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Abstract. A Spectrum Sensing (SS) device, regardless of its
location, should be able to detect the presence of signal over
noise. In certain applications, SS should be able to correctly
identify and classify the received signal. These functions are
to be performed with little or no prior information about the
incoming signal or channel noise. Cyclostationary Feature
Detection (CFD) can be used to detect primary users (PU)
using periodicity in autocorrelation of the modulated signals.
These algorithms attempt to differentiate signal from noise
based on the uncorrelated nature of noise. CFD is often
considered as a semi-blind approach, since it requires prior
information about the PU signal for detection. For identi-
fication and classification of PU signal, existing algorithms
make use of CFD and neural networks. This paper proposes
a novel algorithm to obtain completely blind detection perfor-
mance based on CFD. Classification of PU signals is based
on the basic statistics regarding cyclic spectrum. Further,
an algorithm is formulated to identify modulation scheme of
the signal and classify it without making use of any training
algorithms. The proposed approach is capable of detecting
PU reliably for SNRas low as –8 dBwith no prior information
about PU or noise in the channel.
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Spectrum Sensing (SS), Cyclostationary Feature De-
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1. Introduction
The advances in wireless communication and emerging

wireless multimedia applications have led to a huge demand
for radio spectrum. Spectrum scarcity has become one of the
major problems hindering the growth of wireless communi-
cation. Different solutions like Free Space Optical (FSO)
communication and Cognitive Radio (CR) have emerged for
efficient utilization of spectrum [1]. CR is a promising so-
lution provided by the concept of dynamic spectrum access,
where the users intelligently sense the spectrum and access
the vacant bands [2]. It is an intelligent radio and network

technology that can detect the available spectrum bands and
adjust its transmission parameters accordingly. Moreover in
some wireless applications and services there is a require-
ment to correctly identify and classify the received signal,
with little or no prior information about the incoming signal
or channel noise. Different techniques for SS include en-
ergy detection, matched filtering, covariance and Eigen value
based approaches [3], [4]. Cyclostationary Feature Detec-
tion (CFD) makes use of the periodicity in auto-correlation
of the modulated signals. Exploiting the uncorrelated nature
of the noise, the above algorithms attempt to differentiate
signal from noise [5], [6]. The computed cyclic autocorre-
lation function can also be used to detect the presence of
OFDM signals [7], [8]. In [9], a generalized likelihood ra-
tio test for detecting the presence of cyclostationarity using
multiple cyclic frequencies is proposed. The detection has
been expanded to multiple SUs by making use of coopera-
tive sensing, but assumes the cyclic frequencies are known
apriori. Signal detection and preprocessing for signal clas-
sification using cycle frequency domain profile is discussed
in [10]. A FPGA implementation of a CFD using decima-
tion to control detection time and improve the probability of
detection is discussed in [11], assuming test statistic to be χ2

2
distributed and hypothesis tests are performed with known
cyclic frequencies. Frequency Shift (FRESH) filters are used
in [12] to enable SS at low SNR by estimating a cyclostation-
ary signal using its spectral coherence properties. In [13],
a performance study of the cyclostationarity based digital
modulation classification schemes are discussed. Different
classifiers like artificial neural networks, support vector ma-
chine, Naive Bayes etc. were compared for performances.
CFD, using a crest factor developed from the cyclic spectrum
and a threshold formed using the noise information that is
obtained in the absence of PU, is also applied for SS [14].

Existing techniques make use of the PU information for
detection and hence CFD is often considered as a semi-blind
approach. An attempt on blind spectrum sensing using cyclo-
stationary features, with decision criteria based on practical
assumptions, is detailed in [15]. Most of the classification
algorithms use Neural networks to achieve correct identifi-
cation. This work is an attempt to obtain completely blind
detection performance based on CFD. Further, an algorithm
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has been formulated to identify the modulation scheme of
the signal received without making use of Neural networks.
Simulation results are shown to validate the effectiveness of
the proposed algorithms. Section 2 and 3 explain the CFD
and the SCD function. Section 4 explains the proposed algo-
rithm for detection and classification, while Section 5 and 6
illustrates the results and provides a conclusion.

