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Abstract. Best Complex Antipodal Spherical Codes
(BCASC) and Coherence Based Grassmannian Codebooks
(CBGC) are state of the art algorithms to produce mini-
mal coherence codebooks, however have high running time
(relatively more in BCASC search than CBGC algorithm)
which restricts their wider application. BCASC and CBGC
algorithms are modified in a novel way by incorporating
additional parameters adapted to three categories of code-
book overcompleteness to check stagnance of optimization
and divergent behaviour to achieve faster convergence. The
proposed algorithms are compared with BCASC and CBGC
algorithms to achieve similar coherence results in much
less time.
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1. Introduction
A set of incoherent complex vectors forms a frame [1].

Compressed sensing uses a frame with low coherence
amongst constituent vectors to achieve unique representa-
tion of sparse vectors with reliable recovery [2]. Such frames
have numerous applications in signal processing, coding and
communications [3]. A Grassmannian codebook is a set of
vectors or matrices that span a corresponding Grassmannian
manifold [4].

Difference sets are used to form Grassmannian code-
books analytically for certain configurations [5] and if ana-
lytical constructions are not possible then construction us-
ing numerical search method based on Lloyd’s algorithm
are used [5]. Sloane et al. [6] performed extensive com-
putations for modest dimensions to find optimal packings in
Grassmannian spaces. Sequential smooth optimization based
flexible technique is employed in [4] to construct Grassman-
nian codebooks.

Gram matrix based optimization techniques include
constructions using alternating projections in [7], [8] and
iterative shrinkage with rank reduction in [9] and alternating

minimization penalty method in [10]. In [11], existing code-
books with low coherence or near orthogonal systems are
used to construct sensing matrices. The work in [12] uses ad-
ditive andmultiplicative characters of finite fields to construct
similar sensing matrices. In [13], frames with low coherence
are constructed using convex optimization whereas in [14],
sequential iterative decorrelation by convex optimization is
used and in [15] weighted least squares solved by shifted
power is used.

In [16], best spherical codes were formed and later
in [17], best antipodal spherical codes with low coherence
were formed in real domain. In [18], Best Complex Antipo-
dal Spherical Codes (BCASC) are formed by a sequential
procedure to optimize coherence, which aims at maximizing
the Euclidean distance between complex vectors to reduce
coherence. Antipodals of complex vectors are incorporated
in the optimization process which increase the processing
time. Adapted from [18], in [19], Coherence Based Grass-
mannian Codebook (CBGC) algorithm, aims to optimize co-
herence by directly reducing the coherence between complex
vectors. The codebooks are produced with similar coher-
ence values to [18] but with reduction in processing time
owing to optimization without incorporating antipodals of
complex vectors.

It is pertinent to mention that both BCASC and CBGC
algorithms differ in goal function and the way in which they
converge respectively. It is also worth mentioning that the
CBGC algorithm which is an adaptation of BCASC algo-
rithm doesn’t always guarantee reduction in time as com-
pared to BCASC algorithm. Moreover, BCASC algorithm
has also been shown to achieve dictionary adaptation of sens-
ing matrix [20] whereas the same for CBGC algorithm is
to be attempted.

Alternatively, the optimization is performed usingmeta-
heuristic algorithms which are adapted for particular prob-
lems to achieve desired solution quality in reduced computing
time [21]. Metaheuristics (include genetic/evolutionary al-
gorithms, tabu search, simulated annealing, particle swarm
optimization, ant colony optimization) do not exert addi-
tional demands on an optimization problem and are flexible
in adapting to the specifics of a problem to achieve better
performance [21].
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Hybrid metaheuristics synergistically combine various
optimization strategies (a combination of two metaheuris-
tic or of an exact and metaheuristic algorithm) to achieve
an optimum solution to the problem in a reduced amount
of time [22]. Some hybrid metaheuristic schemes in-
clude [23–28].

In [23], vector quantization codebooks are generated us-
ing efficient and fast converging particle swarm optimization.
In [24], the accelerated converging ant colony optimization
process is used for vector quantization codebooks genera-
tion. In [25], fish school search algorithm based on swarm
clustering algorithm is used for vector quantization codebook
generation providing PSNRgains in comparison to the swarm
clustering algorithm. In [26], codebooks for power control in
distributed relay beamforming network are generated using
Lloyd’s algorithm and a metaheuristic general search algo-
rithm. In [27], joint precoding and antenna selection is done
in multiple-input multiple-output environment while using
cross-entropy [28] method to maximize channel capacity.

