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Abstract. Side Lobe Level (SLL) is considered as the most
significant array pattern parameter as it helps in reducing
surrounding noise and interference. As higher SLL value
results in higher wastage of power in undesired direction,
transmitters of wireless communication systems face seri-
ous problems. In this paper, the optimal design of seven
different sets of concentric circular antenna arrays
(CCAAs) of isotropic antenna has been represented with
the goal of maximum reduction in SLL. Optimal pattern
synthesis of the proposed arrays has been executed by
optimizing the normalized current distributions of array
elements having fixed inter-element spacing. In present
work inter-ring spacing has been fixed at 0.51. In order to
achieve low SLL in the radiation pattern of the optimized
array antenna, many conventional optimization methods
have been proposed in last few decades for handling com-
plex, non-differentiable, discontinuous and highly nonlin-
ear array factor. To deal with the problems of premature
convergence (fall into local optima) feature of gravita-
tional search algorithm (GSA) and particle swarm optimi-
zation (PSO) has been merged. In high-dimensional space,
gravitational search algorithm hybridized with particle
swarm optimization (GSA-PSO) is considered while pre-
serving the fast converging property of them. Numerical
results in the present text assume the pattern synthesis of
thinned array and non-uniformly excited array for seven
different sets of CCAA geometries. An exhaustive simula-
tion results are presented and the radiation pattern per-
formances are analyzed. As compared with conventional
optimization techniques like GSA and PSO, hybrid GSA-
PSO technique outperforms with the goal of maximum SLL
suppression.
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1. Introduction

To meet the demand for long-distance communica-
tion, it is necessary to design antennas with very high di-
rective (high gain) characteristics. This can be accom-
plished by increasing the electrical size of the antenna [1].
The best way to enlarge the dimensions of the antenna is to
form an assembly of radiating elements in electrical and
geometrical configuration where field patterns of individual
elements are necessarily constructive or additive in the
desired direction and destructive in the other directions.
This arrangement provides very low Side Lobe Levels
(SLLs) as well as very high directive pattern. The radiation
pattern of array antenna can be electronically controlled or
steered over the best signal path by adjusting the number of
elements, the inter-element spacing, their excitation coeffi-
cients, their relative phases, the geometrical configuration
of the overall array (linear, circular, elliptical etc.) and the
relative pattern of the individual elements. Many synthesis
methods are concerned with SLL while preserving the gain
of the main beam [2—-11].

A linear array [12] has high directivity and it can form
the narrowest main-lobe in a given direction. But the prob-
lem is that it does not perform efficiently in all azimuthal
directions. Directional patterns synthesized with a circular
array [3], [13] can be electronically rotated in the plane of
the array without a considerable change of the beam shape.
This happens because a circular array does not have edge
elements. However, the circular array pattern has no nulls
in the azimuthal plane. However, the array pattern should
have several nulls in the azimuthal plane for smart antenna
applications [14], [15]. Concentric circular antenna array
(CCAA) [16], [17] comprises many concentric circular
rings of different radius. It has many advantages compared
with other planar array geometries like linear array and
rectangular array. CCAA has become widespread in wire-
less and mobile communications and have been applied
extensively to radar, sonar and satellite communications
systems [18], [19] due to its flexibility in beam pattern
synthesis, spreading coverage area, efficient spectrum utili-
zation, less mutual coupling sensitivity, increasing channel
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capacity and the frequency invariant characteristics. Array
elements in Uniform CCAA (UCCAA) [20] are uniformly
excited and the spacing between two adjacent elements in
each ring is kept fixed to half of the wavelength. The SLL
drop is about —17.5 dB in the UCCAA with uniform exci-
tations.

Array thinning involves the removal (switching off)
of some radiating elements from a uniformly spaced or
periodic array antenna to generate a pattern with low SLL.
In this method, the locations of the elements are fixed and
all the elements have two states either “on”(active) or
“off’(removed) depending on whether the element is con-
nected to the feed network or not. All the active elements
are fed with equal amplitude currents, while the remaining
elements are turned off. In the “off” state, either the ele-
ment is passively terminated to a matched load or open
circuited. It is equivalent to removal of elements from the
array if there is no coupling between them. The main ob-
jectives of array thinning are the reduction of cost, weight
and power consumption without degradation of array per-
formance. There are many published articles [21-24] deal-
ing with the synthesis of array thinning.

Evolutionary optimization techniques have greater
potential to solve complex engineering hitches. Various
novel methods and hybridization of two different conven-
tional algorithms have been used to achieve optimal array
pattern. There are several disadvantages of classical opti-
mization methods [25]. Thus, it is necessary to develop
an efficient and robust optimization method. There are
various evolutionary optimization techniques such as ge-
netic algorithm (GA) [26-29], simulated annealing (SA)
[30], gravitational search algorithm (GSA) [31-34], parti-
cle swarm optimization (PSO) [35—40] etc. for optimization
of complex, discontinuous and non-differentiable array
factor of the antenna array.

In GSA-PSO, the next velocity of the particle vector
is considered as a fraction of its current velocity added to
its weighted acceleration (provided by GSA) and weighted
difference between the social/group best particle vector and
the present position (provided by PSO). Both of these fea-
tures are combined together in GSA-PSO [41]. In this pa-
per a hybrid version of GSA and PSO techniques, known
as GSA-PSO technique has been presented for optimal
beam-forming of various thinned CCAAs and non-uniform
CCAAs of isotropic elements. The arrangement of this
paper is as follows. Section 2 describes the array factor
formulations of the various hybrid arrays (cylindrical and
coaxial cylindrical arrays). The objective function (cost
function) is also modeled in this section. In Sec. 3, brief
explanations of the GSA, PSO and hybrid GSA-PSO are
presented. The most promising control parameters that
generate the most satisfactory results using evolutionary
algorithms are presented in Sec. 4. Section 5 summarized
the simulation results of synthesized arrays and discussed.
Finally Section 6 concludes the paper with the possible
extensions briefly.

2. Design Equation

General form of the far-field pattern of an N-element
array of isotropic elements can be explained as (1) [1].

AF(0,¢) = iln exp[j(a, +kR, -a)] 1

n=l1

where excitation coefficient of the n™ element is denoted
by 7,; wave number is denoted by k (= 21/4); a,, is the rela-
tive phase and R, is the position vector of the n™ element;
a, is unit vector. General array configuration of CCAA with
M concentric rings is shown in Fig. 1, where r,, is the ra-
dius of the m"™ (m = 1, 2,..., M) ring and the corresponding
number of element is N,. Far field radiation pattern of
a CCAA in x-y plane may be written as [17]:

F(0.0)- 31, exp{ [k';smecosw_@”)ﬂ ")

m=1 i=1 mi

where 1,; is the excitation amplitude of the i element of

the m™ ring
_J1 on 3
Lo = {o off ©
k=2m/A; A is the wavelength of electromagnetic wave.
Equation (2) may be written as a periodic function of 6
with a period of 2z radian if the elevation angle ¢ is con-
stant. So, the radiation pattern will be a broadside array
pattern. The azimuth angle of the i™ element of the m™ ring
1S G- b and a,,; are also obtained from [17] as:

4,0 =22(i-1)/N,,) . @
a, =—Kr, sing, cos(¢ —¢mi) ®)

where 6, is the value of 6 where peak of the main lobe is
attained in 6 €[—=, n]. Normalized power pattern in dB can
be expressed as given in (6).

| AF(6,) | }

P(6,4)=10log,,
(09 =10log [|AF(9,¢)|

max (6)
| AF(6,9) | }

o810 L AF(0.9)],.

