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Abstract. The cycle frequencies of a cyclostationary signal 
can be used for the signal identification and classification, 
separation of the overlapped signals in cycle domain, and 
so on. Efficient cycle frequency acquisition depends on the 
fast measurement of cyclic autocorrelation function (CAF) 
or spectral correlation function (SCF) of the signal. Pres-
ently the relative efficient CAF and SCF measuring meth-
ods mainly include the cyclic correlogram, the well-known 
fast Fourier transform accumulation method (FAM), and 
so on. Motivated by these methods, a new efficient cycle 
frequency acquisition method which integrates the fast 
Fourier transform (FFT) algorithm with the autocorrelated 
cyclic autocorrelation function, named FACA, is presented. 
With the presented method, we can acquire the cycle fre-
quencies of a cyclostationary signal more efficiently with 
a given level of reliability. Meanwhile, by enlarging the 
FFT window width of the FACA method we can get the 
same cycle frequency resolution as the benchmarked 
method FAM, but the computation cost still can be spared 
at this case. 

Keywords 
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1. Introduction 
For many man-made signals, they take the features of 

cyclostationarity which arise from their periodic sampling, 
timing, carrier and/or data symbol/bit modulation, and so 
on [1], [2]. At the same time, different signals often take 
different features of cyclostationarity due to their different 
periodic parameters, or more precisely, their different cycle 
frequencies [2]. On the other hand, the cycle frequencies of 
a cyclostationary signal can be used to detect the presence 
of the signal, or to discriminate the signal from noise or 
other interfering signal for the purpose of signal identifica-
tion and classification as used in cognitive radio [3–5] or 

cognitive positioning system [6], [7], and so on. Moreover, 
in the applications of frequency-shift (FRESH) filtering for 
spatial-time or time-frequency overlapped signals [8–10], 
the difference in cycle frequencies of different signals can 
also be used to separate the overlapped signal of interest 
(SOI) from other signals. 

To acquire the cycle frequencies of a cyclostationary 
signal efficiently, first and critical step is the fast measure-
ment of CAF or SCF of the signal [1, 2, 11, 12]. Presently 
the relative efficient measuring methods of CAF and SCF 
mainly include autocorrelated cyclic auto-correlation 
(ACA) [13], cyclic correlogram [1], the well-known fast 
Fourier transform accumulation method (FAM) [12], [14], 
strip spectral correlation algorithm (SSCA) [12], fast spec-
tral correlation algorithm (Fast-SC) [15], and so on. Gener-
ally speaking, the SCF-based methods often outperform the 
CAF-based ones in cycle frequency resolution due to their 
constraints on reliability of the acquired cycle frequencies 
[1, 12, 14], but this does not exist in CAF-based methods 
[2], [11]. At the same time, finer cycle frequency resolution 
means that more computation and storage will cost in 
measuring the SCF of the received signal, and this will 
accordingly render the SCF-based methods are inferior to 
the CAF-based ones in cycle frequency acquisition effi-
ciency. For example, to acquire the cycle frequencies of the 
weak signal embedded in noise with the SCF-based method, 
often more collected data is required so that the finer cycle 
frequency resolution can be met, and this will accordingly 
increase the computation cost; while for the CAF-based 
methods, since there are no constraints on their cycle fre-
quency resolutions, they can acquire the cycle frequencies 
more quickly with relatively shorter collected data [13]. 
Reasonably, the shorter collected data means that the CAF-
based methods are often inferior to the SCF-based ones in 
cycle frequency resolution. 