In this work, BCASC and CBGC algorithms are ana-
lyzed and modified to produce rank-1 Grassmannian code-
books by tuning existing parameters and incorporating ad-
ditional metaheuristics adapted to categories of codebook
overcompleteness which reduce running time without com-
promising coherence.

2. Preliminaries

2.1 Coherence Bounds
Consider a matrix A ∈ CM×N where M < N , its coher-

ence is defined as µ(A) = maxi,j
| 〈ai ,a j 〉 |

‖ai ‖ ‖a j ‖
, where ai denotes

the ith column of matrix A [18]. Lower bounds on achievable
coherences for complex matrices [29–37], with their respec-
tive configurations (Category I, Category II, Category III)
is:

µbd(A)=



√
N−M

M(N−1) , if N ≤M2 [Category I]

max
(√

1
M ,

√
2N−M2−M
(M+1)(N−M) ,1 − 2N−

1
M−1

)
,

if M2<N ≤2(M2 − 1) [Category II]

max
(√

2N−M2−M
(M+1)(N−M) ,1 − 2N

−1
M−1

)
,

if 2(M2 − 1)<N [Category III].

(1)

2.2 BCASC Search Algorithm
BCASC algorithm [18], performs sequential Lagrange

based optimization on an initial random matrix A and max-
imizes the minimum Euclidean distance between any two
vectors of the matrix. Optimization function for low coher-
ence matrices is given as:

g(A, λ) =
N∑
n=1

∑
n,l

‖an − al ‖−(p−2) +

N∑
n=1

λn(‖an‖2 − 1) (2)

where λ = {λn}Nn=1 are the Lagrange multipliers with unit
radius constraint of spherical codes and p ∈ {21,22 . . . ,29}
is the free parameter.

The sequential optimization process alters the location
of points formed by initial random unit norm complex vectors
on unit norm sphere under the mutual force of repulsion due
to similar charge particles being assumed to be in place at the
respective points. The force vector is derived by finding the
necessary conditions for a global minimum in (2):(

fn ←
∫ 2π

κ=0

∑
l,n

an − aleiκ

‖an − aleiκ ‖p
dκ

)N
n=1

(3)

where underlining represents unit normalization. BCASC
algorithm involves infinite antipodals of each vector in each
iteration. Force vector calculated using K-points approxima-
tion (

fn ←
K∑
k=1

∑
l,n

an − alei2π k
K

‖an − alei2π k
K ‖p

)N
n=1

, (4)

reduces running time at the cost of slight coherence devi-
ation [18]. After dampened application of the forces, the
matrix is updated as: A(k) = A(k−1) + αF(k), where dampen-
ing factor α is related to free parameter p and causes coarse
to fine adjustments. Optimization process doesn’t progress
to next value of p, until force vectors converge to codewords
‖f(k)n − a(k)n ‖ < 10−10.

2.3 CBGC Algorithm
Adapted from BCASC algorithm [18], CBGC algo-

rithm [19] directly optimizes the coherence of the random
complex vectors set. It performs Lagrange based optimiza-
tion of the objective function,

g(A, λ)=
∑
n,l

(
|〈an,al〉|2−β2µ2

bd

)p
+

N∑
n=1

λn(‖an‖2−1) (5)

where β = 0.5 improves stability. The force vector is derived
by finding the equilibrium conditions for (5) as:

f(k)n =−2
∑
n,l

(
|〈a(k)n .a(k)

l
〉|2−β2µ2

bd

)p−1
〈a(k)

l
,a(k)n 〉.a

(k)
l

(6)

where a(k)
l

represents unit norm vector at index l in k th

iteration.

