ 2π

0
ejβrm cos(ϕ−φm)e−jqϕdϕ

=
1

2π

∫ 2π

0

+∞∑
q′=−∞

jq
′

Jq′(βrm)ejq′(ϕ−φm)e−jqϕdϕ

= jq Jq(βrm)e−jqφm

(5)

where Jq(·) is the qth order Bessel function of the first kind.

As in (2), we need infinite order of Fourier basis to
represent am(ϕ), which is not practical. So, we truncate the
Fourier basis to order of Q − 1 and substitute (5) into (2).
Then we have

am(ϕ) =
Q−1∑

q=−(Q−1)
jq Jq(βrm)e−jqφmejqϕ + νm(ϕ) (6)

where νm(ϕ) is the model truncation error. Since the Bessel
function Jq(βrm) decays super-exponentially as q → ∞ be-
yond |q | = βrm [13], the model truncation error νm(ϕ) can
be reduced to a negligible level by increasing Q to a large
enough value. Substituting (6) into (1), we have

y[n] ≈ GD(ϕ)s[n] + ε[n]
≈ Gx[n] + ε[n],

(7)

which is theMSTmodel for the array output. G ∈ CM×(2Q−1)

is called the array sampling matrix in MST, Gm,q+Q =

jq Jq(βrm) exp(−jqφm), D(ϕ) = [d(ϕ1),d(ϕ2), . . . ,d(ϕK )],
and d(ϕ) is called the coefficient vector with dq(ϕ) =
exp(jqϕ). So, D(ϕ) has the Vandermonde structure and
x[n] = D(ϕ)s[n] can be regarded as the output of the vir-
tual array whose manifold is D(ϕ). The approximate relation
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in (7) stems from the model truncation error and we can sub-
stitute the approximately equal sign with the equal sign if
a large enough number is assigned to Q.

3. Spatial Annihilating for MST based
DOA Estimation
To handle the coherent sources and achieve better per-

formance under low SNR and limited snapshots scenarios,
the ML DOA estimation methods are preferred. For the
MST model in (7), root-WSF had been employed to take
advantage of the Vandermonde structure for fast implemen-
tations [19]. However, this method needs M ≥ (2Q − 1) to
ensure G+G = I, i.e., G+ should be a left inverse. This limits
the order of Fourier basis, leading to a non-negligible model
truncation error in (7).

3.1 Spatial Annihilating for MST Model
Since x[n] in (7) can be seen as the output of the virtual

array with Vandermonde manifold, it can be annihilated by
a spatial annihilating filter and the DOAs can be obtained
from the filter coefficients [21]. Consider filter whose coef-
ficient vector is denoted by h = [h1, h2, . . . , hK+1]

T and its
Z-transform is

K+1∑
k=1

hk z−(k−1) =

K∏
k=1

[
1 −

exp(jϕk)
z

]
. (8)

Then, after applying the filter h to x[n], we get the filter output
and write its pth element as

[x[n] ∗ h]p =
K+1∑
k′=1

hk′ xp−k′[n]

=

K+1∑
k′=1

hk′
K∑
k=1

exp [j(p − k ′ −Q)ϕk]sk[n]

=

K∑
k=1

sk[n] exp [j(p −Q − 1)ϕk]ξ(ϕk)

(9)

where ξ(ϕk) =
∑K+1

k′=1 hk′ exp [−j(k ′ − 1)ϕk]. According to
(8), ξ(ϕk) = 0. So the output of the filter is zero for the input
x[n] and we call the filter h the spatial annihilating filter as
elements of x[n] are spatial samples . The convolution in (9)
can be expressed in a matrix form which is

L(x[n])h = 0 (10)

where L(·) is a matrix operator and L(x[n]) is a Toeplitz
matrix written as

L(x[n])=


xK+1[n] xK [n] . . . x1[n]
xK+2[n] xK+1[n] . . . x2[n]

...
...