The further analysis on efficient SCF measuring 
methods such as FAM and Fast-SC shows that the critical 
step adopted in these methods is the use of fast Fourier 
transform (FFT) algorithm to speed up the measuring pro-
cess [12], [15]. While the analysis on efficient CAF meas-
uring methods such as cyclic correlogram and ACA shows 
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that they can improve the measuring efficiency by using 
a relative smaller data-tapering window to decrease the 
cycle frequency resolution [1], [13]. Motivated by these 
methods, a new efficient cycle frequency acquiring method 
named FACA which integrates the FFT algorithm and the 
time-average operation with the ACA function is presented. 
By this new method, we can acquire the cycle frequencies 
of a cyclostationary signal more quickly with a given level 
of reliability, meanwhile, if we enlarge the FFT window 
width of the FACA method, we can get the same cycle 
frequency resolution as the benchmarked method FAM, 
but the computation cost still can be spared at this case. 

The rest of the paper is organized as follows. In 
Sec. 2, CAF and SCF of the received signal and their meas-
urements are briefly reviewed. Section 3 presents the de-
tailed derivations of the presented FACA method, along 
with its implementation and computation cost. In Sec. 4, 
the performance of the given FACA method is simulated 
compared with other methods. Finally, the paper is con-
cluded in Sec. 5. 

2. Cyclostationarity of the Signal 

2.1 CAF and SCF 

For the received signal ( )x t , it can be formulated as 

 ( ) ( ) ( )x t s t w t     (1) 

where s(t) is the SOI, w(t) is the interfering signal includ-
ing the noise. For simplicity, we assume that w(t) is a weak 
stationary signal and not cyclic correlated with s(t) in the 
following analysis, otherwise if w(t) is also cyclostationary 
and stronger than s(t), we can use the presented FACA 
method to get the cycle frequencies of w(t) first, and then 
cancel it from x(t) with the FRESH filtering [16], [17] to 
get the signal of s(t). 

Based on (1), CAF and the corresponding SCF of 
( )x t  can be respectively given as [8] 

  ( ) ( 2) ( 2)exp j2xR x t x t t        , (2) 

  ( ) ( ) exp j2 dx xS f R f     



    (3) 

where  denotes the time-average, the superscript "*" 
denotes the complex conjugate,   is the time delay,   is 
the cycle frequency of ( )x t  and 0  . 

Substitute (2) into (3) and it will yield 

 ( ) lim ( , 2) ( , 2)x T T
T

S f T X t f X t f  


    (4) 
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For conjugate CAF of x(t) and its SCF, they have the 
similar relationships as (2) to (5). In addition, the discrete 
time CAF and the corresponding SCF of x(t) are respec-
tively defined as [1] 
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   (7) 

where TS = 1/fS is the time sampling interval, fS is the 
sampling frequency, and s( ) ( )x k x Tk . 

2.2 Measurements of CAF and SCF 

For x(k) with finite collected data, its CAF can be 
measured by time-averaged cyclic correlogram (TCC) [2]  

 s
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  (8) 
where sL f t     is the number of samples in time span 

t  and     denotes the floor operation. 

While for SCF of x(k) with finite collected data, it 
can be measured by time or frequency-averaged cyclic 
periodogram [1], [14], in which the time-averaged cyclic 
periodogram can be given as 
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where 
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  (10) 
where ( )Ng   is a N-point data-tapering window. 

To get the reliable measurement of SCF, in (9) the 
cycle frequency resolution of ( )

NX tS f


  denoted by   

and the frequency resolution denoted by f  should meet 

the reliability condition [1], [12] 

 1f f t L N       .  (11) 

3. Cycle Frequency Acquisition with 
the FACA Method 
From (9) and (11), we can see that the computation 

cost of SCF is high, especially when the number of col-
lected data or oversampling factor is large. To this problem, 
we can make a tradeoff between the computation cost and 
the cycle frequency resolution with a given level of reli-
ability, and this is just the motivation of the proposed 
FACA method. 
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3.1 Derivation of the FACA Method 

From (8) the segmented CAF of ( )x k  can be given as 

  
1

s

1
( , ) ( ) ( ) exp j2 ( 2)

k N

x N
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  (12) 
where N is the length of each segmented data block, and 
time delay   meets 1N   . 