After dampened application of the forces the matrix is
updated. Optimization process moves to the next value of p,
once condition ‖a(k)n − a(k−1)

n ‖ < 10−10 is met.
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3. Proposed Algorithms
3.1 Discussion on BCASC Algorithm

BCASC algorithm (adapted from [17]) is a sequen-
tial coherence optimization process based on complex vec-
tor relocations under the influence of a resultant force vec-
tor (calculated using numerical integration involving infinite
antipodals (3)). Numerical integration increases complex-
ity and processing time. K-point summation approxima-
tion based force vector calculation reduces processing time
with coherence values deviation [18]. The algorithm conver-
gence largely depends upon the quality of the initial random
seed (orientation of the random complex vectors) and the
level of over-completeness of the desired matrix configura-
tion. Moreover, the convergence criteria of fixed point found
i.e., ‖fn−an‖ < 10−10 is checked in each iteration. Fixed
point found criteria aims at converging the force vectors to
codewords and thereby attaining an equilibrium. During the
course of algorithm progression, the matrix vectors at times
reach a situation where force vectors based updation of the
complex matrix causes back and forth setting of vectors with-
out significantly changing the orientation until next value of
free parameter p takes effect. Such optimization stagnance
wastes computation time. Furthermore, runtime coherence
monitoring during the optimization process reveals a deteri-
orating coherence behaviour. The existing stopping criterion
mostly doesn’t stop at a point where worst case coherence is
found to be at a desirable value.

3.2 Fast BCASC Algorithm (FBCASC)
BCASC algorithm does achieve its optimization goal

but the algorithm progression highlights room for improve-
ment in the convergence rate without compromising the qual-
ity of resultant matrix. The proposed FBCASC algorithm
aims at modifying the K-point summation BCASC algo-
rithm with the ability to terminate an interim optimization
sub-problem once no significant improvement (stagnance in
optimization) or worsening of goal function (divergence of
optimization) occurs to allow reduction in overall compu-
tational time without deteriorating coherence achieved. It
includes tuning of the existing parameters and introduction
of a metaheuristics layer atop the existing algorithm in accor-
dance with the codebook category to counter stagnance and
divergence issues. FBCASC algorithm incorporates code-
book category wise adaptive tuned parameters and meta-
heuristics (Algorithm1, Line 5) to allow even finer reductions
in time without compromising coherence.

Stagnance in coherence is assessed by monitoring inter-
iteration coherence deviation compared with a pre-defined
tolerance. The coherence of the interim-matrix is calcu-
lated after every 100 iterations and is denoted as µ(g). The
optimization process is found to be stagnant if condition
|µ(g) − µ(g−1) |<µstol is satisfied where µstol is the stagnance
coherence tolerance (Algorithm 1, Line 20) and pre-defined
metaheuristic stagnant coherent count θ (initiated to θopt for
a particular value of p) is decremented by a unit (Algorithm 1,

Line 21). Once the stagnant coherence count θ becomes zero,
the optimization sub-problem is made to exit for the specific
value of free parameter p.

Divergence of coherence is checked by decrementing
the pre-defined metaheuristic divergence tolerance ξ (initi-
ated to ξopt for a particular value of p) by a unit, if coher-
ence value increases from the last observed coherence i.e.,
µ(g) > µ(g−1) (Algorithm 1, Line 26–27). The optimization
sub-problem proceeds to the next value of free parameter p
once ξ = 0. The optimization process is stopped at the iter-
ation where the condition |µ(g) − µbd(A)| < 10−6 is satisfied
(Algorithm 1, Line 23–24) and the interim matrix is given
as output.

3.3 Adapted Parameter Selection for FBCASC
Algorithm
In order to get low coherence matrices in as less time

as possible for a given configuration, the parameters error
threshold ε, summation points K are tuned and optimum
values for metaheuristic stagnant coherence tolerance µstol,
stagnant coherence count θ and divergence tolerance ξ are
adapted for each of three categories of codebooks (1).