. . .
...

x2Q−1[n] x2Q−2[n] . . . x2Q−K−1[n]


. (11)

So, we can say a K + 1 elementary spatial filter
whose coefficients constitute a polynomial with roots be-
ing exp(jϕk), k = 1,2, . . . ,K can annihilate the virtual array
output, leading to (10). And according to the uniqueness of
the roots, if we find the filter h satisfies (10), then DOAs are
able to be derived from the filter coefficients [23].

3.2 General Solution Modeling
But now, the question is we only have access to the ar-

bitrary array output y[n] instead of the virtual array output
x[n]. From (7), we can extract x[n] as

x[n] ≈ G+(y[n] − ε[n]). (12)

As we know, (12) holds only if G+G = I2Q−1. This condi-
tion makes G a tall matrix, eg., 2Q − 1 ≤ M , which leads to
a non-negligible model truncation error and deteriorates the
final DOA estimation performance.

If larger number is assigned to Q , then G+G , I and
x[n] calculated by (12) will generally not satisfy the annihi-
lating relation in (10). For larger Qwhichmakes 2Q−1 > M ,
(7) becomes an underdetermined system and we can extract
x[n] as

x[n] = G+(y[n] − ε[n]) + (I2Q−1 −G+G)w[n] (13)

which is the general solution form of the underdetermined
system. w[n] is the certain unknown vector and selected to
make x[n] calculated by (13) satisfy (10). Here we have sub-
stituted the approximately equal signwith the equal sign since
large enough number can be assigned to Q. To enhance the
DOA estimation performance, multiple measurement vectors
(MMV) Y = [y[1],y[2], . . . ,y[N]] are collected and N is the
number of snapshots. So the MMV of virtual array output
X = [x[1],x[2], . . . ,x[N]] is written as

X = G+(Y − E) + (I2Q−1 −G+G)W (14)

where E is the MMV representation of ε[n] and W is the
certain unknown matrix. Similarly, the MMV representation
of the annihilating relation in (10) can be achieved as

L̄(X)h = 0 (15)

where L̄(·) is also a matrix operator and L̄(X) =[
LT(x[1]),LT(x[2]), . . . ,LT(x[N])

]T.

The next step is to reconstruct h. Substituting (14) into
(15), we have[

L̄(G+Y) + L̄[(I2Q−1 −G+G)W] − L̄(G+E)
]

h = 0. (16)

In the least square (LS) or total least square (TLS) sense,
we need to minimize ‖L̄(G+E)‖2F subjected to (16). How-
ever, a better way for more accurate solution is to minimize
‖L̄(E)‖2F since it only contains the noise component and L̄(E)
can be obtained by

L̄(E) = L̄(GG+E), (17)
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based on GG+ = I2Q−1 since we have 2Q − 1 > M . Further-
more, as the second component in (16) also contains a certain
unknown matrix W, we treat it and the noise component as
a whole and denote

Σ = −(I2Q−1 −G+G)W +G+E. (18)

Then we have L̄(Σ) = −L̄[(I2Q−1 − G+G)W] + L̄(G+E).
Together with (17) we will find a interesting result that is

L̄(GΣ) = L̄(GG+E) = L̄(E) (19)

which is also based on GG+ = I2Q−1. Therefore, to recon-
struct h, the original optimization problem is turned to

min
Σ,h

‖L̄(GΣ)‖2F

s. t.
[
L̄(G+Y) − L̄(Σ)

]
h = 0.

(20)

Since all these are based on the general solution of underde-
termined system in (13), we call the abovemethod the general
solution modeling.

3.3 STLS and DOA Estimation
As we know, L̄(GΣ) in (20) has special structure

(a vertical stack of Toeplitz matrices), so the new optimiza-
tion problem is better to be solved under the STLS frame-
work [24]. Then the optimization problem can be trans-
formed into

min
Σ,h

‖L̄(GΣ)‖2F

s. t.
[
L̄(G+Y) − L̄(Σ)

]
h = 0,ωHh = 1

L̄(GΣ) is a vertical stack of Toeplitz matrices

(21)

where ω = h0 and h0 is the initialization of h which will be
introduced later. ωHh = 1 is to ensure h to be unique.