Based on (12) and the definition of ACA given in 
[13], the ACA of ( , )x NR k   can be written as 
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      (13) 

where D is a lag parameter of ACA whose optimal value 
equals N [13] , and Z is the number of total collected data. 

In (13) if let sl f L   where N L Z , l  is 
a non-negative integer and 0 1l L   , then (13) will be 
changed to 
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Due that Z N , the calculation of ( , ; )R l NR D   in 

(14) is time consuming, practically it can be fulfilled by the 
segmented time-average method as 
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where K is the offset of two adjacent segmented data 

blocks,  max(2 1)P Z N D K K         is the max 

block number, and max is the max time delay where 
max > 0.  

In (14) the condition L N means that the computa-
tion of ( , ; )R l NR D   for 0 1l L    is still very high. 

As a trade-off, we can improve its efficiency by decreasing 
the cycle frequency resolution of ( )x k  from fS /L to fS /N 

where N determines the level of reliability, meanwhile, if 
let ( ; , ) ( ) ( )xr v iK x iK v x iK v      in (15), where 

0,1, , 1v N  , we will find that ( , )l
x NR iK   can be 

implemented with FFT algorithm, i.e., 
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where 0 1l N   . In a similar way we also have 
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  (17) 
where ( ; , ) ( ) ( )xr v iK D x iK D v x iK D v        for 

0,1, , 1v N  . 

Substitute (16) and (17) into (15), and take D = N, 
we can get the proposed FACA method as 
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If we rewrite back l  to  for a general purpose, then 
we will have  

 
1

2
0

( ; , )1
( , )

( ; , )

P
x N

R N
i x N

iK
R

PN iK N

 
 

 






 
  

 





. (19) 

3.2 Proof of the FACA Method 

Utilizing the assumption that s(k) is not cyclic 
correlated with w(k) for 0  , we can get the approximate 
result of ( , ; )R NR D   in (15) as [13] 
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  (20) 
where 0s   is a discrete cycle frequency of ( )s k , s  is 
the cycle frequency set of ( )s k , and 

 ( )=sin( ) ( sin )NG N N   , (21) 
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    .(22) 

Considering that ( )w k is stationary and using the 

result ( ) ( )s s
s xR R    when N approaches infinity for 

0s   [18], we can approximately simplify (20) as 
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  (23) 
From (23) we can get that ( , )R NR    will have a peak 

at s   where 0  , and the peak value equals 
2| ( ) |s

xR  . On the other hand, equation (23) is equivalent 
to (19) for the same ( , )R NR    and this indicates we can 
efficiently acquire the cycle frequencies of ( )s k  according 
to (19). 

3.3 Implementation of the FACA Method 

The analysis given above shows that we can acquire 
the cycle frequency s  efficiently by searching the peak of 

| ( , ) |R NR    in ( ,  ) plane excluding 0  . With the 

derivation given in subsection 3.1, we can get the general 
implementation process of the presented FACA method as 
Fig. 1. 

In Fig. 1, the accumulation of | ( , ) |R NR   from 0  

to 0  is to strengthen the cycle frequency lines of ( )s k , i.e., 

0
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where 0 max0    . 

It can be shown that in (23) and (24) the acquired cy-
cle frequency 

( 0)
ˆ arg max ( )s R NR


 


  satisfies the condition 

that ˆlim(2 1)( ) 0s s
N

N  


    [19], and this means that ˆs  

is an asymptotic estimation of s . 

Additionally, when we apply the proposed FACA method 
to a given task, some critical parameters of the FACA 
method in Fig. 1 can be set as: N is determined by the 
required cycle frequency resolution and it can take the 
value of power 2, for example, 4096 or 8192 and so on; D 
can take the optimal value N; K can take any non-zero 
value and it is often chosen as K = N; P is defined in (15); 

max  can take tens of time samples and max 0 max2    . 