Algorithm 1 FBCASC

1: A ∈ CM×N . Random seed
2: αinit ← 0.9, α← αinit . Dampening factor
3: imax ← 105, pmax ← 210 , p ← 2 .Max iterations and free parameter
4: η ← 0, µbd(A) . Coherence bound met and bound for A ∈ CM×N (1)

5:

Adaptive settings for configurations CM×N

Category I Category II Category III Description

ε = 10−4 ε = 10−5 ε = 10−5 . Error threshold
K ←13 K ←18 K ←50 . Summation approx. points
µstol ← 10−2 µstol ← 10−2 µstol ← 10−5 .Stagnant coherence tolerance
θopt ←1 θopt ←4 θopt ←12 . Stagnant coherence count
ξopt ←3 ξopt ←6 ξopt ←5 . Divergence tolerance

6: while p < pmax & η = 0 do
7: γ ← 0, . Fixed-point found
8: ξ ← ξopt , θ ← θopt, . Initialize optimum parameters
9: i = 1, g = 1, µ(g) ← 0, . Indices and coherence initiation

10: while i ≤ imax & γ = 0 & η = 0 & θ , 0 & ξ , 0 do
11: for k=1 to N do

12: fn ←
∑K

k=1
∑

l,n
an−al ei2π k

K

‖an−al ei2π k
K ‖p

. Calculate forces (4)

13: end for
14: {an }Nn=1 ← {an + αfn }Nk=1 . Normalized force application
15: if all ‖fk − ak ‖ < ε then
16: γ ← 1 . Fixed point found
17: end if
18: if mod (i, 100) = 0 then
19: µ(g) = arg maxr,t

|〈ar ,at 〉|
‖ar ‖‖at ‖

. Coherence calculation
20: if |µ(g) − µ(g−1) | < µstol then
21: θ = θ − 1 . Reduce stagnant coherence count
22: end if
23: if |µ(g) − µbd(A) | < 10−6 then
24: η ← 1 . Coherence bound met
25: end if
26: if µ(g) > µ(g−1) then
27: ξ = ξ − 1 . Reduce divergence tolerance
28: end if
29: g = g + 1
30: end if
31: i = i + 1
32: end while
33: p ← 2p, α← αinit

(p−1) . Adjust free parameter and dampening factor
34: end while
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Fig. 1. FBCASC adaptive parameters selection for (4,7) using box plots (box encapsulates 25th to 75th percentile, central mark indicates median,
whiskers extend to extreme data points and outliers are plotted using the ’+’ symbol): (a) and (e) K = 15, µstol = 10−2, ξ = 5, θ = 2, (b)
and (f) ε = 10−4, µstol = 10−2, ξ = 5, θ = 2, (c) and (g) ε = 10−4, K = 13, ξ = 5, θ = 2, (d) and (h) ε = 10−4, K = 13, µstol = 10−2,
ξ = 5, (i) and (j) ε = 10−4, K = 13, µstol = 10−2, θ = 1.
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Fig. 2. FCBGC adaptive parameters selection for (5, 10) using box plots (box encapsulates 25th to 75th percentile, central mark indicates median,
whiskers extend to extreme data points and outliers are plotted using the ’+’ symbol): (a) and (e) µstol = 10−4, ξ = 100, θ = 6000, (b)
and (f) ε = 10−6, ξ = 100, θ = 6000, (c) and (g) ε = 10−6, µstol = 10−4, ξ = 100, (d) and (h) ε = 10−6, µstol = 10−4, θ = 6000.
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Selection of tuned parameters and the metaheuristics for each
category is done by considering one model configuration for
each category to generalize. The step by step process looks
for a suitable value to one existing parameter or a meta-
heuristic at a time while keeping other parameters constant
at a preferable value or the one already found to be appro-
priate. The procedure assumes that the parameters and the
metaheuristics are independent due to their respective na-
ture. In Fig. 1(a) box plots of run-time variation and in
Fig. 1(f) box plots of coherence deviation for varying ε error
threshold while keeping other parameters constant for ten test
trials for FBCASC algorithm configuration (4,7) are shown.
An appropriate value of parameter is chosen while giving
equal weight to the lowest coherence achieved and low run-
ning time with minimal deviation. Suitable tuned value of
ε = 10−4 is chosen on the basis of low run-time as well as
minimal deviation coupled with low coherence and low de-
viation. The remaining of Fig. 1 shows process of finding
suitable tuned value for summation points K and optimum
values for metaheuristic stagnant coherence tolerance µstol,
stagnant coherence count θ and divergence tolerance ξ using
box plots for coherence and runtime variation for ten test trials
for FBCASC algorithm configuration (4,7). Similar process
is adopted to find suitable parameters for category II and III
configurations (summary given in Algorithm 1 Line 5).