In order to antenna pattern synthesis, the most im-
portant parameter is to produce the objective function that
is to be minimized. The objective function “Cost Function”
CF may be written as follows:

|AF ) o] )+AF(0mle’1mi)|

Ch =W x |AF (6,1, )

0> " mi

Wy, x| FNBW,

computed

~ FNBW (1,,=1)).

FNBW is the width between the two first nulls on either
side of the main beam. Cost function CF is computed only if
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Fig. 1. Geometry of the concentric circular antenna array
(CCAA).

FNBW computed < FNBW(1,,;= 1) otherwise the solution is not
retained. W, and W, are the weighting factors. 6,4 is the
angle where the maximum SLL (4F(6, 1, 1)) 1s attained
in the lower band and 6,4, is the angle where the maxi-
mum SLL (AF(6,s 2, 1)) 1s attained in the upper band. W,
and Wg, are weighting constants to control the relative
prominence of each term. FNBW omputea and FNBW(I,,;= 1)
refer to the computed FNBW for the non-uniform excita-
tion case and for the uniform excitation case, respectively.
In order to minimize the cost function value, the evolution-
ary optimization techniques are employed individually. So,
the optimization of current excitation weights results in
reductions in both SLL and FNBW. All the elements have
the same excitation phase of zero degree.

3. Evolutionary Optimization Methods
Engaged

3.1 Gravitational Search Algorithm

GSA [31-34] deals with consideration of particle
vectors as objects and their masses are contributing factors
to measure performance. Gravitational force is the main
reason of attraction between all objects and it results in
global movement of objects with lesser weight towards
heavier objects. Here better solutions correspond to heavier
masses. Lighter masses move faster than heavier masses
which justifies the exploitation step. In physics we talk
about three types of major masses such as active gravita-
tional mass (M,), passive gravitational mass (M,) and iner-
tial mass (M;). In active gravitational mass (#,), an object
having high active gravitational mass shows more gravita-
tional field. In passive gravitational mass (M,), an object
having higher passive gravitational mass senses greater
force. Inertial mass (M;) focuses on estimation of object’s
resistivity towards altering its state of motion according to

application of force. An object having small inertial mass
alters motion more quickly in comparison with the rest.

Position, inertial mass, active gravitational mass and
passive gravitational mass are major specification of
masses in GSA. Solution for the optimization problem is
determined by position of mass as well as a fitness func-
tion, which determines gravitational and inertial masses.
We can say every bit of mass symbolizes a particular solu-
tion.

The algorithm is operated by efficiently regulating
gravitational as well as inertial masses. Heaviest mass
attracts other masses. This particle having excessive active
gravitational mass represents optimum solution. In GSA
masses follow two laws such as the law of gravity and the
law of motion. According to first law every particle is at-
tracted by other particle so as attraction force is linearly
proportionate to multiplication of their masses whereas
inversely proportionate to inter element distance denoted
by R. R is utilized as R”*"“(rPower=1) as R exhibits
greater outcome instead of R* in all trials having bench-
mark functions [35]. On the other hand, according to the
law of motion particle’s present velocity is the total of
fraction of particle’s old velocity along with variation in
velocity. Variation in particle’s velocity is same as applied
force divided by mass of inertia. Here, if we assume a sys-
tem comprised of N particles having different masses. The
i™ particle’s position is described as

X, =(x,.1,...,xl.",...,xf), i=L2,..,.N (8)

where x; depicts the i particle’s position in the ¢™ dimen-
sion. For a particular generation cycle ¢, applied force over
the i" particle by the j particle is described as:
M ()M ()
F!'(t)=G(t) 22— (X' ()- X' () O
i (1) =G() R ()+s (X0 -x/©)
Here, at the /" generation cycle, M,(f) denotes the j™ parti-
cle’s active gravitational mass, same way M,(¥) is the "
particle’s passive gravitational mass, gravitational constant
is G(¥), ¢ is a constant having small value, and R;(¥) stands
for Euclidian distance, i.e. distance between particle i and j
and is denoted by (10).
is usually 2. (10)

> rNorm

R, (1) = |x,(), X,(0)

rNorm

For fulfilling stochastic criteria for the algorithm, we
assume that total force which is acting on the /™ particle in
the d" dimension is a randomly weighted sum of & com-
ponents of the forces exerted by other particles. Similarly it
is depicted as (11).

d - d
F'(1y= ). rand F} (1) (1)
J=Lj#i
where rand; denotes a random number within limit [0, 1].
Hence, by the law of motion, the acceleration of the i
particle at generation cycle 7, and in the @™ dimension, a,(¢)
is given by (12).
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_F®

- (12)
M[i (t)

a’ (1)

where M;(f) stands for the i particle vector’s inertial mass.
Particle’s present velocity is the total of fraction of parti-
cle’s old velocity and change in velocity. So, particle’s
velocity and its position can be estimated by (13) and (14),
respectively.

Vl-d (t+1) = randi xv,fi (t+ 1)+a,.d (1),

(13)
(14)

From (13), rand; denotes an unvarying random varia-
ble in [0, 1], which is basically used to give random nature
to the search.

x(t+D)=x" )+ (t+1).

After initialization at the beginning, gravitational con-
stant (G) gets reduced in future generation cycles to regu-
late accuracy in search space. Hence, G can be depicted as

in (15)
G=G,exp| ~a-| ———||. (19
maxGenCycles

Cost function (CF) evaluation calculates gravitational
and inertia masses. Particle with heaviest mass is the most
efficient one. It means superior particles are having greater
attraction capability and they walk rather in slow speed. If
we consider equal gravitational as well as inertia mass, map
of fitness determines values for masses and accordingly
values of gravitational and inertial masses are upgraded.

M,=M, =M, fori=12,. N, (16)

m, (1) = fit,(t) — worst(t) , (17)
best(t) — worst(t)

M, (1) = 2D (18)

> m()

Here fit,(f) stands for the /™ particle’s fitness value at the /"
generation cycle, whereas worst(f) and best(t) are well
described in (19) and (20), for optimization problem.

best(f)= min ™", (19)
jetlonN}

worst(t) = max o (20)
J

efl,..... N}

To have a better comparison between exploration and
exploitation it is desired to minimize particle population
along cycles of generation in (11). So we presume that
heavy mass particles exert forces to other particles.

This policy should be handled with care as it results in
reduction in exploration power and increment exploration
capability. Exploration must be used at the beginning of
algorithm for avoidance of the trapping problem. With the
advancement of iterations fade in of exploitation and fade
out of exploration must take place. As Kbest particles are

capable of attracting others, the GSA is well measured by
restricting exploration and exploitation.

The initial value related to function for generation cy-
cle is denoted by Kbest and it reduces along with genera-
tion cycle. Similarly all particles exert forces primarily and
with the progress of generation cycle Kbest is reduced in
linear fashion. As a result only one particle will be left at
the end to exert force on others. Consequently (11) can be
rewritten as (21).

F'(ty=" Y. rand F/(1). 1)

JjeKbest, j#i

According to (21), Kbest depicts a set of the first K
particles having best value of fitness as well as heaviest
masses.

3.2 Particle Swarm Optimization (PSO)

The best part of PSO says it does not get trapped on
local optima. PSO is capable of handling non-differential
objective functions dissimilar to the conventional optimi-
zation methods. Life style of swarm of birds is taken into
consideration for developing logic behind PSO by Eberhart
et al. [39-44]. Concept of PSO revolves around simulation
through flocking of birds in space. An objective function is
being optimized according to flocking of bird. pbest re-
sembles as best value till is known to each bird (particle)
according to their personal experience.