2. Cyclostationary Features
A signal having statistical properties that vary cyclically

with time is known as a cyclostationary process, and can be
viewed as multiple interleaved stationary processes. The un-
derlying concept for cyclostationarity is that sine waves can
be generated from random data, by applying certain non-
linear transformations. Thus, a continuous signal is said to
be cyclostationary of order n, if and only if there exists some
nth order non-linear transformation that will generate finite
amplitude additive sine wave components [5]. Therefore,
a continuous signal x(t) contains a finite amplitude additive
sine wave component with frequency α, α , 0, if the Fourier
coefficient Mα

x is non zero.

Mα
x = lim

T→∞

1
T

∫ T/2

−T/2
x(t)e−j2παtdt . (1)

For second order cyclostationarity, the non linear trans-
formation required for the signal is:

yτ(t) = x(t + τ/2) x∗(t − τ/2) (2)

where * stands for complex conjugation. Thus, it can be con-
cluded that a process is second order cyclostationary, if its
mean and time varying autocorrelation function are periodic
in time. i.e.,

Rx(t, τ) = E{x(t + τ/2)x∗(t − τ/2)}, (3)
Rx(t + T, τ) = Rx(t, τ) (4)

where T is the hidden cyclic period. The Fourier coeffi-
cients of Rx(t, τ) is called the Cyclic Autocorrelation Func-
tion (CAF) [5]. For any second order cyclostationary pro-
cess, the CAF is non zero only for a set of cyclic frequencies
α , 0. In communication signals, cyclostationarity is caused
by modulation or coding, and at times, it is even intention-
ally produced to aid channel estimation and synchronization.
These signals have cyclic frequencies that are related to its
carrier frequency, symbol rate and its harmonics, guard pe-
riod, channel coding scheme etc. On the other hand, noise is
wide sense stationary and exhibits no correlation. This basic
difference between signal and noise can be used to detect
the presence of a PU in a spectrum band. Even though, the
method is computationally more complex, it can be modified
to work with no prior information about the PU signal or the
noise information in the channel. Moreover, it can be used
to identify the modulation scheme of the incoming signal
and can be extended to predict the carrier frequency used
for the modulation.

3. SCD Function
A process x(t) is second order cyclostationary, if its

mean and time varying autocorrelation function are periodic
in time. This transformation can be used to bring out the
cyclic frequencies hidden in the signal. The autocorrelation
function is given as [5]:

Rx(t, τ) = E{x(t + τ/2)x∗(t − τ/2)}. (5)

Since it is periodic, it can be decomposed into its Fourier
series as:

Rx(t, τ) =
M∑
k=1

Rkαo
x (τ)ej2πkαot . (6)

The fundamental cyclic frequency is αo = 1/To, where
To is the hidden period and M represents the rank of the last
harmonic.

The Fourier coefficients of Rx(t, τ) are called Cyclic
Autocorrelation Function (CAF).

Rkαo
x (τ) = lim

T→∞

1
T

∫ +T/2

−T/2
Rx(t, τ)e−j2πkαotdt (7)

where T is the time duration used to evaluate the CAF. The
Fourier transform of the CAF is called the Spectral Correla-
tion Density function (SCD).

Sαx ( f ) =
∫ +∞

−∞

Rαx (τ)e−j2π f τdτ. (8)

As given in [14], equation (7) can be approximated as:

Rαx (τ) = lim
T→∞

1
T

∫ +T/2

−T/2
x(t + τ/2)x∗(t − τ/2)e−j2παtdt,

Rαx (τ) = lim
T→∞

1
T

∫ +T/2

−T/2
x(t + τ/2)e−j2π α

2 (t+τ/2)

x∗(t − τ/2)e−2jπ α
2 (t−τ/2)dt . (9)

Denoting y(t) = x∗(t − τ/2)e−2jπ α
2 (t−τ/2). Thus the SCD is

expressed as:

Sαx ( f ) = FT{R
α
x (τ)}, (10)

Sαx ( f ) = lim
T→∞

1
T
FT{y(τ) ∗ y∗(−τ)}, (11)

Sαx ( f ) = lim
T→∞
{

1
T

XT ( f + α/2)X∗T ( f − α/2)}. (12)

In equation (12) XT ( f ) is the Fourier transform of the product
of x(t) and a rectangular window of width T .