To solve (21), we adopt the MMV-STLN method [21]
which is a variation of the classical STLN approach [25–27].
Due to the fact that L̄(Σ) is also a vertical stack of Toeplitz
matrices, we have

L̄(Σ)h = vec [R(h)Σ] = [IN ⊗ R(h)] vec(Σ) (22)

where R(·) is another matrix operator, R(h) ∈

C(2Q−1−K)×(2Q−1), and

R(h) =


hK+1 · · · h1 0 · · · 0

0 hK+1 · · · h1 · · ·
...

...
. . .

. . . · · ·
. . . 0

0 · · · 0 hK+1 · · · h1


. (23)

Then let ν = vec(Σ) and vec(GΣ) = (IN ⊗ G)ν. So problem
(21) can be transformed into

min
ν,h

‖(IN ⊗ G)ν‖22

s. t. L̄(G+Y)h −
[
IN ⊗ R(h)

]
ν = 0

ωHh = 1.

(24)

For the MMV-STLN method, the iterative calculations
are required for solving the unknown ν and h. In the (i + 1)th
iteration the first constraint in (24) is linearized around the last
step solution which are represented by ν(i) and h(i). Let ∆ν
represent a small change in ν(i), ∆h represent a small change
in h(i) and r(ν(i),h(i)) = L̄(G+Y)h(i) −

[
IN ⊗ R(h(i))

]
ν(i).

Then we have
r(ν(i+1),h(i+1)) = r(ν(i) + ∆ν,h(i) + ∆h)

= r(ν(i),h(i)) + J
[
∆νT,∆hT]T (25)

where J =
[
−IN ⊗R(h(i)), L̄(G+Y)−L̄(Σ(i))

]
is the Jacobian

of r(ν,h) with respect to
[
νT,hT]T and ν(i) = vec(Σ(i)). So,

in the (i + 1)th iteration, the unknowns become the ∆ν and
∆h and MMV-STLN needs to solve a stand linear equality
constrained LS problem which is

min
∆ν,∆h




Λ {[
(ν(i))T, (h(i))T

]T
+

[
∆νT,∆hT]T

}


2

2

s. t. r(ν(i),h(i)) + J
[
∆νT,∆hT]T

= 0

ωHh(q) + ωH
∆h = 1

(26)

where Λ ∈ C(MN+K+1)×((2Q−1)N+K+1) is a block diagonal
matrix with the first block being IN ⊗ G and the second
block being a (K + 1)-by-(K + 1) zero matrix . After (26) is
solved, we obtain the estimated ∆̂ν and ∆̂h. Then update rule
for ν(i+1) and h(i+1) is{

ν(i+1) = ν(i) + ∆̂ν

h(i+1) = h(i) + ∆̂h . (27)

The iterative calculation is terminated when the iter-
ation converges or the maximum number of iterations I is
reached. The iteration is considered to be converged when

‖h(i+1) − h(i)‖2
‖h(i)‖2

≤ ζ (28)

where ζ is the iteration termination threshold which is a small
number.

After the convergence of the iterative claculations, the
spatial annihilating filter coefficients are reconstructed as
ĥ = [ĥ1, ĥ2, . . . , ĥK+1]

T. Then, according to (8), the final
estimated DOAs ϕ̂ = [ϕ̂1, ϕ̂2, . . . , ϕ̂K ]

T can be derived as

ϕ̂ = angle

[
root

(
K+1∑
k=1

ĥk zK−k+1 = 0

)]
. (29)

For the iterative calculations in (27), an initialization is
needed, which means we need to assign values to ν(0) and
h(0). Due to the non-convexity of (24), multiple local minima
exist in the cost function. So, we need to choose an initializa-
tion close to the optimal solution. From (8), we can find that
h can be estimated by performing the inverse one-sided Z-
transform on a polynomial constituted from the pre-estimated
DOAs. The pre-estimatedDOAs can be coarsely obtained via
the simple conventional beamforming (CBF) (or the Capon
Beamformer [28]). Assuming ϕ̃k, k = 1,2, . . . , K̂ is the pre-
estimated DOAs and K̂ is the number of peaks of the pre-
estimated spatial spectrum, then h(0) can be achieved as
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h(0) = Z−1