Not only that each particle is familiar with the best
value in the group among pbest commonly known as gbest.
Generally position of each particle is being modified ac-
cording to below mentioned information:

e Spacing between pbest and current position.
e Spacing between gbest and current position.

Same as Genetic Algorithm, in Particle Swarm Opti-
mization we assume particle vectors with real coded feature
having total population (#,). Every particle vector is having
segments as per requirement of design parameters we ought
to optimize. Accordingly, velocities for particle vectors are
rewritten as per following equation:

VY (k+1)=wxV(k)+C, xrand, x(pbestid (k)- X! (k))
+C, xrand, x(gbestd (k)-X! (k))
(22)

Here for the i™ particle in the k™ iteration: V(k) stands for
velocity; X/(k) tells the current position; pbest (k) stands
for personal best of the i particle vector; ghest(k) stands
for group best of the group in all cases the @" dimension
has been taken into consideration; weighting function is
given by w; positive weighting factors are C; and C; ran-
dom numbers (rand,, rand,) within limit of 0 and 1; We
can find modified searching point in the solution space by

X! (k+1)=X"(k)+v! (k+1). (23)
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The particle vector’s old velocity is described in the
first term of (22). The successive terms are utilized to
modify the particle’s velocity. Exclusion of these terms
forces the particle to fly in without changing direction, till
it bangs with the boundary. Basically, inertia constant (w)
focuses on inertia characterization for exploring new areas.

3.3 Backtracking Gravitational Search Algo-
rithm Hybridized with Particle Swarm
Optimization (GSA-PSO)

In GSA particle vector’s next velocity is treated as
portion of its present velocity combined together with its
weighted acceleration. The same in PSO can be summa-
rized as weighted divergence among current position and
social/group best particle vector. Both these features are
combined together in GSA-PSO [41]. In traditional PSO
inertia term as well as social/group best term has equiva-
lence with first and third term. Therefore, its position and
velocity for the next cycle (¢ + 1) are presented by (25) and
(24), respectively.

v (t+1) = (24)
wxv! () +¢ xa’ () +c, x(gbestd(t)—Xl.d (t))

For current cycle (¢ + 1), the social/group best particle
vector is denoted by gbest(?).

X +)=X" ) +v! (t+1). (25)

The term associated with the social/group best particle
vector is represented by the updated velocity expressions’
third term in GSA-PSO. The restriction of the updated
position to follow present iteration’s social best position
makes GSA-PSO to perform better than GSA or PSO as
individual. The algorithm can be summarized as:

Step-1:

Initialization: particle vectors’ population is denoted by
(n,=150), dimension for problem to be optimized (D);
maximum number of iterations (200); every design param-
eter’s higher and lower limit of boundary. Decrement fac-
tor relative to G is denoted by « used in reduction in accel-
eration simultaneously with the advancement of iteration
from global search of initial stage to local search of final
stage. This is due to the fact that perturbation property of
particles reduces along with the advancement to the local
search of final stage. After several trials a =20 provides
significant results. We take value of Gy as 1000; »Norm is
taken as 2; rPower equals to 1; ¢ is considered as 0.0001;
velocity = zeros(n,, D) contributes to maximum outcome of
GSA-PSO. ¢;= ¢,=2.05, helps in achieving better result.
Step-2:

Formulate design parameters’ initial particle vectors (D)
randomly within proper limits.

Step-3:

Determination of the total population’s CF values (1,,).
Step-4:

Determine the best solution particle vector for the entire
population.

Step-5:

Revise and update values for G(f) = G'(¢), best(t) = best'(t),
worst(t) = worst'(t), and Myt) =M/(¥), for i=12,...,n,;
current iteration cycle is denoted by .

Step-6:

Estimation of the sum of forces in distinctive directions.
Step-7:

Particles’ velocities and accelerations are to be estimated.
Step-8:

Particles’ positions are to be updated.

Step-9:

Repetition of Steps 3 to 8 to be continued till the
achievement of stopping criterion.

Step-10:

Ultimately, gbest symbolizes the vector of optimal design
parameters (D).

4. Setting of Algorithm Parameters

Sometimes, the control parameters of GSA, PSO and
GSA-PSO techniques are quite sensitive. The parameter
values should be carefully chosen which are shown in
Tab. 1. The minimum CF values against iteration cycles are
recorded to get the convergence profiles for the algorithms.

Parameters GSA PSO GSA-PSO
Population size 150 150 150
Iteration cycle 200 200 200

a 20 - 20
Gy 1000 - 1000
rNorm 2 - 2
rPower 2 - 2
& 0.0001 - 0.0001
1) - 2.05 2.05
c - 2.05 2.05
v - 0.01 0.01
s R 1.0 1.0
Whin - 0.4 0.4
Winax - 1.0 1.0

Tab. 1. Control parameters of algorithms.

5. Computational Results and Discus-
sions
Two design examples are being presented based on

distribution pattern of the normalized excitation coeffi-
cients of array elements. In the first example, various evo-
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lutionary optimization techniques have been applied for the
optimal thinning of CCAA of different rings to reduce the
SLL values.

Same optimization techniques are used in the second
example where reduction of maximum SLLs has been done
by optimizing non-uniform distribution of excitation
amplitudes of the arrays of same size.

In both examples we consider optimal design of dif-
ferent sets of concentric circular antenna arrays arranged
in a format like array of 2 rings having (6, 12) elements
called array-1, array of 3 rings having (6, 12, 18) elements
called array-2, array of 4 rings having (6, 12, 18, 24) ele-
ments called array-3, array of 5 rings having ( 6, 12, 18, 24,
30) elements called array-4, array of 6 rings having (6, 12,
18, 24, 30, 36) elements called array-5 and array of 7 rings
having (6, 12, 18, 24, 30, 36, 42) elements called array-6,
respectively, with fixed inter-ring spacing of 0.51. Inter-
element spacing can be calculated for each ring of all the
array formats using MATLAB codes presented below:

clc;
clear all;
close all,
10 =0.5; %Radius of the inner-most ring
di=0.5; %lnter-ring spacing
de=0;
N=1[6,12, 18,24, 30, 36, 42]; %Number of elements in
each ring
for m=11,2,3,4,5,6,7]
r(m) = r0+(m-1)xdi;
each ring
end
for m=11,2,3,4,5,6,7]
de (m)= [2xpixr(m)] / N(m);
element spacing in each ring
end
disp(de)

%Ring number
%Calculating radius of

%Ring number
%Calculating inter-

Results:
de=10.5236 0.5236 0.5236 0.5236 0.5236 0.5236
0.5236];

So, in our design, the inter-element spacing is 0.52364
for all rings in the entire array format to keep inter-ring
spacing fixed at 0.54.

For practical applications with size limitations, the
dimension of the array is the most important part of array
antenna design problem. The optimized spacing between
adjacent elements is so distributed that the average inter-
element spacing is the same as that of equally spaced array.
Therefore, the total aperture area of the array is kept fixed
during optimization.

Generally, inter-element spacing is to be so chosen as
to ensure low-level of mutual coupling between signals
received by adjacent antenna element channels. According
to the theoretical results, the low mutual coupling effect is
obtained for inter-element spacing more than half wave-

length; however, experimental measurements show that
this distance can be less [42]. Also, single wave length
spacing generates grating lobes with a magnitude equal to
the main lobe value. To avoid grating lobes, the spacing
between the elements of the planar array is to be less than
the wavelength.