XT ( f ) =
∫ T/2

−T/2
x(t)e−j2π f tdt. (13)
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Fig. 1. SSCA block diagram.

Spectral correlation density function can be estimated
using algorithms that either average in frequency or in time.
Time smoothing algorithms are often considered to be com-
putationally better for general cyclic spectral analysis. The
most common time smoothing algorithms are FFT Accumu-
lation Method (FAM) and Strip Spectral Correlation Algo-
rithm (SSCA) [16]. In [17] the estimation procedure under
different conditions of sampling frequency and signal fre-
quency are studied to conclude that any inaccuracy in fre-
quency has only acceptable consequences.

3.1 Strip Spectral Correlation Algorithm
Strip Spectral Correlation Algorithm (SSCA) is one of

the most common time smoothing algorithms used to esti-
mate the spectral correlation density function. The present
study has made use of SSCA to compute the SCD function
of the received signal samples.

Given an observation time of ∆t, an estimation of the
SCD can be obtained as a time smoothed cyclic periodogram,

Sαx ( f ) ≈ SαxTw
(t, f )∆t =

1
∆t

∫ t+∆t/2

t−∆t/2
SxTx (u, f )du (14)

where

SxTw (u, f ) =
1

Tw
XTw (u, f + α/2)X∗Tw

(u, f − α/2).

Here XTw is the short time Fourier Transform and Tw is its
window width.

The basic operations involved in estimating the SCD
using SSCA is shown as a block diagram in Fig. 1 [16]. The
steps in SSCA are as follows:

1. The input sample of length N is divided into P blocks
of Np samples each. L data samples are skipped be-
tween two successive blocks of Np samples. The values
of L, P and Np are fixed according to the resolution in
frequency and cyclic frequency.

Np =
Fs
∆ f

, (15)

L =
Np

4
, (16)

P =
Fs

L∆α
. (17)

2. A Hamming window w(n) is applied for each block.

3. Np points FFT is computed for each block to obtain the
complex envelope XTw (n, f ). It is then downshifted in
frequency to obtain XTw (n, f + α/2).

4. The complex demodulated sequence is directly multi-
plied by the complex conjugate of the signal.

5. The resulting signal is then time smoothed by means of
an N-point FFT (N = P ∗ L).

Thus we have an estimate of the SCD function of the given
signal. The spectral density functions for different modula-
tion schemes and theoretical proof for the existence of peaks
at different frequencies are detailed in [18].

3.2 Examples
For the present study, the modulation schemes under

consideration are: FM, AM, BPSK, QPSK, BFSK, QAM
and PAM. As a first step, signals were generated for each of
these modulation schemes and the SCD is obtained for each
of them under various modulation parameters. A few sample
graphs showing the SCD plotted against frequency and cyclic
frequency are given in Fig. 2.

4. Proposed Algorithm
Most of the existing approaches for SS based on CFD

uses primary user information and noise information for de-
tection. Even the latest works on cyclostationary feature
detection require noise features to compute the threshold for
hypothesis testing [14]. Classification for the modulation
schemes is attempted using artificial neural networks and
other such similar approaches. The present study makes
an attempt to devise a novel approach for detection and clas-
sification of PU signals that uses the basic statistics regarding
the cyclic spectrum. The following information are obtained
from the SCD for detection:

1. Peak value of the SCD.

2. Number of occurrences of the peak.

3. Distribution of the SCD values.

4. The spread of the peaks in frequency and cyclic fre-
quency.

From this information, parameters are formulated ac-
cordingly for detection and classification. Monte Carlo sim-
ulations were carried out to study the value of the formulated
parameters under different conditions.
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(a) Frequency Modulation. (b) Amplitude Modulation (DSB).

(c) FM with 0 dB noise. (d) AWGN noise ( dBw).

Fig. 2. Sample SCD.