K̂∏
k=1

[
1 −

exp(jϕ̃k)
z

] . (30)

The true number of sources K is assumed to be known or
estimated by classical source number estimator such as the
Akaike information criterion (AIC) method [29] or the min-
imum description length (MDL) method [30]. The closely-
spaced sources may make K̂ < K , resulting in K − K̂ zeros
in h(0) according to (30). In the simulation part, we will see
this has no influence on the resolution of the method. For the
initialization of ν, according to (18), we have

ν(0) = vec(Σ̃)
= vec

[
−(I2Q−1 −G+G)W̃ +G+Ẽ

]
= vec

[
G+(Y − Ẽ) − D(ϕ̃′)S̃ +G+Ẽ

]
= vec

[
G+Y − D(ϕ̃′)A+(ϕ̃′)Y

]
= vec

[ (
G+ − D(ϕ̃′)A+(ϕ̃′)

)
Y
]

(31)

where ϕ̃′ is the extended coarse DOA estimation ob-
tained by CBF or Capon Beamformer and consists of
{ϕ̃k − θbeam/4, ϕ̃k, ϕ̃k + θbeam/4}K̂k=1 [31]. Here, θbeam is the
beamwidth.

At last, the steps of the algorithm are concluded in Al-
gorithm 1.

Algorithm 1: Arbitrary array DOA estimation
based on combining spatial annihilating andMST

Input: Arbitrary array output Y, Source number
K , maximum iterations I, iteration
termination threshold ζ .

Output: Estimated DOA vector ϕ̂.
1 Initialize h and ν with h(0) and ν(0) according to

(30) and (31), respectively.
2 for i = 1,2, . . . , I do

Solve the stand linear equality constrained LS
problem (26) and update ν and h according to
(27).

if ‖h(i) − h(i−1)‖2/‖h(i−1)‖2 ≤ ζ then
Terminate the loop

end
end

3 ĥ← h(i) and calculate ϕ̂ according to (29).

3.4 Remarks
According to [21], the spatial annihilating method is

equivalent to the DML estimator for DOA estimation. And
when spatial annihilating is combined with MST, we adopt
the general solution modeling by which the model truncation
error inMST can be reduced to a negligible level. So, the pro-
posed DOA estimation can adapt well to the coherent sources
and low SNR and limited snapshots scenarios. Even though
we have (2Q−1−K)N equations in the constraint of (20), the
matrix whose Frobenius norm is to be miniminzed contains
(M − K)N rows like the ULA case in [21]. So the maximum

resolvable sources of the proposed is K = (M − K)N , and
then K = MN/(N + 1) [21]. So, if the number of snapshots
is greater than or equal to M − 1, the maximum number of
resolvable sources will be M − 1.

The STLN approach used to solve (21) is essentially
aGauss-Newtonmethod because of the involved linearization
operation [25]. In general, the Gauss-Newton method will
converge to the closet local minimum on condition that the
local minimum of the cost function in (26) is small [32], [33].
This condition holds for many applications. Furthermore, in
the simulation part, the proposed method converges under all
simulation settings.

For the computational complexity of the proposed
method, the most time consuming part is solving the stand
linear equality constrained LS problem in (26) involved in
each iteration. To solve the stand linear equality constrained
LS problem, Lagrangianmultipliers can be used and the com-
putational complexity is O([4Q − 2 − K)N + K + 2]3) [21].
Even though the calculation can be accelerated by the robust
and efficient constrained linear least-squares solvers, such as
cgglse function in the LAPACK library and lsqlin function in
MATLAB, the computational burden will be very heavy for
large number of snapshots N . Inspired by [34], when N > K ,
we can replace the array output Y with its largest K ′ singu-
lar vectors weighted by the corresponding singular values
denoted by Ys ∈ C

M×K′ to reduce the computational com-
plexity. Here K ′ represents the number of incoherent sources
andwhen sources are all coherent, we assignK ′ = 1. Assume
the singular value decomposition of Y to be Y = UΓVH and
then

Ys = YVF (32)

where F = [IK′,0]T. Then the MMV version of (7) becomes
Ys = GXs+Es whereXs = DSVF, S = [s[1], s[2], . . . , s[N]],
and Es = EVF. As D has Vandermonde structure, the anni-
hilating relation

L̄(Xs)h = 0 (33)

is still satisfied like in (15). So, in Algorithm 1, we only need
to replace Y with Ys which is calculated from (32). Then
the number of snapshots becomes K ′ and the computational
complexity for solving the stand linear equality constrained
LS problem becomes O([4Q − 2 − K)K ′ + K + 2]3).