3.4 Computational Cost of the FACA Method 

To find the decrease in computation cost of the 
proposed FACA method, the computational complexity of 
the FACA method compared with other three typical cycle 
frequency acquisition methods, i.e., TCC [2], FAM [12], 
and Fast-SC [15], is analyzed. For simplicity, we assume 
that x(n) is a real-valued signal, meanwhile, since that the 
multiplication operation often takes more time than other 
operation in data processing, in the following we mainly 
focus on the comparisons of multiplication computations of 
four given methods. 

From (16) we can derive that the complexity of 
( ; , )xr v iK   is N when v varies from iK to iK + N  1, and 

( ; , )x NiK   is 2( 2) logN N  for 0 1N   ; whereas 

the complexity of (17) is same as that of (16). With these 
results and notice that ( , ) ( , )R N R NR R     , we can get 

the computational complexity of ( , )R NR    in (19) for 

max| |   is about 

    FACA max 21 log 2P N N N     (25) 

where  max(2 1) 2P L N K K        and max N  . 

 
Fig. 1.  Implementation process of the FACA method. 
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For TCC, after dividing the collected data into P 
blocks, the TCC of ( ) txR  

  in (8) can be calculated by  
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Similarly, if we reduce the cycle frequency resolution 
of TCC from sf L  to sf N , then (26) can also be 

implemented with FFT algorithm as 
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Processing as the FACA method, we can give the 

computational complexity of TCC as 

     TCC max 21 log 2 2P N N N   . (28) 

For FAM, its computational complexity is about [12], 
[15] 
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Fig. 2.  Comparisons on computational complexity of the 

presented FACA method, TCC, FAM, and Fast-SC 
under different FFT window width and different data 
length Z, in which (a) Z = 65536 and (b) Z = 131072, 
and time delay max has been set to 10 time samples. 

If we take the optimal value 4K N  [12], the result 

of (29) will become 

  opt
FAM 2 23 2 log log 8NZ Z N ZN Z N Z   .  (30) 

While for the Fast-SC method, based on the result 
given in [15], its computational complexity can be read as 
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To view roughly the results given above, simulations 
on computational complexity of FACA, TCC, FAM, and 
Fast-SC under different data length are shown as Fig. 2, in 
which the chosen FFT window width N = {32, 64, 128, 
512, 1024, 2048, 4096, 8192, 16384}. Note that in Fig. 2, 
we have used K = N for FACA and TCC methods; while 
for FAM and Fast-SC methods, K should not be larger than 
N/4 so as to reduce the cycle leakage [1], and we have 
chosen K = N/4. 

From Fig. 2, we can see that the computational com-
plexity of the presented FACA method is lower than FAM, 
a little higher than TCC, and is close to Fast-SC. But at the 
same time, it will be found in the follows that from Fast-SC 
we can hardly get the non-conjugate cycle frequencies [20] 
related to the carrier frequency except the conjugate cycle 
frequency related to the data symbol or bit rate. For TCC, 
though its complexity is lowest, its cycle frequency acqui-
sition performance is poorer than the presented FACA 
method, and this will also be seen in following simulations. 

4. Performance Verifications 
To further verify the cycle frequency acquisition per-

formance of the presented FACA method, an example that 
a binary phase-shift keying (BPSK) signal corrupted by the 
additive Gaussian noise is studied. In detail the scenarios 
that (i) cycle frequency acquisition results, (ii) cycle fre-
quency acquisition error, and (iii) cycle frequency acquisi-
tion probability of the BPSK signal are simulated.  

The common parameters used in the simulations are 
set as: 

 Sampling frequency fs = 20 MHz, and data collected 
time is 1.5 milliseconds; 

 For FACA and TCC, their max time delay and time 
lag accumulation value are set to max = 15 time sam-
ples and 0 = 10 time samples, respectively; 

 Two fundamental cycle frequencies of the BPSK 
signal [8], [20] are set as: carrier frequency 2fc = 
4.109 MHz, and data bit rate Rb = 1.2288 Mbit/s; 

 The chosen FFT window width N = {32, 64, 128, 512, 
1024, 2048, 4096, 8192}; 
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 Δ and Δf of the benchmarked FAM method are 
fixed to 1 kHz and 260 kHz respectively to meet the 
reliability condition of (11). 