5.1 Pattern Synthesis of Thinned Concentric
Circular Antenna Arrays (CCAAs)

Thinning is the process of removing (switching OFF)
antenna elements systematically from uniformly spaced
array without a significant degradation in performance. In
this procedure, all the elements have any of two situations;
“ON” (excited) or “OFF” (detached). It is one of the best
solutions to lower the side lobes of antenna arrays. Some
elements within a ring of an array are turned off or re-
moved to modify current density on the aperture. The goal
is to minimize the maximum side lobe density taper on the
array aperture. We apply GSA, PSO & GSA-PSO to opti-
mize the proposed designing problem. SLL performances
of different thinned array formats using these three evolu-
tionary techniques are shown in Tab. 2 and described below.

Array-1: Upon applying GSA for thinned CCAA of 2
rings having (6, 12) elements, 50% thinning is used to
reduce SLL to —16.05 dB with FNBW 56.8° considering 9
elements as ON in total. Similarly, using PSO for thinned
CCAA array of the same configuration, 27.78% thinning is
used to reduce SLL to —17.52 dB with FNBW 60.4° con-
sidering 13 elements as ON in total. Also, using GSA-PSO,
55.56% thinning is used to reduce SLL to —24.41 dB with
FNBW 65° considering 8 elements as ON in total.

Array-2: Using GSA for thinned CCAA of 3 rings
having (6, 12, 18) elements, 36.11% thinning is used to
reduce SLL to —19.68 dB with FNBW 43.2° considering 23
elements as ON in total. By the use of PSO for thinned
CCAA array of 3 rings having (6, 12, 18) elements, 22.22%
thinning is used to reduce SLL to —21.80 dB with FNBW
46.4° considering 28 elements as ON in total. Upon apply-
ing GSA-PSO for thinned CCAA array of 3 rings having
(6, 12, 18) elements, 36.11% thinning is used to reduce
SLL to —23.41 dB with FNBW 47.6° considering 23 ele-
ments as ON in total.

Array-3: Upon applying GSA for thinned CCAA of 4
rings having (6, 12, 18, 24) elements, 48.43% thinning is
used to reduce SLL to —24.68 dB with FNBW 37.2° con-
sidering 31 elements as ON in total. Upon applying PSO
for thinned CCAA array of 4 rings having (6, 12, 18, 24)
elements, 50% thinning is used to reduce SLL to —26.47 dB
with FNBW 38.8° considering 30 elements as ON in total.
Upon applying GSA-PSO for thinned CCAA array of 4
rings having (6, 12, 18, 24) elements, 43.33% thinning is
used to reduce SLL to —28.07 dB with FNBW 40.4° con-
sidering 34 elements as ON in total.

Array-4: Applying GSA for thinned CCAA array of
5 rings having (6, 12, 18, 24, 30) elements, 37.78% thin-
ning is used to reduce SLL to —21.58 dB with FNBW 28°
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considering 56 elements as ON in total. Using PSO for
thinned CCAA array of 5 rings having (6, 12, 18, 24, 30)
elements, 57.78% thinning is used to reduce SLL to
—22.42 dB with FNBW 27.2° considering 38 elements as
ON in total. Upon applying GSA-PSO for thinned CCAA
array of 5 rings having (6, 12, 18, 24, 30) elements, 42.22%
thinning is used to reduce SLL to —25.01 dB with FNBW
30° considering 52 elements as ON in total.

Array-5: Upon applying GSA for thinned CCAA
array of 6 rings having (6, 12, 18, 24, 30, 36) elements,
48.42% thinning is used to reduce SLL to —24.92 dB with
FNBW 26° considering 65 elements as ON in total. With
PSO for thinned CCAA array of 6 rings having (6, 12, 18,
24, 30, 36) elements, 42.86% thinning is used to reduce
SLL to —26.83 dB with FNBW 26.8° considering 72 ele-
ments as ON in total. Upon applying GSA-PSO for thinned
CCAA array of 6 rings having (6, 12, 18, 24, 30, 36)
elements, 42.07% thinning is used to reduce SLL to
—29.26 dB with FNBW 27.6° considering 73 elements as
ON in total.

Array-6: Using GSA for thinned CCAA array of 7
rings having (6, 12, 18, 24, 30, 36, 42) elements, 45.24%
thinning is used to reduce SLL to —24.17 dB with FNBW
21.2° considering 92 elements as ON in total. Upon apply-
ing PSO for thinned CCAA array of 7 rings having (6, 12,
18, 24, 30, 36, 42) elements, 50.60% thinning is used to
reduce SLL to —26.17 dB with FNBW 22.8° considering 83
elements as ON in total. By GSA-PSO for thinned CCAA
array of 7 rings having (6, 12, 18, 24, 30, 36, 42) elements,
39.89% thinning is used to reduce SLL to —28.21 dB with
FNBW 23.2° considering 101 elements as ON in total.

Figures 2(a—f) show the normalized absolute power
patterns of optimized thinned CCAAs found by GSA, PSO
and GSA-PSO for all array sets. It is observed that the
number of antenna array elements can be brought down
with the simultaneous reduction in SLL achieved after
thinning; as compared to the fully populated array (uni-
formly excited array) with fixed inter-element spacing.
Excitation amplitude distribution of optimized thinned
CCAA using GSA, PSO and GSA-PSO are tabulated in
Tab. 3, Tab. 4 and Tab. 5, respectively, for all CCAA for-
mats. Filled ratio is also tabulated in respective table for
each array size and for each optimization algorithm. Filled
ratio is the ratio of the number of ON elements to the total
number of elements in the array.

Findings: (i) From Fig. 2 and Tab. 2, it can be seen
that CCAA of all array sets gives the lowest value of SLL
using GSA-PSO (-17.81 dB for Array-1, —23.41 dB for
Array-2, —28.07 dB for Array-3, —25.01 dB for Array-4,
—29.26 dB for Array-5,-28.21 dB for Array-6) when com-
pared with GSA and PSO techniques. (ii) Percentage of
thinning (number of OFF elements in percent) is more than
40% using GSA-PSO for all array sets (Tab.5) except
Array-2 where thinning is 36.11%. Higher value of array
thinning gives less mutual coupling effect from the adja-
cent elements. Also, the cost and weight of the array is
lower with higher value of thinning. (iii) Furthermore,
CCAA using GSA-PSO not only gives the best SLL, radia-

tion pattern using GSA-PSO gives the narrower main beam
width (FNBW) among the three optimization algorithms in
many cases.

5.2 Pattern Synthesis of Non-Uniform Concen-
tric Circular Antenna Arrays (CCAAs)

In the second example, we have considered CCAA of
a fixed inter-element spacing is 0.52364 for all rings in the
entire array format to keep inter-ring spacing fixed at 0.54.
Synthesis of CCAA is achieved by GSA, PSO and GSA-
PSO techniques. The ring radius of each ring in CCAA
is defined by the product of the inequality constraint for the

GSA PSO GSA-PSO
Array
set SLL FNBW | SLL | FNBW SLL | FNBW
(dB) (deg) (dB) (deg) (dB) (deg)
Array-1 | —16.05 56.8 | -17.52 60.4 -17.81 59.6
Array-2 | —19.68 432 | -21.80 46.4 2341 | 476
Array-3 | —24.68 372 | 2647 38.8 —28.07 | 404
Array-4 | —21.58 28.0 | 2242 27.2 -25.01 30.0
Array-5 | —24.92 26.0 | —26.83 26.8 -29.26 | 276
Array-6 | —24.17 212 | -26.17 22.8 -28.21 232

Tab. 2. Performances of different sets of thinned CCAA using
three optimization techniques.