3.4 Discussion on CBGC Algorithm
CBGC algorithm [19] (an adaptation of BCASC algo-

rithm), performs faster than BCASC algorithm due to ab-
sence of antipodals. CBGC algorithm convergence criteria
i.e, ‖akn − ak−1

n ‖ ≤ 10−10 checks equilibrium being achieved
but it doesn’t check unnecessary increase in optimization
time. Moreover, monitoring of coherence for interim matrix
at each iteration has shown that at times the optimization
process on one hand doesn’t fulfil the convergence criteria
and on the other doesn’t progress towards the attainment
of optimization goal due to overtly stringent convergence
constraint. Worsening of the optimization process is also
observed where coherence tends to increase or diverge. At
times, even though the lowest possible coherence is attained
with a desirable resolution but stopping criterion does not
allow the process to halt.

3.5 Fast CBGC (FCBGC)
CBGC algorithm is broadly successful in its optimiza-

tion goal but the algorithm progression higlights the need for
improvement in the overall convergence rate. In the proposed
FCBGC (Algorithm 2, a modification of CBGC), the existing
parameters are tuned and a layer of metaheuristics is defined
over the algorithm to overcome the issues of stagnant and
divergent optimization. Stagnant coherence is overcome by
incorporatingmetaheuristic stagnant coherence tolerance and
its respective count. Divergence of coherence is countered by
using metaheuristic divergence tolerance decrement. Owing
to better convergence of CBGC, compared to BCASC, the
additional constraints are made functional in every iteration.

Coherence is calculated at every iteration (Algorithm 2,
Line 12) denoted as µ(i) for the ith iteration. Stagnant coher-
ence is checked using |µ(i) − µ(i−1) | < µstol where µstol is the
stagnant coherence tolerance, if found true then stagnance co-
herence count θ (initiated to θopt for a particular value of p) is
decremented by a unit (Algorithm 2, Line 13–14). Once the
stagnant coherence tolerance θ becomes 0, the optimization
process progresses to the next value of p.

Coherence divergence is checked by decrementing di-
vergence tolerance ξ (initiated to ξopt for a particular value
of p) by a unit, provided the condition µ(i)>µ(i−1) holds true
(Algorithm 2, Line 19–20).When the divergence tolerance ξ
becomes 0, the optimization process progresses to the next
value of p. When (|µ(k) − µbd(A)| < 10−6), the optimization
process is stopped and the interim-matrix is given as output
(Algorithm 2, Line 16–17).

Algorithm 2 FCBGC
1: A ∈ CM×N . Random seed
2: αinit ← 0.04,α← αinit . Dampening factor
3: imax ← 105, pmax ← 29, p ←2 .Max iterations, free parameter
4: η ← 0, µbd(A) . Coherence bound met and bound for A ∈ CM×N (1)

5:

Adaptive settings for configurations CM×N

Category I Category II Category III Description

ε = 10−6 ε = 10−8 ε = 10−8 .Error threshold
µstol ← 10−4 µstol ← 10−4 µstol ← 10−5 .Stagnant coherence tolerance
θopt ← 6000 θopt ← 5200 θopt ← 6000 .Stagnant coherence count
ξopt ← 450 ξopt ← 650 ξopt ← 100 .Divergence tolerance

6: while p ≤ pmax & η = 0, do
7: i = 1, µ(0) ← 1, . Initialize index and coherence
8: ξ ← ξopt , θ ← θopt, . Initialize optimum parameters
9: while i ≤ imax & any ‖a(i)n − a(i−1)

n ‖ ≥ ε & θ , 0& ξ , 0&η = 0 do
10: Calculate F(i) = [f(i)1 f(i)2 . . . f(i)N ] . Force calculation (6)
11: A(i) =A(i−1) + αF(i) . Update and normalize A
12: µ(i) = arg maxr,t

|〈ar ,at 〉|
‖ar ‖‖at ‖

. Interim coherence calculation
13: if |µ(i) − µ(i−1) | < µstol then
14: θ = θ − 1 . Reduce stagnant coherence count
15: end if
16: if |µ(i) − µbd(A) | < 10−6 then
17: η ← 1 . Coherence bound met
18: end if
19: if µ(i) > µ(i−1) then
20: ξ = ξ − 1 . Reduce divergence tolerance
21: end if
22: i = i + 1 . Increase iteration
23: end while
24: p ← 2p, α← αinit