Other uncommon parameters will be given in detailed 
simulations. 

4.1 Acquisition of the Cycle Frequencies 

In this subsection, the surface plots of the BPSK sig-
nal obtained with the FACA method, TCC, FAM and Fast-
SC, and their profiles related to the cycle frequencies of 2fc 
and Rb are simulated. The results are shown as Figs. 3 and 
4, in which Figs. 4(b), 4(d), 4(e) and 4(f) are corresponding 
to the profiles of Figs. 3(a) to 3(d), and the FFT window 
width of the Fast-SC method used in Figs. 3(d) and 4(f) is 
set to N = 128.  

From Figs. 4(a) to 4(d) we can see that the cycle 
frequency acquisition results of the FACA method are less 
affected by the FFT window width than those of the TCC. 
For example, when N = 1024, we can hardly get the cycle 
frequencies of 2fc and Rb from the “noisy” cycle frequency 
lines of TCC, and only when N = 8192 can we get the 
relative better cycle frequency lines, and hence the better 
results of 2fc and Rb; but from the presented FACA method 
we can all well acquire the cycle frequencies of 2fc and Rb 
at the two cases. In addition, the result of Fig. 4(f) also 
shows that from Fast-SC we can hardly get the non-
conjugate cycle frequencies related to 2fc except the 
conjugate cycle frequencies related to the data bit rate Rb. 

    

         
Fig. 3.  Surface plots of the received signal obtained with:  

(a) FACA, (b) TCC, (c) FAM, and (d) Fast-SC. The 
FFT window width used in FACA and TCC is 8192, 
and the input SNR of the BPSK signal equals 5 dB. 
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Fig. 4.  Profiles of the FACA method, TCC, FAM and Fast-SC 

based on Fig. 3. Here in Figs. 4(a) to 4(d), the DC 
components of FACA and TCC methods at  = 0 have 
been cancelled. 

Also the results of Figs. 3 and 4 can be explained by 
that for the same input signal to noise ratio (SNR) of the 
BPSK signal, the output SNRs after processing with four 
given methods are different. In general case, the analytical 
results of the output SNRs of four given methods are hard 
to get, but if we regard the methods of FACA and TCC as 
the fast implementations of ACA and the time-variant 
finite-average cyclic autocorrelation (CA), respectively, 
and the methods of FAM and Fast-SC as two different fast 
implementations of the temporally smoothed cyclic perio-
dogram (SCP), we can use the results given in [13] and 
[15] for a rough perception of the output SNRs of four 
given methods and which can be rewritten as: the FACA is 
about 2 4 2 2

s( 2 ) (2 ( ))A BPK N NB f   , the TCC is about 
2

s( ) ( ( ))A A BPK N B K f   , the FAM is about 1 ( )PK N   
2( ) PPK N   and the result is also approximately fit for the 

Fast-SC, where B is the noise bandwidth, ξB = 1 – ||/B if 
B   and 0 otherwise, and the definitions of ρA, ρP, KA, 

and Kp can be referred to [13]. From these results, we can 
easily get that for the CAF-based methods of FACA and 
TCC, the output SNR of the former is much better than that 
of the latter when the input SNR ρA  1, as is also clearly 
shown in Figs. 3(a) and 3(b) and Figs. 4(a) to 4(d). 
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4.2 RMSE of the Acquired Cycle Frequencies 

To check the cycle frequency acquisition performance 
under different input SNR, the relative root mean square 
error (RMSE) of 2fc and Rb of the BPSK signal acquired by 
FACA, TCC, FAM, and Fast-SC are simulated, and the 
results are shown as Fig. 5. 