—GSA
—PSO

-20 F

-30

Normalized AF (dB)

-40

-90 -6

(6,12)-element concentric ring CA
——GSA-PSO| |
0 0
Angle 0(degree

0 -3 30 6
)
(a)

(6,12,18)-element concentric ring CA

0 90

Normalized AF (dB)

-90 -60 -30 0 30 60 90
Angle 0(degree)
(®)
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(6,12,18,24)-element concentric ring CA No. of
T T T T . . Amplitude No. of | Filled
elements in|Ring| .. " . SLLuyax [FNBW([ 00 .
. distribution ° ON Ratio
) each ring | No. of elements (dB) © elements | (%)
3 (Nl"-"[vn)
% 1 [111100
§ 6,12 2 looo11001010 | —16.05 | 56.8 9 50.00
'Té 1
5 1 [110100
b4
2 11110011110
| 6,12,18 1 -19.68 432 23 63.89
-90 -60 -30 0 30 60 90 3 (01100110111
Angle 6(degree) 0111011
(© 1 [100111
0 (6,12,18,24,30)-element concentric ring CA 2 (01011110001
. : : : 0
oA 3 |11010010001
& — PsO 6,12,18,24 2468 | 372 31 |51.57
0t 1 0101011
= ——GSA-PSO
% 4 |11000010111
B 20 10111001100
N 00
@©
£ 1 (011101
o -30
z 2 11110110101
1
-40 I |
-90 -60 -30 0 30 60 90 3 (1)(1)88(1)(1)11 111
Angle 6(degree) 6,12,18,
01101010110
0 (6,12,18,24,30,36)-element concentric ring CA 01
[ ' ' — 5 [11110000111
= e 11000000110
S -10 coapso| 1 11100111
< 1 [o11011
3 2 _[o1110101011
E 1
5 3 110110110011
z 0111100
| 4 101100100010
-90 -60 -30 0 30 60 9% 6,12,18, 11100011000
Angle 0(degree) 24,30,36 00 —24.92 | 260 65 51.58
@ 5 [10100010011
11001111011
0 (6,12,18,24,30,36,42)-element concentric ring CA 00010100
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Fig. 2. Optimal power patterns of thinned CCAA 9: (a) array-1, 6,12,18, 5 11100111000 0417 | 212 9 54.76
(b) array-2, (c) array-3, (d) array-4, (e) array-5, 24,30,36,42 01010101111 ' ’ ’
() array-6. 100000011
. . 6 11001000011
inter-element spacing, d (=0.52637), and the number of 10011101111
elements in that particular ring N, i.e. r; = Nid/2m. ¢o= 0° is 01011101111
considered to maintain the main lobe starts from the origin - 3100100101
for all the cases. 01001011110
As mentioned earlier, this example involves optimal 00000000011
design of different sets of concentric circular antenna arrays OLIOLITI0
arranged in a format like array of 2 rings having (6, 12) Tab. 3. Excitation amplitude distribution of optimized thinned
elements called array-1, array of 3 rings having (6, 12, 18) CCAA using GSA.

elements called array-2, array of 4 rings having (6, 12, 18, 24)
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No. of . . No. of . .
elements in|Ring| AMPHtAC | pp, | pnpw [ RSO0 [T o ones in| Ring | AmPlitude 1gyy | pnpwy | No.of | Filled
. distribution o ON ratio X distribution max ‘ON’ ratio
eachring | No. | 0 1o ments | @B ©) elements | (%) eachring | No. | b joments | (4B © | etements (%)
(N],...]V,,) (Nl,...N,,)
6,12 5 8811011111 ~1752 | 604 13 |7222 6.12 —fooorotion a1 | 650 3 4444
1 |111110 0
5 [ITon 1 frio1tl
6,12,18 11 2180 | 46.4 28 [77.78 01011110101
S [1100110101 61218 | 2 |4 2341 | 476 23 |63.89
11111001 5 [10010101110
1 100111 1001101
5 0101011010 1 |111101
01
00010110111
6,12,18,24 | 3 [OHIO1010T1} Hg 47 [ 388 30 [50.00 2 o
00110101
6,12,18, 24 11001111001 [ 28,07 40.4 34 |56.67
0100001001 3
4 11010100110 0001011
0011 11000001000
—TT100T0 4 }}111011001
0000100011
2 | 1 [o11010
3 1001000011 5 10001110010
6.12.18 0101000 1
A 1010100110 | —22.42 | 272 38 [42.22 11011011110
24,30 3
4 11101001100 6,12,18, 0100111
1100 2430 01001110111 | 2501 [ 300 52 | 5778
0000100110 4 01101011010
5 0011110100 11
0011100001 11100000111
1 |o11111 5 100101110000
1101000111 01101111
2
01 1 111110
3 |L101011010 11101011110
01101111 2 |,
A }(1)1(1)(1):833)(1) 5 [o111T101100
6,12,18, 1010101
243036 0101 2683 | 2658 72 |57.14 TTT0T01T010
0111101001 6.12.18. | 4 [iot11010111
5 10101011100 ) o1 2926 | 27.6 73 57.93
1101111101 24,30,36
11100000100
1100000010 5 |ot001110101
o e
001101 10011100001
¢ 10100101011
1 [101110 01000111010
5 }(1)10101010 011
5 |0100100010 1 ]110110
00011010 , [trortinio
1100000110 1
4 [1111011110 3 11111100011
0001 0010110
s 1011110010 01000001111
12,18, | 5 |1110111110 4 11111011000
2617 | 2238 83 |49.40
24,30,36,42 1100100111 01
1111000110 6,12,18, 11111101001
6 |0000011000 24,30,36,42| 5 11111110000 —2821 232 101 60.11
1100010000 00111000
101010 01001011010
0011011101 ¢ 00100101111
0001001001 00100001101
7 11010000111 o011
0010000110 01111111110
11 , [tooo1001101
Tab. 4. Excitation amplitude distribution of optimized thinned i(l)i }(1)??(1)(1)01

CCAA using PSO.

Tab. 5. Excitation amplitude distribution of optimized thinned
CCAA using GSA-PSO.
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elements called array-3, array of 5 rings having (6, 12, 18,
24, 30) elements called array-4, array of 6 rings having (6,
12, 18, 24, 30, 36) elements called array-5 and array of 7
rings having (6, 12, 18, 24, 30, 36, 42) elements called
array-6, respectively, with fixed inter-ring spacing of 0.54.
So, the number of rings in the array is chosen arbitrarily
from a small size (array-1 having two rings) to a large
value (array-6 having seven rings) because the total number
of elements in the array have a great influence on the array
pattern synthesis. FNBW/HPBW in the array pattern de-
creases with the increment of the total number of elements
in the array. Thus, the array directivity increases with the
increment in the number of elements. But, the SLL in-
creases with the number of elements in the array. In order
to reduce the SLL values, various evolutionary optimiza-
tion techniques have been applied in non-uniformly dis-
tributed CCAA.