(p−1) . Adjust free parameter and dampening factor
25: end while

3.6 Adapted Parameter Selection for FCBGC
Algorithm

The adapted parameters for FCBGC algorithm are se-
lected through a method similar to the one adopted for FB-
CASC algorithm (as discussed in Sec. 3.3). In Fig. 2(a)
box plots of run-time variation and in Fig. 2(e) box plots of
coherence deviation for varying ε error threshold while keep-
ing other parameters constant for ten test trials for FCBGC
algorithm configuration (5,10) are shown. Suitable tuned
value of ε = 10−6 is chosen on the basis of low run-time as
well as minimal deviation coupled with low coherence and
low deviation. The remaining of Fig. 2 shows process of
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finding suitable values for metaheuristic stagnant coherence
tolerance µstol, stagnant coherence count θ and divergence
tolerance ξ using box plots for coherence and runtime vari-
ation for ten test trials for FCBGC algorithm configuration
(5,10). Similar process is adopted to find suitable tuned
parameters and metaheuristics for category II and III config-
urations (summary given in Algorithm 2 Line 2).

4. Numerical Results
The algorithms are implemented inMatlab R2017a, and

the machine used has Intel Core i7-6700 CPU @ 3.40GHz
octa-core 64-bit processor with 32GB RAM. Minimum and
maximum coherences achieved and running times required
in ten test runs are compared for BCASC, FBCASC, CBGC
and FCBGC algorithms in Tab. 1. BCASC algorithm is im-
plemented using K = 100 summation approximation points
for producing the results of all configurations considered.
The adaptive settings of parameters (FBCASC Algorithm 1
Line 5 and FCBGC Algorithm 2 Line 5) as per the cate-
gory of the configuration considered are used to produce the
codebooks. The results generated are not simulation invari-
ant due to deterministic optimization and variety of random
seeds. Significant reduction in runtimes with comparable
coherences are achieved using FBCASC and FCBGC algo-
rithms respectively.

In Fig. 3, coherence achieved at each iteration versus
number of iterations is plotted for category II configura-
tion (4,20). Although the amount of processing involved
in each iteration significantly differs in BCASC and CBGC
algorithms and their subsequent modifications, yet in Fig. 3,
the coherence optimization profile shows relative trend of
convergence for BCASC, FBCASC, CBGC and FCBGC al-
gorithms. In FBCASC and FCBGC algorithms, the stagnant
behaviour and divergence is avoided. Significant drop in
number of iterations required to achieve similar coherence
results in FBCASC and FCBGC algorithms also reduces the
processing time.

Gram-matrix (AHA) off-diagonal values distribution for
BCASC algorithm, FBCASC algorithm and for |FBCASC-
BCASC| for A ∈ C4×64 are shown in Fig. 4(a), (c) and (e)
respectively. Similarly, in Fig. 4(b), (d) and (e), the distribu-
tion ofGram-matrix (AHA) off-diagonal values forA ∈ C4×64

for CBGC algorithm, FCBGC algorithm and for |FCBGC-
CBGC| are shown. In Fig. 4 (e) and (f), it is observed that
the absolute difference distributions of off-diagonal values
for the proposed algorithms and principle algorithms shows
minimal variation. This highlights that the matrices gener-
ated by the proposed algorithms are similar in quality to the
ones generated by the principle algorithms.

Extensive experimentation reveals that some configu-
rations of category I ((2,4), (4,16), (5,25), (6,36)) yield off-
diagonal coherence distribution with the variation of ≤ 0.01
(See Fig. 5). However, for the configuration (3,9) the vari-
ation is ≤ 0.02. This also confirms the existence of tight
frames for the said configurations as given in [7].
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Fig. 3. Coherence optimization profile for (4, 20) configuration.
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Fig. 4. Off-diagonal values distribution for (4, 64) configuration.
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5. Conclusion
FBCASC and FCBGC algorithms are proposed to ad-

dress the issue of processing time inBCASCandCBGCalgo-
rithms. Comprehensive comparison of proposed algorithms
with the existing algorithms is given for numerous configura-
tions from different categories of overcomplete complex ma-
trices. The proposed algorithms using category-wise adap-
tive parameters significantly reduce the running time without
deteriorating the coherence values.
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Coherence Runtime (seconds)