From Fig. 5 we can see that both the relative RMSEs 
of 2fc and Rb acquired by the FACA method decrease with 
the increase of FFT window width N, and when N equals 
8192 the results will become same or almost the same as 
the benchmarked method FAM. While for TCC, it shows 
in Fig. 5 that both the cycle frequencies of 2fc and Rb can-
not be acquired when N is less than 1024, and only when N 
is equal or larger than 4096 can we get the relative better 
cycle frequency acquisition results. 

Figure 5 also shows that the performance of FAM is 
the best of all due to the constraint of reliability condition, 
and its cycle frequency resolution has been preset to 1 kHz, 
which leads to the unchanged RMSEs of 2fc and Rb in 
Fig. 5; besides, the results of FAM for N larger than 256 
are not simulated because their computation time becomes 
fairly long at these cases. While for Fast-SC, its perfor-
mance on Rb is also superior to the FACA method due to 
the requirement of reliability condition, but its use of 
varied FFT window width in cycle frequency acquisition 
leads to the varied RMSE results, meanwhile, the disability 
of acquiring non-conjugate cycle frequencies related carrier 
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Fig. 5.  Relative RMSEs of (a) 2fc and (b) Rb acquired with the 

FACA method compared with the methods of TCC, 
FAM, and Fast-SC under different input SNR. 

frequency may limit its applications in some fields. General 
speaking, considering the cycle frequency acquisition 
performance and the computation complexity given before, 
the presented FACA is optimal among four given methods. 

4.3 Acquisition Probability of the Cycle 
Frequencies 

In this subsection, the effect of input SNR on acquisi-
tion probabilities of two fundamental cycle frequencies 2fc 
and Rb with the FACA method are simulated by the Monte 
Carlo method, and the results which are the averages of 
500 independent runs are shown as Fig. 6. In addition, in 
Fig.6 the results of TCC, FAM, and Fast-SC are also simu-
lated for comparisons.  

From Fig. 6(a) we can see that the acquisition proba-
bility of 2fc obtained by the FACA method is almost the 
same as the results obtained by TCC and FAM. At the 
same time, for Fast-SC there is still no result shown in 
Fig. 6(a) due to its disability of obtaining the cycle fre-
quencies related the carrier frequency.  

Whereas in Fig. 6(b), we can see that with all meth-
ods of FACA, TCC, FAM, and Fast-SC, we can acquire 
the cycle frequency Rb, but their acquisition probabilities 
are different. The simple comparisons show that the acqui-
sition probability of the  FACA  method is the best, and the 
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Fig. 6.  Acquisition probabilities of (a) 2fc and (b) Rb with the 

FACA method compared with the methods of TCC, 
FAM, and Fast-SC under different input SNR. The 
FFT window width used in FACA and TCC is 8192. 



454 Y. HU, B. G. YU, Z. X. DENG, ET AL., EFFICIENT CYCLE FREQUENCY ACQUISITION OF A CYCLOSTATIONARY SIGNAL … 

method of TCC is the poorest. This can be explained by 
that two rounds of correlations used in the FACA method 
can dramatically cancel the effect of noise, but for TCC 
there is only one round of correlation. For FAM and Fast-
SC, their relative high computational cost can ensure better 
cycle frequency acquisition performance when input SNR 
is low. The results given in Fig. 6 are also consistent with 
the results given in Figs. 4 and 5. 

5. Conclusions 
An efficient cycle frequency acquisition method 

named FACA is presented. With the given method, we can 
acquire the cycle frequency or cycle frequencies of a cyclo-
stationary signal more effectively with a given level of 
reliability. Meanwhile, by increasing the FFT window 
width of the given FACA method, we can get the same 
cycle frequency acquisition performance as the well-known 
FAM method. The final simulations on the acquisition 
results and acquisition performance of the BPSK signal 
validate the effectiveness of the presented method. In prac-
tice, the advantage of the presented FACA method makes it 
fit for the applications as fast spectrum detection in cogni-
tive radio, interference mitigation in wireless communica-
tions or global positioning system and so on. 
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