Array GSA PSO GSA-PSO
set | SLL | FNBW | SLL [ FNBW | SLL | FNBW
(dB) (deg) (dB) (deg) | (dB) | (deg)
Amay-1 | 1832 | 600 | 2035 | 60.0 |-24.41| 64.0
Array-2 | 2997 | 540 | 3318 | 544 [-3445| 552
Aray-3 | 3524 | 440 | 3689 | 464 [-4097| 484
Array-4 | -33.14 | 360 | 3629 | 360 [-3811| 372
Amay-5 | 3315 | 330 | 3557 | 312 [-3853| 320
Array-6 | -30.93 | 244 | 3324 | 256 |[-37.69| 276

Tab. 6. Performances of different sets of non-uniform CCAA
using three optimization techniques.
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®
Fig. 3. Optimal power patterns of non-uniformly optimized
CCAA: (a) array-1, (b) array-2, (c) array-3, (d) array-4,
(e) array-5, (f) array-6.

Performances of amplitudes only for optimized
CCAAs (array-1 to 6) in terms of SLL and FNBW using
GSA, PSO and GSA-PSO are tabulated in Tab. 6. The non-
uniformly distributed optimal excitation amplitudes for all
array sets are shown in Tab. 7-9, respectively, using GSA,
PSO and GSA-PSO. Figures 3(a—f) show the normalized
absolute power patterns of optimized non-uniform CCAAs
found by GSA, PSO and GSA-PSO for all array sets.
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Findings: (1) As shown in Tab. 6, SLL reduces to 6,12,18, 0.6630 0.7311 0.5438| —33.14 36.0
—18.32 dB and —20.35 dB using GSA and PSO, respec- 24,30 0.7969  0.9957  0.5891
tively, for array—I: Further 1mp.rover.nent is .achleved. for 09946 09989  0.5439
array-1 when hybrid GSA-PSO is being applied and gives 0.8902 03686  0.5052
the maximum reduced SLL of —24.41 dB which is the best 0.4156  0.4655  0.5009
SLL among all evolutionary schemes applied here in order 0.5370 04628 04170
to redupe the maximum SLL by’optimizing the amplitude 09952 05588  0.0633
coefficients of array elements with closely equal value of 0.9904  0.4972  0.3558
FNBW. Similarly, GSA-PSO achieves maximum reduction g-6607 g-gogg 0-9(9)45
in highest SLL as compared to the conventional GSA and O‘Zg?f 0. 625451 8'2327
PSO techniques for all the array sets with the little bit com- 08144 07966  0.8295
promisation of FNBW value. (ii) From Tab. 2 and Tab. 6, it
. 0.9007 0.9988 0.9622
can be concluded that a lower SLL can be further achieved 00003 02186 03751
by optimizing the non-uniform excitation amplitude coeffi- 10000 01090 04592
cients of the array rather than that of the uniform case. 0.8744  0.7615  0.8471
(ii) Narrower main lobe width can be achieved by increas- 0.9309  0.5851  0.4569
ing the number of rings as well as number of elements in 8'2523 gfég; 8'%‘7‘(5)2
the array as shown in Fig. 3(a—f). 0.0661  0.9497  0.6431
0.7079 0.7608 0.6873
No. of 0.7697  0.5407 0
elements in | Ring Amplitude distribution SLL,., | FNBW 0.0015 0.6157 0.1724
each ring No. of elements (dB) ©) 1.0000 0 0.9818
(NV1,V25.-051Vy) 0.3044  0.8635  0.7789
0.4824 0.8988 0.2741
6,12 1 0.9931 0.9996 0 -18.32 60.0 0.3824 0.2697 0.0054
0.9573 0.5007 0.3186 0.0016 0.1331 0.3099
0.1700  0.7518  0.4032
2 0.3014  0.6336  0.9604 03634 03100 0.6864
1.0000 0 1.0000
1.0000 0.9480 0.6419 6,12,18, 0.9404 0.3308 0.2821| —-33.15 33.0
1.0000  0.1959 0.8307 24,30,36 1.0000 0.7021 0.8552
6,12,18 1 1.0000 0.8213 1.0000| —29.97 54.0 0.9737 1.0000 0.7515
0.9759 0.0172 1.0000 0.6620 0.3676 0.4997
1.0000  0.8698  0.9148
2 |1.0000  1.0000  0.3857 0.6835 0.3408 0.7339
0.0497 0.6945 1.0000
0.5516 1.0000 1.0000 0.9833 1.0000 0.9002
0.5797 0.6121 1.0000 1.0000 0 1.0000
0.7806 0 0.6262
3 0.9976 0 1.0000 0.9023  1.0000 0
0 1.0000  0.0002 0.8012 03153 1.0000
0.4156  0.8470  0.5632 1.0000  0.8730  1.0000
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0.9790 0 1.0000
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0.5376 0 09769 0 0.9892  1.0000
2 0.9999 1.0000 0.0110 0.1519 0.5430 0
0.5166  0.2648  0.8318
0.8471 0.1626 1.0000 1.0000 1.0000  0.9865
1.0000  1.0000  0.4059 : : :
0.8446  0.6335 0.5706 1.0000 09744  0.6781
3 0.8354 0.9157 0.6571 82?; 8;?;‘? 8(3);‘(6)2
0.7894 0.0859 0.7141 0' 1 6000 ' 0
0.1979 0.7189 0.2583 0.0101 0.3905 03771
0.3701 1.0000 0
0.1202 0.1065 1.0000
0.9872 0.0029 0.0384
0.4989 0.7630 0.8691 0 1.0000 0.0120
: : : 0 0.6219  1.0000
4 0.8211 04102 0.3551 0.0012 0.5832 0.4007
0.4391 0 0.0059 03335 09867  1.0000
0.1866 0.9700  0.9356
0.0657 0.1625 0.3020
0.9102 0.9975 0
0.9958 00739 0.9733 0.5226 0.3423 0.6899
: ’ : 0.0305 0.3116 0.0037
gjggg 0 566(1) 0 237(7) 0 0.3511 0.3960
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each ring No. of elements (dB) ©)
0.8418  0.0335 0 VeNoreuN,)
0 07211  0.9198 Db
0.6758  0.1967  0.0382 6,12 1 o 1.0000 0.0236] —20.35 | 60.0
6,12,18, 1 01503  0.8867 0.4714| —30.93 | 24.4 00022 02830 10000
24,30,36,42 0.8407  0.9354  0.0438 2 |1.0000 08670  0.0001
2 09995 02817  0.3293 (1).8(3)(1)2 8;?23 8
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0.6036  0.5191  0.7071 : :
09706  0.4944  0.9668 6,12,18 1 [o.6162  0.0974 0.5834| -33.18 | 54.4
T loom  ocoe  o700s 0.6577  0.6409  0.5290
0.6942  1.0000  0.9950 2 (09374 04093 05194
08012 03586  0.5277 0 0.9651  0.2364
0.5869  0.4459  0.5224 0.6413 02495  0.7178
04565  0.8824  0.4206 0.1952 02561  0.6327

0.9989  0.7373  1.0000

3 1.0000  0.7450  0.5398

4 0.9792 0.8685 0.5058 0 0.0107 1.0000
0.4139 02713  0.5260 0.2521 0.2256 1.0000
0.3962  0.8440  0.6760 04567 04628  0.6476
0 0.0856  0.9940 0 03333  0.8724
03252 0.2925  0.8697 0 0.7771 07117
0.1823 09452 0.2980
0.6044 03850  0.6249 6,12,18,24 1 [05325 05815  0.6867| -36.89 | 46.4
0.6689 09997 0.5322 04202 0.5197 0.6298