4. Simulation Results
In this section, some simulations are performed to ex-

hibit the performance of the proposed method. In all simula-
tions, the results are averaged upon 500 Monte Carlo experi-
ments. The algorithms we choose to use as comparisons are
MST-root-WSF [19], MUSIC [35], MST-root-MUSIC [14],
FD-root-MUSIC [17] and BF-interpolation [10] which are
all capable for the arbitrary array. The Cramer-Rao Lower
Bound (CRLB) [36] is also employed as the performance
reference. For the proposed method, the iteration termina-
tion threshold and the maximum number of iteration are set
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as ζ = 10−8, I = 100, respectively, and the stand linear
equality constrained LS problem in Algorithm 1 is solved by
using the lsqlin function in MATLAB. For the array geom-
etry, we choose one large non-uniform array and one small
non-uniform array. They both have 7 elements and their lay-
outs are shown in Fig. 1 where the locations are normalized
by the wavelength.

In the first simulation, we compare the proposedmethod
with the MST-root-WSF to demonstrate the impact of the
model truncation error on DOA estimation. To exclude the
influence of other factors, lenient signal conditions are con-
sidered. We assume two equal power uncorrelated sources
from ϕ = [70◦,120◦] impinge on the array and N = 100
snapshots are collected under SNR = 20 dB. For MST-root-
WSF, the parameter Q is assigned its maximum allowable
value which is Q = 4. For the proposed method, we can
set Q = 20 owing to adopting the general solution modeling
method. The simulation is performed on the large and small
array. The results of the large array is shown in Fig. 2. It
can be seen the proposed method works properly and MST-
root-WSF method converges to the wrong directions due to
the large model truncation error. The results of the small
array is shown in Fig. 3. For small array, the truncation
error component JQ(βrm) becomes small, so the results of
MST-root-WSF method get better. However, it is still bi-
ased and the variance of DOA estimation is larger than the
proposed method.

In the second simulation, we test all the DOA estimation
algorithms with the uncorrelated and coherent signals. The
simulation settings are the same with the previous except for
adding the coherent signals with the coherent coefficient be-
ing exp(j5/8π) and MST-root-MUSIC and FD-root-MUSIC
methods are also assigned Q = 20. For BF-interpolation, the
interpolation sector is within [70◦,120◦] with 25 grids and
the number of the virtual ULA elements is 6. The simulation
is performed on the small array. The estimation performance
is measured by the successful resolution probability and if
both |ϕ̂1 − ϕ1 | and |ϕ̂2 − ϕ2 | are smaller than |ϕ1 − ϕ2 |/2,
where (ˆ) means the estimated value, we claim a successful
resolution. The results are shown in Tab. 1. We can find
that with uncorrelated signals all algorithms works normally.
However, under coherent scenario, only MST-root-WSF and
the proposed method achieve 100% successful resolution
probability. FD-root-MUSIC gets the same probability as
MUSIC because it is based on the MUSIC spectrum.

Algorithm Uncorrelated Coherent

MUSIC 100% 2%
FD-root-MUSIC 100% 2%
MST-root-MUSIC 100% 32%
BF-interpolation 100% 43%
MST-root-WSF 100% 100%
Proposed method 100% 100%

Tab. 1. The successful resolution probability for uncorrelated
and coherent signals on the small array.
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Fig. 1. The array geometry, left: large array, right: small array.
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Fig. 2. Scatter plot of DOA estimation results for large array. (a)

proposed method, (b) MST-root-WSF.
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Fig. 3. Scatter plot of DOA estimation results for small array.
(a) proposed method, (b) MST-root-WSF.