4.1 Detection
From the different simulations carried out for PU sig-

nals and noise, it was observed that all of the signals have
spectral peaks along f = 0 or α = 0. But this is not the case
with noise, where the maximum is anywhere along the dis-
tribution. This basic difference can be used to detect signals
from noise. Thus a test statistic is formulated as:

T =
Peak( f , α) × flen × alen

P × fnum × anum
(18)

where
Peak( f ,α): Number of dominant peaks at f = 0 or α = 0,
P: Total number of peaks in the SCD,
flen: Total number of frequencies considered,
alen: Total number of cyclic frequencies considered,
fnum: Total number of frequencies occupied by significant
SCD values,
anum: Total number of cyclic frequencies occupied by signif-
icant SCD values.

As observed in Fig. 2d, the SCD values for noise is
spread across the frequencies and cyclic frequencies. This
brings fnum ≈ flen and anum ≈ alen. Further, noise SCD
does not necessarily have peaks at f = 0 or α = 0. This
reduces the value of the statistic close to zero. In effect, the
value of the statistic is very small when the received input
contains just noise. On the other hand, if a signal is present,
the statistic assumes significant values. This forms the basis
for detection.

4.2 Classification
Using a similar approach, an attempt is made to clas-

sify the signals based on the modulation scheme. Multi-level
checks were devised for the classification based on the data
obtained. The different checks used for the classification are
formulated based on the following parameters:

1. Number of peaks in SCD.

2. Using the statistic:
d =

lα
lf

(19)
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where, lα is the number of cyclic frequencies for which
the SCD value is very high and lf is the number of
frequencies for which the SCD value is very high.

3. Number of peaks of the SCD at f = 0.

These parameters have different values for each modulation
scheme and thus can be used to identify the signal present in
the received input.

Algorithm 1

1: Compute the CAF Rx(t, τ) of the received signal.
2: Obtain the test statistics T = Peak( f ,α)× flen×alen

P× fnum×anum
from SCD

Sαx ( f ).
3: if T ≈ 0 then
4: Presence of noise.
5: else
6: Presence of signal.
7: end if
8: Classify the signal depending on test statistic d = lα

l f
and

number of peaks of the SCD at f = 0, which is different
for different modulation schemes.

5. Results and Discussion
In order to understand the performance of the algo-

rithms, the probability of detection was calculated for differ-
ent modulation schemes with varying SNR. Figure 3 shows
the detection performance for AM, FM, QPSK and BPSK
modulation schemes for different SNR values.

The algorithm is able to detect both analog modulated
as well as digital modulated signals. The technique used
does not depend on a fixed probability of false alarm and
hence the Pfa was simulated at different SNR to gain a better
understanding into its performance and shown in Fig. 4.

In order to analyse the performance of the algorithm un-
der realistic channel conditions, AWGNandRayleigh channel
were simulated for detection of FM and QPSK modulation.
Figure 5 shows the detection performance of the proposed
algorithm for varying SNRs in both the channel conditions.
The proposed algorithm is also compared with an existing
non blind scheme [10] of detection to validate its significance.
Figure 6 shows that the proposed blind scheme is comparable
in performance to that of the existing non blind approach. In
order to evaluate the performance of the classification algo-
rithms, the probability of correct classification was obtained
at different values of SNR. Figure 7 shows a sample result
for the classification of FM, AM and QPSK signals.
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Fig. 3. Detection probability at different SNR.
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Fig. 4. Probability of False Alarm at different SNR.
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Fig. 5. Detection performance comparison in AWGN
and Rayleigh channels.
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Fig. 7. Probability of correct classification at different SNR.

6. Conclusion
The proposed blind approach is able to detect the pres-

ence of the PU reliably for SNR as low as −8 dB with no
prior information about the PU or the noise in the channel.
The algorithm functions with a probability of false alarm of
approximately 0.1 for all values of SNR. This remains almost
constant throughout the range of SNR values. It was also ob-
served that with no prior information about the signal, the
algorithm is able to achieve good classification probability
for SNR as low as −3 dB and performs with 100% accuracy
above 0 dB. This approach provides a means to classify the
received signal based on its modulation scheme with no prior
information about the primary users in the network.
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