5 107309 05849  0.4330 2 (05244  1.0000  0.1060
04939 02778  0.1322 0.5997  0.5929  0.9067
1.0000  0.8533 0 0.6389  1.0000  0.0235
0.8967  0.5071  0.9204 04879 07346  0.6416
0.1868  0.8921  0.3480
04869  0.6194  0.0005 0.1716  0.9773 0
0.7729 0.2676 0.9992 0.0355 0.9023 0.7343
05723 0.8021  0.1593 1.0000 02267  0.4623
0.6036 02101  0.1080 0.5995 02948 0.5228

0.0422  0.6103  0.9507

6 0.5295  0.2862  0.3463

0.4093 0.5386  0.1670 4 0.9995 0.6809 0
0 0.3396  0.3865 0.9986 0 05571
0.3097  0.7137 0 0.5784 0 0.0528
0.1846  0.2447  0.8549 0.2859 09101 0.5098

0 0.8574  0.4317 0.6753  0.6990  0.5282
0.4260 1.0000  0.6654 0.1463 0 0.0952
0.4014  0.0910  0.9596 0.1487  0.6592  0.0027
02473  0.5659  0.5832 0.6351 0.4651 0.3288

0.0867  0.4256  0.5703
0.0929  0.0185 1.0000
0.2010  0.0326  0.7379

6,12,18, 1 1.0000  0.9878  0.0618| -36.29 | 36.0
24,30 0.9250  0.8839  0.5132

2 0.6257  0.6706  0.1450
0.0227  0.9828  0.9424
0.8713  0.5800  0.4294

7 1.0000  0.8853  0.8195
0.6329 0.1474  0.2294

0.2877 0 02215
00419 01595 09739 03452 0.5442  0.9012
0.8027  0.6492  0.2724 3 (07319 09137  0.4988
0.9303  0.2415  0.0296 04787  0.0203  0.6712
0.9020 0.9021 0.8160 0.1921 0.4457 0.4799
0.8765 1.0000 0.9438 1.0000 0.9749 0.3868
0.8009  0.4649  0.0000 0.8120 03140 03181
0.0000  0.0159 0 04680 09571  0.1569
0.0034  0.9992 0
03933 0.5479  0.6373 4 los625 01927  0.8606
0.0428 0 0.0263 0.6787 05762  0.5459
0.1018  0.1658 0.2956 0.0041 02721 03311
0.1205  1.0000  0.2435
Tab. 7. Excitation amplitude distribution of optimized non- 0.3816  0.8258  0.6901
uniform CCAA using GSA. 0.0002 07528  0.1365
0 0.6066  1.0000

0.4982 1.0000  0.9969

5 0.7357 09136  0.6744
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05727 0.6660  0.0020
0.1127  1.0000  0.3841
0.0081  0.0020  0.5812
03842  0.9964  0.9813
0.8547 07074  0.9847
0.3697  0.9237 0
02818 09817  0.4337
0.0507  0.1248  0.2702
03966  0.5256  0.1595

6,12,18, 04296  1.0000  1.0000 -35.57 | 31.2

24,30,36 0.8372 09898  0.2404
04716  0.6148  0.4300
0.5700  0.8262  0.2249
0.0004  0.9504  0.8610
0.1039  0.9793  0.9893
0.8732  0.7466  1.0000
03285  1.0000  0.5580
03877 03527  0.8967
0.9995  0.9371  0.9904
0.7642  0.5177  0.6041
0 0.8436  0.0061
1.0000  0.6535  0.7767
03939 0.0997  0.4671
04359 0.3600  0.0169
0.5389  0.3656  0.3282
04824  1.0000  0.2769
0.8607  0.2198  0.1867
0.5697  0.5261  0.9566
09325 08177  0.6656
1.0000  1.0000  0.9522
0.8795 07304  0.7112
0.9250  0.0443  0.0031
0.3855  0.3869  0.6018
0.5807  0.9983  0.1745
1.0000 09493  0.4977
0.0101  0.1804  0.8305
02512 0.2980 0
0.0173  0.9797 0
0.6820  0.7016  0.1480
0.8936  1.0000  0.0264
1.0000  0.0324  0.0054
0.8355  0.0191  0.3412
0.0018  0.8402  0.0033
0.1292 02397  0.6875
0.1167 07512 0.6879
0.7785  0.1357  0.2904
1.0000 0 0.0358
02764  0.3971 0
1.0000 0 0
04298  0.3578  0.3404
0.1343 02373 0.9980

6,12,18, 09893 03379 09995 -33.24 | 25.6

24,30,36,42 0.5815  0.7400  0.4282
03025 04598  0.2327
0.5156 02172 0.9998
0.3545  0.9965  0.4451
0.0453 09866  0.9997
0.0000 07159  0.2617
0.7320 0 0.0070
0.5387 04194  0.3164
09296  0.9799  0.9946
03019  0.1334  0.8959
0.9978  0.7779  0.0530
0.6208  0.7630  0.4027
0.4226  0.0000 0
03140  0.8099  0.5928
0.3469  0.9273  0.4524

0.4255 0.9769  0.7566
0.5641 0.1926  0.1042
03145  0.4561 1.0000
0.8058  0.7696  0.9980
5 0.7211 0.1037  0.9359
0.8709  0.7891 0.7900
0.0978  0.2269  0.4074
0.3104  0.0695 0.4357
0.9986  0.5773 1.0000
0.8518  0.0070 1.0000
0.7446  0.3288  0.9997
0.7455  0.0045 0.3474
1.0000  0.3875 0
0.9686 0.2380  0.7206
6 0.8854  0.9226  0.3935
0.6861 0.3629 0
0.0147 0.3578 0
0.0114  0.9997  0.3100
0.6407  0.6520  0.4326
0.2989  0.9778 09147
0.9971 0.9793 0.0264
0.2026  0.5603 0.0384
0.1836  0.2228  0.1141
0.9485 0.7912  0.2647
0.6394  0.0007  0.2587
0.4427 0.0109  0.4764
7 0.6482  0.1801 0.7093
0.7448  0.7185 0.0762
0.0994  0.3960  0.4042
0 0.9370 0.2595
0 0.0029 0.3112
0.5062  0.8153 0.4599
0.5754 09167  0.9980
0.9855 0.2444  0.5955
0.6281 0.9346  0.0010
0.3398 0.0001 0
0.1490  0.5340  0.1969
0.7235 0 0.1435
0.0479  0.5043 0.9000
0.0789  0.8804 0.3394
Tab. 8. Excitation amplitude distribution of optimized non-
uniform CCAA using GSA.
No. of
elements in | Ring Amplitude distribution SLL ..« | FNBW
each ring | No. of elements (dB) ©
(NbNZs""Nn)
6,12 1 10.7763 0.5675 0.7282| —24.41 61.0
0.5641 1.0000 0.5268
2 [1.0000 1.0000 0.5819
1.0000 0.4685 0.4971
0.9675 0.7907 0.8216
0.8854 0.2759 0.4497
6,12,18 1 ]0.8781 0.5659 0.8119] —34.45 55.2
1.0000 0.6705 0.3210
2 10.4010 0.1093 0.5307
0.2099 1.0000 0.6965
0.3395 0 0.4682
0.1411 1.0000 1.0000
3 10.4923 0 0.2059
0 0.2820 0.7827
0 0.4386 0.4556
0.6429 0.3658 0.5807
0.0019 1.0000 0.0537
0 0 0.2811
6,12,18, 24 1 ]0.8137 0.7051 1.0000 —40.97 | 48.4
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0.4380 0.8226 0.8736 0.7521 0.5724 0
0.7921 1.0000 0
2 105648 0.9120 0 1.0000 0.4363 0.7191
0.1656 0.7596 0.4565 0.4821 0 0.8250
1.0000 0.1623 0 0.4419 0.0353 0.0429
0.6127
5 10.9706 0.5560 0.5379
3 [1.0000 0.6413 1.0000 0.7091 0.5284 0
0 0.3734 0.7419 0.0487 0.0113 0.1710
0.7427 0.5303 0.2241 0 0.2442 0
0.7684 0.9978 0.9932 0.6706 0.9473 1.0000
0.8524 0.7633 0.7053 0.3202 0.9304 0.9993
0.5065 0.6106 0 0.4139 0.2637 0.2108
0.5719 0.8545 0.4334 0.5499 0.5365