Minimum Maximum Minimum Maximum

Category M N µbd [18] BCASC FBCASC CBGC FCBGC BCASC FBCASC CBGC FCBGC BCASC FBCASC CBGC FCBGC BCASC FBCASC CBGC FCBGC

I 4 5 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.28 0.07 0.02 0.005 0.45 0.16 0.08 0.014
4 7 0.3535 0.3535 0.3535 0.3535 0.3535 0.3536 0.3536 0.3535 0.3535 9.92 0.56 0.18 0.07 532.07 0.95 0.29 0.138
4 16 0.4472 0.4472 0.4472 0.4472 0.4472 0.4472 0.4472 0.4472 0.4472 169.75 3.66 0.70 0.26 2335.6 5.00 1.29 1.21
5 10 0.3333 0.3333 0.3333 0.3333 0.3333 0.3334 0.3337 0.3334 0.3334 20.07 2.30 0.54 0.23 270.05 13.27 128.23 6.23
5 16 0.3830 0.3889 0.3888 0.3889 0.3889 0.3906 0.3925 0.3903 0.3899 351.61 38.57 96.17 5.45 2169.24 61.23 240.08 15.11
7 42 0.3492 0.3559 0.3544 0.3541 0.3541 0.3752 0.3828 0.3750 0.3806 16716.42 121.33 64.27 16.79 32145 438.14 637 85.45

II 2 6 0.7071 0.7071 0.7071 0.7071 0.7071 0.7076 0.7071 0.7071 0.7071 181.19 0.05 0.19 0.13 323.56 0.08 1.85 0.583
3 16 0.6202 0.6491 0.6487 0.6491 0.6487 0.6491 0.6518 0.6491 0.6506 2118.96 22.32 145.82 10.61 23971 24.11 227.10 25.26
4 20 0.5000 0.5000 0.5000 0.5004 0.5000 0.5284 0.5182 0.5290 0.5350 254.76 7.14 49.23 1.687 3226.40 17.39 310.28 39.51
5 30 0.4472 0.4472 0.4472 0.4472 0.4472 0.4472 0.4480 0.4472 0.4475 617.83 35.66 72.15 5.74 3638.57 71.54 151.45 46.84
6 37 0.4082 0.4141 0.4082 0.4140 0.4082 0.4148 0.4150 0.4154 0.4176 4699.90 93.30 425.65 38.62 25347 148.87 939.96 91.29
12 60 0.2603 0.2749 0.2743 0.2736 0.2734 0.2759 0.2762 0.2738 0.2753 34168 1032.10 2934.66 84.69 197600 1105.40 3271.66 190.91

III 2 7 0.7302 0.7786 0.7786 0.7995 0.7782 0.7790 0.7789 0.8090 0.8089 339.17 3.46 0.62 0.512 767.2 4.18 1.53 1.47
2 8 0.7500 0.7950 0.7941 0.7942 0.7942 0.7950 0.7952 0.7942 0.7942 493.70 4.83 3.15 0.679 4598.2 7.00 4.52 1.377
3 18 0.6324 0.6637 0.6635 0.6635 0.6635 0.6638 0.6889 0.6830 0.6659 330.81 40.98 14.72 11.52 8735.7 53.59 124.43 24.16
3 20 0.6416 0.6877 0.6871 0.6872 0.6872 0.6901 0.6873 0.6892 0.6903 3174.5 81.18 199.70 16.46 4470.3 114.06 432.24 32.12
4 32 0.5606 0.5783 0.5781 0.5777 0.5777 0.5785 0.5788 0.5781 0.5790 1084.94 281.20 25.29 12.22 21072.3 419.29 521.58 58.01
4 64 0.6000 0.6877 0.6877 0.6875 0.6882 0.6878 0.6889 0.6883 0.6925 11523.6 77.15 2256.95 107.79 48528.2 116.09 2429.05 178.52

Tab. 1. Minimum and maximum coherence and runtimes in ten test trials for BCASC, FBCASC, CBGC and FCBGC.
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