In the third simulation, we want to find the appropri-
ate value of Q for the algorithms. For the signal condition,
we turn back to uncorrelated signals and other simulation
settings are the same as previous. The FD-root-MUSIC,
MST-root-MUSIC, the proposed method and the CRLB are
included. The simulation is performed on the large array and
Q is varied from −4 to 25. The estimation performance is
measured by the root-mean-square error (RMSE) of the DOA
estimation which is defined by

RMSE =

√√√ P∑
p=1



ϕp − ϕ̂p



2
2/KP (34)

where P is the number of Monte Carlo simulations. The re-
sults are plotted in Fig. 4. It can be found with finite Q these
algorithms can arrive the CRLB. The MST-root-MUSIC and
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Fig. 5. RMSE of DOA estimation versus different SNRs.

the proposed methods need nearly the same Q to obtain the
same performance since the array sampling matrices G in
their models have the same analytical expression. The FD-
root-MUSIC needs larger Q since its array sampling matrix
needs to be estimated from the MUSIC spectrum.

In the fourth simulation, we test the algorithm perfor-
mances under different SNRs from −6 dB to 20 dB. And
from now on, we consider the harsh signal conditions. The
DOAs of the sources are ϕ = [70◦,83.7◦] and N = 50
snapshots are collected. For FD-root-MUSIC, MST-root-
MUSIC and the proposed method, we can set Q = 20
and MST-root-WSF is not included due to its limited per-
formance. For BF-interpolation, the interpolation sector is
within [70◦,100◦]with 15 grids and the number of the virtual
ULA elements is 6. The simulation is performed on the large
array and the results are exhibited in Fig. 5. It can be found
that MUSIC has the largest SNR threshold which is 7 dB and
both of threshold of FD-root-MUSIC and MST-root-MUSIC
are 1 dB. The BF-interpolation cannot reach the CRLB even
under high SNR due to its biasedness. The proposed method
has the lowest SNR threshold which is −4 dB.

In the fifth simulation, we vary the number of snapshots
from 5 to 100. The simulation settings are the same with the
previous except for fixing the SNR = 5 dB. Results are ex-
hibited in Fig. 6. The proposed only needs 10 snapshots to
resolve the sources and its rmse is very close to the CRLB.
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Fig. 6. RMSE of DOA estimation versus different snapshots.
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Fig. 7. RMSE of DOA estimation versus different angle
separations.

The snapshot threshold of FD-root-MUSIC and MST-root-
MUSIC are 25 and 20 respectively. MUSIC has the largest
snapshot threshold. For BF-interpolation, the mapping error
still dominates the DOA estimation error under large number
of snapshots.

In the last simulation, we vary the angle separation.
The DOAs are ϕ = [70◦,70◦ + ∆ϕ] and ∆ϕ is varied form
4◦ to 26◦. The other simulation settings are the same with
the previous except for fixing N = 50 and SNR = 5 dB. Re-
sults are exhibited in Fig 7. Even the angle separation is as
small as 5◦, the proposedmethod is able to resolve them. The
angle separation threshold of MST-root-MUSIC is slightly
smaller than that of FD-root-MUSIC and BF-interpolation
has lower resolution ability thanMUSIC when the angle sep-
aration is larger than 15◦.

5. Conclusion
In this paper, the problem of DOA estimation with

the arbitrary array is addressed. The MST is employed to
transform the arbitrary array into a virtual array with Van-
dermonde manifold on which the spatial annihilating filter
reconstruction method can be applied. When building the
optimization problem for annihilating filter reconstruction,
the general solution modeling is proposed to reduce the trun-
cation error in MST to a negligible level. Finally, the spatial
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annihilating filter is reconstructed under the STLS framework
with the MMV-STLN approach and the DOAs are estimated
from the filter coefficients. Comparedwith the previousMST
based subspace type methods, the new method adapts well to
the low SNR, limited snapshots and closely-spaced sources
scenarios and can handle the coherent signals. Compared
with the previous MST based ML methods, the model trun-
cation error can be neglected.
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