0.7373 0.8220 0.0167

4 10.5638 0.9850 0.5412 0.4433 06156 01811

0.2978 0.0050 0.0339

0.5486 0.3974 0 6 [1.0000 06160  0.6227
0 09393 05998 0 07256 1.0000
07683 09729  1.0000 0 0 07815
09912 0.0055 0 03235 0 00910
1.0000  0.2099 0 0.1327  1.0000  0.0002
0.1061 0 0.6916 0.0945 04834  0.9999
6,12,18, 1 06870 04151 o| 3811 | 372 g;g% 8%8; 83(2)3
24,30 07483 08521 09771 0 0 08194
2 losss6 08097  0.7376 0.4383 0.2687 0
06577 08261 09321 0 0 04770
08191 04060 04l6l 0.1804 1.0000  0.6895
0.1642 09883  1.0000 6.12,18, 1 [09618 09993 1.0000[ -37.69 | 27.6
3 lo7ssr 07485 01549 24,30,36,42 0.6925  0.0005  1.0000

0.4000 0 0.2739
0.5749 0.9999 0.7300
0.9899 0.9983 0.8318
0.4305 0.6633 0.4054
0.1125 0.6749 0.6774

2 [0.5743 0.9016 0.7556
0.9867 0.4372 0.0477
1.0000 1.0000 0.7243
0.2880 0.4594 0.9609

3 10.4653 0.9999 0.0379
0.0166 0.0286 0
0.6097 1.0000 0.3020
0.9907 0.6382 0.7076
0.4522 0.4728 0.0624
0.4291 0.7965 1.0000

4 [09563 01808  0.9944
02764  0.6038  0.4336
08892 00772 04511
03023  0.1595  0.8075
1.0000  0.6298  0.7376
04156  0.0799  0.7084
0.0080 03797 0.9284 4 10.9916 1.0000 1.0000
0.5936  0.5706  0.6508 1.0000  0.8360  0.9642
0.1826  0.0159  1.0000
1.0000  0.6208  0.3295

5 0.4756 0.6781 0.4588
0.7737 0.1497 0.0054

0.0043 0.2400 0.9999 0.6345 0.6270 0
0.0055 0.0564 02348 1.0000 0.1207 0.8675
’ ’ ’ 0.3087 0 0.9999

0.9993 0.2607 0.9953

04728 0.0046 08673 0.0077 1.0000 0.8181

0 0.0032 0.1529 5 11.0000 1.0000 0.0365
0.0423 0.6845 0.6301 1.0000 0.4004 04117
0.0038 0 0.8662 0 0.8032 0.0326
0.5425 0.5818 0.0186 0.2844 0.1480 0.1009

1.0000 1.0000 0.6366

S I e v Il
o : : : 0.3208 0.8929 0.8100
2 |0.6746 1.0000 0.2354 0 0.4456 0.3830
0.9904 0.3960 0.0829 0.3080 0.5038 0.1027
1.0000 0.7693 0.1591 0.9980 0.9859  0.2660

08118~ 1.0000 09272 6 [1.0000 04455  1.0000

3 103229 0.9777 0.0343 0.9690 0.3785 0.0376
0.2485 0.1550 0 1.0000 0.5017 0.4899
0.8748 0.8898 0.9607 0 0 0.0774
0.4269 0.5916 0.7729 1.0000 0.9222 0.3926
1.0000 0 0 0.0001 0.2326 0
1.0000 0 1.0000 0.4553 0.5815 0.1223

0.0237 1.0000 0.0000

4 10.9924 0 0 0.3849 0.1854 0

1.0000 0.9512 0 0.0050 1.0000 0.0035

0 0.6498  0.3288 1.0000 0 0.5739
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0.9287 0.9952 0.2117
7 10.1599 1.0000 1.0000
0.2042 0.9357 0.1213
0 0.9567 0
0.2800 1.0000 0.0212
0 0.0867 0.0390
0.0269 0.0916 0.9463
0.1305 0.6500 0.8153
0.8159 1.0000 0.3672
1.0000 0.3131 1.0000
0.2935 0.4791 0
1.0000 0.5201 0.0001
0 0 0.0000
0 0 0
0.5135 0.9736 1.0000

Tab. 9. Excitation amplitude distribution of optimized non-
uniform CCAA using GSA-PSO.

The convergence characteristics of GSA, PSO and
GSA-PSO are shown in Fig. 4 in terms of best fitness value
(the minimum CF value) versus iteration cycle of each
algorithm. All computations were done in MATLAB 7.5 on
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Fig. 4. Convergence profile for algorithms in case of non-
uniform CCAA: (a) array-1, (b) array-2, (c) array-3,
(d) array-4, (e) array-5, (f) array-6.

Intel (R) Core (TM) i5-4690 processor, 3.50 GHz with
4 GB RAM. Figures 4(a—f) show the superiority of hybrid
GSA-PSO for minimizing the cost function for all cases.

6. Conclusion

For the optimization of complex, highly non-linear,
discontinuous, and non-differentiable array factors of array
antenna design, various heuristic search evolutionary opti-
mization techniques have been applied. Evolutionary com-
putation techniques are utilized to determine an optimum
set of weights that create a non-uniform isotropic array that
maintains SLL. Optimal thinning of CCAA of different
sizes has also been investigated to generate a pencil beam
with reduced SLL. Thinning an array to develop low side
lobes is much simpler than handling the more general
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problem of non-uniform spacing of the elements. Non-
uniform spacing has an infinite number of possibilities for
locating the elements.

Percentage of thinning (number of OFF elements in
percent) is more than 40% using GSA-PSO for almost all
array sets. Higher value of array thinning gives less mutual
coupling effect from the adjacent elements. Also, the cost
and weight of the array is lower with higher value of thin-
ning. Furthermore, CCAA using GSA-PSO not only gives
the best SLL, radiation pattern using GSA-PSO gives the
narrower main beam width (FNBW) among the three opti-
mization algorithms in many cases. For simultaneous opti-
mization of SLL and directivity, the characteristics being
contradictory and this are modeled as a single objective
optimization with suitable weighting factors for the objec-
tives. There is future scope for multi-objective optimization
for all the simulation works.

To optimize the design, the maxima of the single
element and the array factor should both be directed toward
6p=0° (in our cases). In this paper, the requirements that
allow the array factors to radiate broadside efficiently are
developed. Considering 6,= 0° and 6 varying from —90° to
90° with ¢o=90° for maximum radiation. We can conclude
that the overall extent of the visible region can be con-
trolled by the inter-elemental spacing and its relative posi-
tion on the unit circle by the progressive phase excitation of
the elements. Both of these can be employed effectively for
designing the array factors. It is considered as the future
scope of present research work.
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